US3348604A - Window shades and shade rollers - Google Patents

Window shades and shade rollers Download PDF

Info

Publication number
US3348604A
US3348604A US576774A US57677466A US3348604A US 3348604 A US3348604 A US 3348604A US 576774 A US576774 A US 576774A US 57677466 A US57677466 A US 57677466A US 3348604 A US3348604 A US 3348604A
Authority
US
United States
Prior art keywords
tube
shade
foam
plastic
rigid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US576774A
Inventor
John E Gallagher
Orin N Crider
Mcculloch Bryson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Slick Industrial Co
Original Assignee
Slick Industrial Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Slick Industrial Co filed Critical Slick Industrial Co
Priority to US576774A priority Critical patent/US3348604A/en
Application granted granted Critical
Publication of US3348604A publication Critical patent/US3348604A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/60Spring drums operated only by closure members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/40Roller blinds
    • E06B9/42Parts or details of roller blinds, e.g. suspension devices, blind boxes
    • E06B9/44Rollers therefor; Fastening roller blinds to rollers

Definitions

  • a shade such as a window shade, comprising a cylindrical plastic outer tube with a shade wound thereon; spring rewinding means in one end of the tube, including a spear end by which the tube is supported and spring means opposing rotation of the tube in a direction to unwind the shade; a rigid, cellular, plastic foam core bonded around its periphery to the interior wall of the tube and extending substantially from the spring rewinding means to the other end of the tube; and a gudgeon for the other end of the tube for rotatably supporting it.
  • the invention is concerned with a window shade having a roller comprising a tough plastic outer tube filled, intermediate its ends, with a compatible, rigid foam plastic core which bonds with the outer tube to provide a rugged and durable body capable of withstanding considerable abuse.
  • FIGURE 1 is a partly sectional, side elevational view illustrating a shade formed according to the invention
  • FIGURE 2 is an enlarged, partly sectional, end elevational view of the left end of the roller only;
  • FIGURE 3 is a fragmentary, side elevational view of the left end of the shade roller
  • FIGURE 4 is a side elevational view schematically illustrating apparatus which can be used to manufacture shade rollers continuously on a mass production scale according to a process which will be described;
  • FIGURE 4a is a similar view illustrating a slightly different method which can be used
  • FIGURE 5 is a side elevational view indicating a typical timing arrangement which may be employed in the process
  • FIGURE 6 is a view illustrating a typical control circuit which can be used.
  • FIGURE 7 is a fragmentary, sectional, side elevational view illustrating another embodiment of the roller.
  • FIGURE 1 we have illustrated a window shade having a roller generally identified by the letter R which includes a non-cellular, outer tube or sleeve 10 formed of a rigid plastic or other suitable material and filled with a rigid, cellular, foam plastic core 11 which, when suitably cured, is bonded to the tube 10 to form a rigid, unitary body of uniform diameter which will not significantly sag when the load of the shade S in lengths of as much as twelve feet when supported only at its two ends.
  • the conventional cloth or plastic shade 5 may be fixed to tube 10 at one edge with conventional staples or a suitable adhesive.
  • the rigid foam core 11 may terminate as at 11a at a spaced distance from one terminal end of the outer tube 10.
  • conventional winding mechanism such as is described in Patent No. 2,173,791, which comprises a coil spring 13 having an inner end 13a extending into and anchored in a slot 14 provided in the inner end of a spindle 15.
  • the outer end of the spring 13b is secured to a lug 16 extending inwardly from a dish-shaped late generally indicated by the numeral 16 which is received by the outer tube 10 and anchored thereto in a manner to be described.
  • a spear 17 extends through an opening 17a in the plate 16 to rigidly connect to the spindle 15 and is engageable in a slotted window shade bracket in the usual manner to hold the inner end of spring 13 in stationary position when roller R and the dish-shaped plate are revolve-d during unreeling of the window shade.
  • the dish-sha ed plate 16 mounts the usual pivoted pawls 18 which are pivoted to the outer face 16a of the plate 16 as at 18a forengagement with a pawl wheel 19 mounted fast to spear 17 along with a cup-shaped element 19a.
  • a pair of diametrically opposite angular slots 20 including axially parallel portions 204 leading from the terminal end of the tube 10 and circum ferentially extending .portions 20b extending in a direction from the portion 16a opposite to the direction of rotation of the roller R when the latter is revolved in opposition to spring 13. Stated differently, the slot portions 20b extend in the same direction circumferentially as do the conventionally operating pawl fingers 18 from their pivots 1811.
  • the spear 17 engages in the slotted driving bracket attached to the to of the window frame in the usual manner as shown in the aforementionedpatent.
  • Snugly fitting within the slot portions 20b to prevent relative rotation of the end plate 16 and outer core 10 are lugs 21 for-med by cutting the peripheral wall 16b of the plate 16 at two diametrically opposite locations in two places, as at 22, and bending the portion thereby isolated radially outwardly. This outwardly bent portion is cut away to form the lug 21 which is reduced in width so that the peripheral length of slot 20b can be kept at a minimum.
  • the rigid foam plastic core also terminates short of the end of the outer sleeve 10, as at 11b.
  • a disk-like plug 22 having a projecta ing pin 23 is press-fitted in the end of the tube 10, as shown, and is supported for rotation in a bore bearing window shade bracket in the usual manner.
  • the rigid outer tube '10 and the rigid foam core 11 may be employed as the rigid outer tube '10 and the rigid foam core 11.
  • the outer sleeve can be .a rigid polyvinyl chloride, high density polyethylene, or polypropylene tube, and the core 11 may comprise a light weight, rigid foam such as polyurethane, polyether, or phenolic foam.
  • a suitable polyvinyl chloride tube which can be termed non-elastomeric in character, employs less than 15% plasticizer by weight and has a Shore durometer A hardness of over 100.
  • FIGURE 4 we have illustrated one of several types of apparatus for continuously extruding shade roller bodies in which an outer extrusion housing 24 is con nected to a source of molten polyvinyl chloride plastic and, in the usual manner of forcing a plastic from an extrusion orifice 26 with an advancing screw such as at 24a, issues the plastic under pressure in a continuous stream to a powered roller conveyor 27 which has watercooled rollers 27a such as shown in Szantays United States Patent No. 2,791,801 to chill and set the material 25 as it emerges from the orifice 26. Watercooled jackets 27b are also preferably employed.
  • An inner tube 28 which is connected to a source of plastic incorporating a foaming agent activated by heat or the like and similarly may be fed by an advancing screw 28a, has an issuing orifice 29 located at a spaced distance ahead of orifice 26.
  • This orifice 29 issues foam plastic including the expanding agent in a continuous stream.
  • a suitable resin, hardener, and foaming agent be placed in housing 28 and mixed or that expandable beads which include the blowing agent be placed in chamber 28 and heated in the conventional manner.
  • a gate valve 30 for closing the tube 28 intermittently as desired.
  • a sealed solenoid 32 within the tube 28 is connected by an armature rod 33 with the gate valve 30 and includes a coil 32a which, when enerigized, operates to move the valve 30 to a position closing the orifice 29 from the supply of material.
  • the solenoid 32 also includes a second coil 32b which, when the first coil 32a is deenergized and coil 32b is energized, will restore the gate valve 30 to the position in which it is shown in FIGURE 4.
  • a cut-01f knife 34 vertically arranged to descend :between rollers 27 is powered by a conventional solenoid 34a including coil 34band passes adjacent the orifice 29 to cut off the tube formed of material 25 when the desired length has been extruded.
  • the material 25 can be run continuously, assuming that knife 34 is in the down position in which it is shown in broken lines in FIGURE 4, as soon as knife 34 is withdraw, which happens relatively instantaneously considering the much slower extrusion rate of the material 25 issuing from orifice 26, a short length of material 25 is allowed to extrude to provide a space for insertion of the plug 22.
  • coil 32b in solenoid 32 is energized and gate valve 30 is opened so that foam plastic 28a feeds out orifice 29 and substantially immediately expands within the chilled tube wall formed by material 25.
  • the two materials 25 and 28a then continuously extrude, the material 25 comprising the outer tube extruding around the core 28a, until it is desired to cut off the flow of foam 28a, as at the surface 11a in FIGURE 1.
  • the coil 32a in solenoid 32 is energized and valve 30 is closed to seal off the source of suply of foam plastic 28a.
  • the closing of gate valve 30 is accomplished sufficiently in advance that the expulsion of any remaining foam plastic material ahead of valve 30, due to the action of the expanding agent therein, will only provide sufiicient foam plastic to fill the tube to the extent desired to point 11a.
  • FIGURE 6 illustrates a schematic electrical control diagram wherein the switch 38 is shown operating the gate closing solenoid 32a, the switch 39 operating the gate opening solenoid 32b, and the switch 40 energizing the knife solenoid 34b which is spring returned in the usual manner when solenoid 34b is deenergized.
  • rigid polyvinyl chloride tubing lengths are fed in any suitable manner in end-to-end relation over the inner die 28 (FIGURE 4a) and over rollers 27. Except for the fact that no advancing screw 24a, extrusion tube 24, or knife 34 is needed, the operation of the system is the same as previously, the polyvinyl chloride tubing lengths being fed continuously, as was the molten plastic 25.
  • the foam plastic being compatible with the outer tube 10 in the sense that when it cures it bonds to the tubing 10
  • the slots 20 can be cut in one end and the gear operating mechanism inserted.
  • the plate 16 can be press fitted, then, in the opposite end in the usual manner and the window shade attached with adhesive or in some other suitable manner.
  • Example 1 Exon 4028 which is a high impact, polyvinyl chloride plastic manufactured by Firestone Rubber Company, is used as the outer tube 10 and polyurethane foam 3000A, which forms a tough, rigid foam having excellent dimensional stability (manufactured by the Marblette Corporation, of Long Island City, New York), is employed as the foam material.
  • the temperature of extrusion of the polyurethane foam is room temperature (about 7080 F.) and the polyvinyl chloride tubing is used in preformed condition according to FIGURE 4a or is extruded according to FIGURE 4. If extruded, it is cooled to rigidity prior to receiving the core plastic.
  • the diameter of the tube 10 wall is inch and the thickness .020 inch.
  • Example 2 The same outer sleeve of Exon 4028 was used, except that a phenolic foam resin #1076, manufactured by the Marblette Corporation, was used with No. 179 hardener or accelerator (Marblette) in the amount of 1 pound hardener to 10 pounds of foam resin and No. 1101 foam powder (Marblette) in the amount of 1 pound of foam powder to 10 pounds of phenolic resin.
  • a rigid, cellular structure is formed, with expansion of the foam approximately five times original volume, which has high tensile and compressive strength.
  • the resin is first intimately mixed with No. 1101 powder and then the accelerator No. 179 is mixed to insure complete blending. Elevated temperature curing requires about eight to ten hours at 140 F.
  • Such foam material formed provides a tensile strength of 289 p.s.i., a compressive strength of 780 psi, and has a modulus of rigidity of 22,800 p.s.i.
  • Example 3 The roller of Examples 1 or 2, except that the outer tube 10 is a rigid vinyl chloride-acetate copolymer.
  • Example 4 The roller of Examples 1 or 2, except that the outer tube is a rigid polyethylene extruded as in FIGURE 4.
  • Example 5 The outer tube 10 is extruded from B. F. Goodrich Co. Geon 101 and the core is a rigid, closed cell vinyl foam made from the same Geon paste resin and a conventional blowing agent.
  • the shade roller formed in the manner indicated should be capable of withstanding certain minimum weights without materially deforming or fracturing. If rollers in the following diameters are placed on 22 inch centers they should withstand weight applied between the centers as follows:
  • outer tube 10 materials which it is believed may be utilized as the outer tube 10 include high molecular weight Teflon (tetrafluoroethylene), polypropylene, Kel F (polychlorotrifluoroethylene), and polystyrene of approximately 60,000 molecular weight.
  • Teflon tetrafluoroethylene
  • polypropylene polypropylene
  • Kel F polychlorotrifluoroethylene
  • polystyrene of approximately 60,000 molecular weight.
  • the cellular polymeric material forming the core might, in addition to the foams mentioned, be expandable polystyrene pellets, sold by the Koppers Co., Inc., under the trademark Dylite, inicellular polyvinyl chloride, cellular polyethylene, and Marblette phenolic foam resin 1200.
  • the wallthickness of the outer tubing 10 will be .020 to .040 inch, with tubes ranging from inch in diameter to 3 inches in diameter, although it should be possible to construct shade rollers of lesser or greater diameter in the .manner described, if desired.
  • the foam used should form what is known as a rigid non-elastomeric foam which, when deformed, does not return.
  • a preformed plastic tube 10 of the desired length for the roller which could be of any plastic mentioned, may be filled with a predetermined quantity of expandable pellets such as Dylite polystyrene pellets. If solid plugs are then very snugly inserted to the depth of surfaces 11a and 11b and the tube is heated, the pellets will expand and form a rigid foam core which bonds to the tube. The roller can then be cured and the plugs later removed.
  • expandable pellets such as Dylite polystyrene pellets.
  • FIGURE 7 is shown a modified embodiment of the invention which is exactly as shown in FIGURE 1 With an outer core 10 and a rigid foam plastic core 11.
  • an inner, rigid, solid core rod of Fiberglas is provided in the foam core 11 and extends from end to end thereof.
  • This Fiberglas core 42 increases the rigidity of the roller R and is useful in rollers of extremely long length.
  • the spindle 15 may be formed of the same rigid foam plastic as the core 11.
  • a shade comprising: a plastic outer tube; a shade wound thereon; rewinding means for one of said tube, in- 7 eluding means by which said tube is supported and spring 0 HARRISON R. MOSELEY, PETER M.
  • a shade comprising a noncellular, nonelastorneric, plastic tube with a shade strip wound thereon, one end of said shade being mounted thereon by its end edge; spring means in one end of said tube stressable for opposing rotation of said roller in one direction to unwind said shade and operative to restore said shade to wound position; a rigid, cellular, plastic core, bonded around its periphery to the interior wall of said tube and extending substantially between said spring means and the other end of said tube, preventing substantial lengthwise deflection of said tube; and means on the said other end of the tube for rotatably supporting it.
  • a shade comprising a noncellular, nonelastomeric, plastic tube with a shade str-ip wound thereon, one end of said shade being mounted thereon by its end edge; a rigid, cellular, plastic core, bonded around its periphery to the interior wall of said tube; spring means for one end of said tube stressable for opposing rotation of said roller in one direction to unwind said shade and operative to restore said shade to wound position, and means on the opposite end of the tube for rotatably supporting it; said core including a generally centrally embedded, resin impregnated glass fibre rod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)

Description

J. E. GALLAGHER ETAL WINDOW SHADES AND SHADE ROLLERS Original Filed May 21, 1962 2 Sheets-Sheet l m OI gi wfm .J. E. GALLAGHER ETAL 3,348,604
- WINDOW SHADES AND SHADE ROLLERS Original Filed May 21, 1962 Oct. 24, 1967 2 Sheets-Sheet 2 mN vm VN INVENTORS GALLAGHER BRYSON MCCULLOCH CRIN N. CRIDER JOHN ATTORNEYS United States Patent ABSTRACT OF THE DISCLOSURE A shade, such as a window shade, comprising a cylindrical plastic outer tube with a shade wound thereon; spring rewinding means in one end of the tube, including a spear end by which the tube is supported and spring means opposing rotation of the tube in a direction to unwind the shade; a rigid, cellular, plastic foam core bonded around its periphery to the interior wall of the tube and extending substantially from the spring rewinding means to the other end of the tube; and a gudgeon for the other end of the tube for rotatably supporting it.
This application is -a division of application Ser. No. 320,274, filed Oct. 31, 1963, now U.S. Patent N0. 3,274,- 676, which is a continuation of application Ser. No. 197,185, filed May 21, 1962, and now abandoned.
It is still prevalent practice, and has been for many, many years, to utilize wood rollers primarily for reeling a window shade or blind, although metal rollers, which are not as satisfactory for many reasons, have been used to some extent. Generally speaking, the cost of either roller is an important factor in the cost of the window shade. In the case of wood rollers the cost depends on the steadily increasing price of wood as the ready su ply thereof decreases.
It is a prime object of the present invention to provide an inexpensive window shade including a roller which obviates the use of the increasingly expensive conventional wooden roller.
Briefly, the invention is concerned with a window shade having a roller comprising a tough plastic outer tube filled, intermediate its ends, with a compatible, rigid foam plastic core which bonds with the outer tube to provide a rugged and durable body capable of withstanding considerable abuse.
Other objects and advantages of the invention will be pointed out specifically or will become apparent from the following description when it is considered in conjunction with the appended claims and the accompanying drawings, in which:
FIGURE 1 is a partly sectional, side elevational view illustrating a shade formed according to the invention;
FIGURE 2 is an enlarged, partly sectional, end elevational view of the left end of the roller only;
FIGURE 3 is a fragmentary, side elevational view of the left end of the shade roller;
FIGURE 4 is a side elevational view schematically illustrating apparatus which can be used to manufacture shade rollers continuously on a mass production scale according to a process which will be described;
FIGURE 4a is a similar view illustrating a slightly different method which can be used;
FIGURE 5 is a side elevational view indicating a typical timing arrangement which may be employed in the process;
FIGURE 6 is a view illustrating a typical control circuit which can be used; and
3,348,604 Patented Oct. 24, 1967 FIGURE 7 is a fragmentary, sectional, side elevational view illustrating another embodiment of the roller.
In the drawings, in FIGURE 1, we have illustrated a window shade having a roller generally identified by the letter R which includes a non-cellular, outer tube or sleeve 10 formed of a rigid plastic or other suitable material and filled with a rigid, cellular, foam plastic core 11 which, when suitably cured, is bonded to the tube 10 to form a rigid, unitary body of uniform diameter which will not significantly sag when the load of the shade S in lengths of as much as twelve feet when supported only at its two ends. The conventional cloth or plastic shade 5 may be fixed to tube 10 at one edge with conventional staples or a suitable adhesive.
It will be seen, from an inspection of FIGURE 1, that the rigid foam core 11 may terminate as at 11a at a spaced distance from one terminal end of the outer tube 10. Extending within the space 12 thus provided is conventional winding mechanism such as is described in Patent No. 2,173,791, which comprises a coil spring 13 having an inner end 13a extending into and anchored in a slot 14 provided in the inner end of a spindle 15. The outer end of the spring 13b is secured to a lug 16 extending inwardly from a dish-shaped late generally indicated by the numeral 16 which is received by the outer tube 10 and anchored thereto in a manner to be described. A spear 17 extends through an opening 17a in the plate 16 to rigidly connect to the spindle 15 and is engageable in a slotted window shade bracket in the usual manner to hold the inner end of spring 13 in stationary position when roller R and the dish-shaped plate are revolve-d during unreeling of the window shade. The dish-sha ed plate 16 mounts the usual pivoted pawls 18 which are pivoted to the outer face 16a of the plate 16 as at 18a forengagement with a pawl wheel 19 mounted fast to spear 17 along with a cup-shaped element 19a.
Provided in the end of the outer sleeve member 10 to secure the dish-shaped plate 16 in position for rotation with the sleeve 10, when the latter is revolved in opposition to spring 13, are a pair of diametrically opposite angular slots 20 including axially parallel portions 204 leading from the terminal end of the tube 10 and circum ferentially extending .portions 20b extending in a direction from the portion 16a opposite to the direction of rotation of the roller R when the latter is revolved in opposition to spring 13. Stated differently, the slot portions 20b extend in the same direction circumferentially as do the conventionally operating pawl fingers 18 from their pivots 1811. It is to be understood that the spear 17 engages in the slotted driving bracket attached to the to of the window frame in the usual manner as shown in the aforementionedpatent. Snugly fitting within the slot portions 20b to prevent relative rotation of the end plate 16 and outer core 10 are lugs 21 for-med by cutting the peripheral wall 16b of the plate 16 at two diametrically opposite locations in two places, as at 22, and bending the portion thereby isolated radially outwardly. This outwardly bent portion is cut away to form the lug 21 which is reduced in width so that the peripheral length of slot 20b can be kept at a minimum.
In operation, when the shade is pulled downwardly the spear 17 and spindle 15 are prevented from rotating by the slotted bracket in which the spear is engaged. The roller R will rotate in the counterclockwise direction (FIG- URE 2) as the shade is being pulled downwardly. This direction of rotation is such that the lugs 21 tend to be retained within the ends of slots 20b, rather than to be separated from them.
At the opposite end of theroller R the rigid foam plastic core also terminates short of the end of the outer sleeve 10, as at 11b. A disk-like plug 22 having a projecta ing pin 23 is press-fitted in the end of the tube 10, as shown, and is supported for rotation in a bore bearing window shade bracket in the usual manner.
Various materials may be employed as the rigid outer tube '10 and the rigid foam core 11. For instance, the outer sleeve can be .a rigid polyvinyl chloride, high density polyethylene, or polypropylene tube, and the core 11 may comprise a light weight, rigid foam such as polyurethane, polyether, or phenolic foam. A suitable polyvinyl chloride tube, which can be termed non-elastomeric in character, employs less than 15% plasticizer by weight and has a Shore durometer A hardness of over 100.
In FIGURE 4 we have illustrated one of several types of apparatus for continuously extruding shade roller bodies in which an outer extrusion housing 24 is con nected to a source of molten polyvinyl chloride plastic and, in the usual manner of forcing a plastic from an extrusion orifice 26 with an advancing screw such as at 24a, issues the plastic under pressure in a continuous stream to a powered roller conveyor 27 which has watercooled rollers 27a such as shown in Szantays United States Patent No. 2,791,801 to chill and set the material 25 as it emerges from the orifice 26. Watercooled jackets 27b are also preferably employed. An inner tube 28, which is connected to a source of plastic incorporating a foaming agent activated by heat or the like and similarly may be fed by an advancing screw 28a, has an issuing orifice 29 located at a spaced distance ahead of orifice 26. This orifice 29 issues foam plastic including the expanding agent in a continuous stream. The process contemplates that a suitable resin, hardener, and foaming agent be placed in housing 28 and mixed or that expandable beads which include the blowing agent be placed in chamber 28 and heated in the conventional manner.
Mounted within the tube 28 we can provide a gate valve 30 for closing the tube 28 intermittently as desired. The valve 30, which is circular and closes the tube 28 completely when pivoted to upright position, is mounted on a hinge pin 31 seal-ably supported by the tube wall 28. A sealed solenoid 32 within the tube 28 is connected by an armature rod 33 with the gate valve 30 and includes a coil 32a which, when enerigized, operates to move the valve 30 to a position closing the orifice 29 from the supply of material. The solenoid 32 also includes a second coil 32b which, when the first coil 32a is deenergized and coil 32b is energized, will restore the gate valve 30 to the position in which it is shown in FIGURE 4. A cut-01f knife 34 vertically arranged to descend :between rollers 27 is powered by a conventional solenoid 34a including coil 34band passes adjacent the orifice 29 to cut off the tube formed of material 25 when the desired length has been extruded.
In operation, the material 25 can be run continuously, assuming that knife 34 is in the down position in which it is shown in broken lines in FIGURE 4, as soon as knife 34 is withdraw, which happens relatively instantaneously considering the much slower extrusion rate of the material 25 issuing from orifice 26, a short length of material 25 is allowed to extrude to provide a space for insertion of the plug 22. At this point, coil 32b in solenoid 32 is energized and gate valve 30 is opened so that foam plastic 28a feeds out orifice 29 and substantially immediately expands within the chilled tube wall formed by material 25. The two materials 25 and 28a then continuously extrude, the material 25 comprising the outer tube extruding around the core 28a, until it is desired to cut off the flow of foam 28a, as at the surface 11a in FIGURE 1. At this point the coil 32a in solenoid 32 is energized and valve 30 is closed to seal off the source of suply of foam plastic 28a. The closing of gate valve 30 is accomplished sufficiently in advance that the expulsion of any remaining foam plastic material ahead of valve 30, due to the action of the expanding agent therein, will only provide sufiicient foam plastic to fill the tube to the extent desired to point 11a. With the supply of foam plastic 28a temporarily t 4- off, the material continues to be extruded until a proper tube length for the outer tube 10 is extruded, whence knife 34 descends to cut oil the sleeve 10. Thus, provision is made for providing a core 11 which terminates short of both ends of the tube 10 the required distance.
Timing cams 35-37, driven from a single, continuously operating electric motor or the like, can be employed to actuate switches 38-40, as shown in FIGURE 5, in timed relation. FIGURE 6 illustrates a schematic electrical control diagram wherein the switch 38 is shown operating the gate closing solenoid 32a, the switch 39 operating the gate opening solenoid 32b, and the switch 40 energizing the knife solenoid 34b which is spring returned in the usual manner when solenoid 34b is deenergized.
In another version of the invention, rigid polyvinyl chloride tubing lengths, already formed and cut to length, are fed in any suitable manner in end-to-end relation over the inner die 28 (FIGURE 4a) and over rollers 27. Except for the fact that no advancing screw 24a, extrusion tube 24, or knife 34 is needed, the operation of the system is the same as previously, the polyvinyl chloride tubing lengths being fed continuously, as was the molten plastic 25. Once the body comprising outer sleeve 10' and foam core 11 is formed, the foam plastic being compatible with the outer tube 10 in the sense that when it cures it bonds to the tubing 10, the slots 20 can be cut in one end and the gear operating mechanism inserted. The plate 16 can be press fitted, then, in the opposite end in the usual manner and the window shade attached with adhesive or in some other suitable manner.
Various plastics can be successfully employed to form the outer member 10 and core 11 as demonstrated by the following examples:
Example 1 Exon 4028, which is a high impact, polyvinyl chloride plastic manufactured by Firestone Rubber Company, is used as the outer tube 10 and polyurethane foam 3000A, which forms a tough, rigid foam having excellent dimensional stability (manufactured by the Marblette Corporation, of Long Island City, New York), is employed as the foam material. The temperature of extrusion of the polyurethane foam is room temperature (about 7080 F.) and the polyvinyl chloride tubing is used in preformed condition according to FIGURE 4a or is extruded according to FIGURE 4. If extruded, it is cooled to rigidity prior to receiving the core plastic. The diameter of the tube 10 wall is inch and the thickness .020 inch. Four pounds of polyurethane resin is used in combination with 6 pounds of B hardener or accelerator (Marblette). Curing of the foam at F. requires about eight hours and after this time the foam is rigid and bonds to the tube 10, and slots 20 can be cut in the roller body.
Example 2 The same outer sleeve of Exon 4028 was used, except that a phenolic foam resin #1076, manufactured by the Marblette Corporation, was used with No. 179 hardener or accelerator (Marblette) in the amount of 1 pound hardener to 10 pounds of foam resin and No. 1101 foam powder (Marblette) in the amount of 1 pound of foam powder to 10 pounds of phenolic resin. A rigid, cellular structure is formed, with expansion of the foam approximately five times original volume, which has high tensile and compressive strength. In the process of preparation, the resin is first intimately mixed with No. 1101 powder and then the accelerator No. 179 is mixed to insure complete blending. Elevated temperature curing requires about eight to ten hours at 140 F. Such foam material formed provides a tensile strength of 289 p.s.i., a compressive strength of 780 psi, and has a modulus of rigidity of 22,800 p.s.i.
Example 3 The roller of Examples 1 or 2, except that the outer tube 10 is a rigid vinyl chloride-acetate copolymer.
Example 4 The roller of Examples 1 or 2, except that the outer tube is a rigid polyethylene extruded as in FIGURE 4.
Example 5 The outer tube 10 is extruded from B. F. Goodrich Co. Geon 101 and the core is a rigid, closed cell vinyl foam made from the same Geon paste resin and a conventional blowing agent.
The shade roller formed in the manner indicated should be capable of withstanding certain minimum weights without materially deforming or fracturing. If rollers in the following diameters are placed on 22 inch centers they should withstand weight applied between the centers as follows:
Diameter of roller, inches: Weight lbs. A 45 1 48 1% 85 1% 100 1% 130 Other materials which it is believed may be utilized as the outer tube 10 include high molecular weight Teflon (tetrafluoroethylene), polypropylene, Kel F (polychlorotrifluoroethylene), and polystyrene of approximately 60,000 molecular weight. The cellular polymeric material forming the core might, in addition to the foams mentioned, be expandable polystyrene pellets, sold by the Koppers Co., Inc., under the trademark Dylite, inicellular polyvinyl chloride, cellular polyethylene, and Marblette phenolic foam resin 1200.
Generally speaking, the wallthickness of the outer tubing 10 will be .020 to .040 inch, with tubes ranging from inch in diameter to 3 inches in diameter, although it should be possible to construct shade rollers of lesser or greater diameter in the .manner described, if desired. The foam used should form what is known as a rigid non-elastomeric foam which, when deformed, does not return.
In a modified process a preformed plastic tube 10 of the desired length for the roller, which could be of any plastic mentioned, may be filled with a predetermined quantity of expandable pellets such as Dylite polystyrene pellets. If solid plugs are then very snugly inserted to the depth of surfaces 11a and 11b and the tube is heated, the pellets will expand and form a rigid foam core which bonds to the tube. The roller can then be cured and the plugs later removed.
In FIGURE 7 is shown a modified embodiment of the invention which is exactly as shown in FIGURE 1 With an outer core 10 and a rigid foam plastic core 11. However, an inner, rigid, solid core rod of Fiberglas is provided in the foam core 11 and extends from end to end thereof. This Fiberglas core 42 increases the rigidity of the roller R and is useful in rollers of extremely long length. In another embodiment of the invention the spindle 15 may be formed of the same rigid foam plastic as the core 11.
It is to be understood that the drawings and descriptive matter are in all cases to be interpreted as merely illustrative of the principles of the invention, rather than as limiting the same in any way, since it is contemplated that various changes may be made in the various elements to achieve like results without departing from the spirit of the invention or the scope of the appended claims.
We claim:
1. A shade comprising: a plastic outer tube; a shade wound thereon; rewinding means for one of said tube, in- 7 eluding means by which said tube is supported and spring 0 HARRISON R. MOSELEY, PETER M.
means in said tube opposing rotation of said tube in a direction to unwind said shade; a rigid, cellular, plastic foam core for said tube extending substantially from said spring means to the other end of said tube and preventing substantial lengthwise deflection of said tube; and means for the opposite end of the tube for rotatably supporting it.
2. The combination defined in claim 1 in which said one end of said tube is slotted and said spring re-winding means includes a tube end plate with a projecting lug received in the slot.
3. The combination defined in claim 2 in which said slot includes an axially parallel portion, opening to the end edge of said tube, connecting with a circumferentially leading portion extending in the direction opposite to that in which the tube revolves in opposition to the spring means.
4. A shade comprising a noncellular, nonelastorneric, plastic tube with a shade strip wound thereon, one end of said shade being mounted thereon by its end edge; spring means in one end of said tube stressable for opposing rotation of said roller in one direction to unwind said shade and operative to restore said shade to wound position; a rigid, cellular, plastic core, bonded around its periphery to the interior wall of said tube and extending substantially between said spring means and the other end of said tube, preventing substantial lengthwise deflection of said tube; and means on the said other end of the tube for rotatably supporting it.
5. The combination defined in claim 4 in which said tube rotatably mounts a spindle of rigid cellular plastic Within said tube; and the spring means includes a coil spring around said spindle connected with said spindle at one end and fixed to said tube at its other end.
6. The combination defined in claim 4 in which said core is extruded into said tube and is compatible with said tube and bonds thereto when it hardens.
7. The combination defined in claim 4 wherein said means for supporting the ends of the tube include end plates on said tube.
8. A shade comprising a noncellular, nonelastomeric, plastic tube with a shade str-ip wound thereon, one end of said shade being mounted thereon by its end edge; a rigid, cellular, plastic core, bonded around its periphery to the interior wall of said tube; spring means for one end of said tube stressable for opposing rotation of said roller in one direction to unwind said shade and operative to restore said shade to wound position, and means on the opposite end of the tube for rotatably supporting it; said core including a generally centrally embedded, resin impregnated glass fibre rod.
References Cited UNITED STATES PATENTS 8/1900 Allard 326 X 2/1918 Fargo et al 160318 8/1931 Douglas 287-103 7/1948 Peed 160323 X 6/1952 Burgess 287103 7/ 1962 Alderfer et al. 161160 X 11/1962 Gast 160323 X 4/1965 Johnson 160313 8/ 1965 Gossling et al. 160323 1/1966 Reifenhauser 264-47 9/1966 Levenson 264-47 X DAVID J. WILLIAMOWSKY, Primary Examiner.
CAUN,
Examiners.

Claims (1)

1. A SHADE COMPRISING: A PLASTIC OUTER TUBE; A SHADE WOUND THEREON; REWINDING MEANS FOR ONE OF SAID TUBE, INCLUDING MEANS BY WHICH SAID TUBE IS SUPPORTED AND SPRING MEANS IN SAID TUBE OPPOSING ROTATION OF SAID TUBE IN A DIRECTION TO UNWIND SAID SHADE; A RIGID, CELLULAR, PLASTIC FOAM CORE FOR SAID TUBE EXTENDING SUBSTANTIALLY FROM
US576774A 1966-05-20 1966-05-20 Window shades and shade rollers Expired - Lifetime US3348604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US576774A US3348604A (en) 1966-05-20 1966-05-20 Window shades and shade rollers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US576774A US3348604A (en) 1966-05-20 1966-05-20 Window shades and shade rollers

Publications (1)

Publication Number Publication Date
US3348604A true US3348604A (en) 1967-10-24

Family

ID=24305934

Family Applications (1)

Application Number Title Priority Date Filing Date
US576774A Expired - Lifetime US3348604A (en) 1966-05-20 1966-05-20 Window shades and shade rollers

Country Status (1)

Country Link
US (1) US3348604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226669A1 (en) * 2003-05-16 2004-11-18 Webb Tony F. Latchless window shade apparatus
EP2450521A3 (en) * 2010-11-08 2013-08-14 Hörmann Kg Amshausen Overlay element for a rolling gate or rolling grille
US10294717B2 (en) * 2012-05-15 2019-05-21 Geigtech East Bay Llc Shade bracket with concealed wiring

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US655678A (en) * 1900-05-29 1900-08-14 John Allard Extension shade-roller.
US1256001A (en) * 1917-02-17 1918-02-12 William H Finney Curtain-pole.
US1817975A (en) * 1929-10-23 1931-08-11 Harry A Douglas Electric lamp
US2445452A (en) * 1945-12-13 1948-07-20 Horace S Peed Window shade roller
US2601088A (en) * 1948-01-13 1952-06-17 Maurice W Burgess Detachable flagstaff
US3041682A (en) * 1957-05-21 1962-07-03 Sterling W Alderfer Foamed sealing strip products
US3064452A (en) * 1961-10-30 1962-11-20 Star Shade Cutter Company Plug and pin assembly for shade rollers
US3179161A (en) * 1961-11-30 1965-04-20 Weather Seal Inc Roll screen and spring positioning means
US3203468A (en) * 1963-02-12 1965-08-31 Clopay Corp Window shade having telescoping roller
US3229005A (en) * 1954-07-15 1966-01-11 Reifenhauser Friedric Aloisius Method and apparatus for forming elongated members
US3270393A (en) * 1962-12-13 1966-09-06 Gen Motors Corp Method for forming resilient plastic seat elements

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US655678A (en) * 1900-05-29 1900-08-14 John Allard Extension shade-roller.
US1256001A (en) * 1917-02-17 1918-02-12 William H Finney Curtain-pole.
US1817975A (en) * 1929-10-23 1931-08-11 Harry A Douglas Electric lamp
US2445452A (en) * 1945-12-13 1948-07-20 Horace S Peed Window shade roller
US2601088A (en) * 1948-01-13 1952-06-17 Maurice W Burgess Detachable flagstaff
US3229005A (en) * 1954-07-15 1966-01-11 Reifenhauser Friedric Aloisius Method and apparatus for forming elongated members
US3041682A (en) * 1957-05-21 1962-07-03 Sterling W Alderfer Foamed sealing strip products
US3064452A (en) * 1961-10-30 1962-11-20 Star Shade Cutter Company Plug and pin assembly for shade rollers
US3179161A (en) * 1961-11-30 1965-04-20 Weather Seal Inc Roll screen and spring positioning means
US3270393A (en) * 1962-12-13 1966-09-06 Gen Motors Corp Method for forming resilient plastic seat elements
US3203468A (en) * 1963-02-12 1965-08-31 Clopay Corp Window shade having telescoping roller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226669A1 (en) * 2003-05-16 2004-11-18 Webb Tony F. Latchless window shade apparatus
EP2450521A3 (en) * 2010-11-08 2013-08-14 Hörmann Kg Amshausen Overlay element for a rolling gate or rolling grille
US10294717B2 (en) * 2012-05-15 2019-05-21 Geigtech East Bay Llc Shade bracket with concealed wiring

Similar Documents

Publication Publication Date Title
US5858287A (en) Extrusion method of producing a polymeric sealing/spring strip
US3366719A (en) Method and apparatus for continuously producing tubing
US3948292A (en) Laminated composite pipe
US3872893A (en) Self-reinforced plastic hose and method for molding same
EP0739705A1 (en) Process for manufacturing foam-filled extruded products
US3348604A (en) Window shades and shade rollers
IE830167L (en) Producing window frames
US3159886A (en) Sealing strip with foamed-in-place filler
US3274676A (en) Methods of making shades
US3207827A (en) Method of making helical article
ES450513A1 (en) Process for the sizing of coextruded, multiple-layer extruded profiles from thermoplastic synthetic resins
GB2114088B (en) Film cartridge manufacture and filling method and apparatus
US2824033A (en) Process of manufacturing composite pipe
US2716778A (en) Method of molding sealing strips
ES378023A1 (en) Production of tubular articles
DE60009828T2 (en) AIR TIRES AND METHOD FOR PRODUCING AIR TIRES
US2491589A (en) Apparatus for making tubing
GB965185A (en) Improvements relating to methods and apparatus for forming continuous tubing
US3248462A (en) Method for producing foamed sheet material having essentially equal tensile properties
US4355069A (en) Flexible load-carrying cord, apparatus and polymeric construction utilizing same
US2774120A (en) Sealing strip for refrigerator door
US3336631A (en) Apparatus for the preparation of walled structures
EP0113995A3 (en) Method and system for extruding tubular foamed polymer sheet
US4435348A (en) Apparatus and method for making flexible load-carrying cord
JPS56155727A (en) Method for molding pipe cover formed of foamed synthetic resin integrally on outer periphery of pipe