US3331293A - Apparatus for bonding container closures - Google Patents

Apparatus for bonding container closures Download PDF

Info

Publication number
US3331293A
US3331293A US482649A US48264965A US3331293A US 3331293 A US3331293 A US 3331293A US 482649 A US482649 A US 482649A US 48264965 A US48264965 A US 48264965A US 3331293 A US3331293 A US 3331293A
Authority
US
United States
Prior art keywords
container
radiant
heat
coating
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US482649A
Inventor
Thomas F Mullaney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fostoria-Fannon Inc
Original Assignee
Fostoria-Fannon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US161119A external-priority patent/US3236160A/en
Application filed by Fostoria-Fannon Inc filed Critical Fostoria-Fannon Inc
Priority to US482649A priority Critical patent/US3331293A/en
Application granted granted Critical
Publication of US3331293A publication Critical patent/US3331293A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1464Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface making use of several radiators
    • B29C65/1467Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7879Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined said parts to be joined moving in a closed path, e.g. a rectangular path
    • B29C65/7882Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined said parts to be joined moving in a closed path, e.g. a rectangular path said parts to be joined moving in a circular path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • B29C66/43121Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
    • B29C66/43122Closing the top of gable top containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72327General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of natural products or their composites, not provided for in B29C66/72321 - B29C66/72324
    • B29C66/72328Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/74Auxiliary operations
    • B31B50/741Moistening; Drying; Cooling; Heating; Sterilizing

Definitions

  • This patent relates to industrial heating equipment and, more specifically, to gas-fired, infra-red heating units for heating plastic coated container closure elements to seal the container and to methods for sealing plastic coated containers.
  • the containers are delivered to the diary as flattened tubes.
  • they are placed in machines which automatically open each container to form a square tube, heat the end to be folded to soften or plasticize the coating, fold the stock at one end of the tube to form a flat bottom, and apply pressure to the heated and folded stock to seal the end.
  • the machine sequentially delivers the container in an upright position to a filling unit where it is filled with a measured amount of liquid it is to contain, closes the top to form a gabled end, and applies pressure to the gabled top to seal it.
  • plastic coated paper provides a much more suitable container for liquid foods and this material is rapidly superseding wax coated paper for this purpose.
  • containers are commonly filled at a rate of about one per second, with about half of this time being used to advance the container from one machine station to the next.
  • about one-half second is available to heat the plastic to softened stage necessary to provide a satisfactory bond when pressure is subsequently applied to the closure elements of the container.
  • a suitably designed, gas-tired, infra-red heating unit will heat the coating to the desired temperature in this brief time interval of one-half second.
  • the primary object of this invention to provide container sealing apparatus having a gas-fired, infra-red heating unit which will uniformly distribute radiant heat over that portion of the container to be sealed at such a rate that the coating will be heated to a temperature suitably plasticizing the coating in a time interval on the order of one-half second.
  • a combustible gas-air mixture is distributed to a large area surface on which it burns, heating the surface to incandescence whereby the surface will radiate heat to the portion of the container on which it is desired the coating be plasticized. It is a requisite to obtaining the desired degree of softening in the allotted time that the radiant heat be uniformly distributed to this portion of the container. It has been found that uniform heat distribution can best be achieved by locating the container end (or other opening) to be sealed and those portions of the sides of the container adjacent that end within a channel-shaped structure having a radiant heating surface maintained at a temperature ranging from 1500 to 1700 F.
  • the radiant surface To plasticize the coating in the allotted time interval, the radiant surface must be maintained at the abovementioned high temperatures. However, as temperatures appreciably higher than 1700 F. will rapidly deteriorate the material forming or defining the radiant surface, it is necessary to maintain a highly uniform temperature distribution over the radiant surface to avoid hot spots. To accomplish such uniform temperature distribution, it is necessary that the gas-air mixture be uniformly distributed over the radiant surface.
  • the distribution chamber must be kept relatively cool to avoid flashback and consequent ignition of the gas-air mixture within this chamber.
  • FIGURE l is a perspective view of a paper tube to be made into a container for transporting liquids by apparatus constructed in accordance with the principles of the present invention
  • FIGURE 2 is an end view of the tube of FIGURE 1;
  • FIGURE 3 is a schematic illustration of a portion of a machine for closing and sealing the lbottom of the container including a heating unit constructed in accordance with the principles of the present invention and a premixer for supplying the heating unit with a combustible fuel-air mixture;
  • FIGURE 4 is a sectional perspective view of the heating unit with said heating unit being oriented in a manner some-what differently than in its normal operative position to better show its internal construction;
  • FIGURE 5 is a plan view of the heating unit with the container to be sealed in heating position and is taken substantially along line 5-5 of FIGURE 3;
  • FIGURE 6 is a horizontal sectional view through the heating unit taken substantially along line 6 6 of FIGl URE 3;
  • FIGURE 7 is a vertical sectional view through the heating unit taken substantially along line 7-7 of FIG- URE 5 with certain of the heating unit components being broken away to better show its internal construction;
  • FIGURE 8 is an elvational view of the heating unit viewed from the right of FIGURE 3;
  • FIGURE 9 is a perspective view of one of the ceramic blocks providing the radiant energy emitting surfaces of the heating unit.
  • FIGURE 10 is a perspective view of the radiant screen located adjacent the ceramic blocks
  • FIGURE l1 is a view similar to FIGURE 7 but showing an alternative embodiment of the present invention.
  • FIGURE 12 is a vertical sectional view of the embodiment of FIGURE ll and is taken substantially along line 12-12 of that figure;
  • FIGURE 13 is a fragment of FIGURE 6 to an enlarged scale, showing insulating strips employed in the heating unit to isolate the ceramic blocks of the unit from its distribution chamber.
  • a typical container forming machine 12 incorporates a revolving indexing head or table 13 having a plurality of equally spaced, container-supporting arms 14 extending therefrom.
  • Table 13 is advanced in ⁇ termittently rotatably in the direction indicated by the arrow about an axle or shaft 16 on which it is rotatably supported by suitable bearings (not shown). More specically, at the end of equal time intervals, the table 13 is advanced through an angle equal to the angle between adjacent arms 14, coming to rest after each advance with one of the arms 14 at each of the work stations a, b, c, d, e, f, g, and l1.
  • table 13 After each advance, table 13 remains stationary for a time interval of sufficient duration for completing the slowest of the operations performed at the several kwork stations. In a typical machine of this type, 0.5 se-cond is required to advance arms 14 from one station to the next and the arms dwell or remain at each station for 0.5 second.
  • container 15 at this stage is formed from a single piece of material folded to provide a hollow, rectangular, open-ended, tube-like structure.
  • the side edges of the material from which the container is formed are overlapped and sealed together as indicated generally by the reference character 16a.
  • the side walls 17 of the as yet embryonic container 15 thus formed are scored along the lines 18 to provide foldable closure forming elements or flaps 19 which, when folded into juxtaposition and bonded together, will form a bottom end wall for the container. Similar aps 19' are formed at the upper ends of container side walls 17 to provide a top wall for the container after it is lled.
  • container side walls 17 and/or flaps 19 may be coated with a suitable thermoplastic material to prevent disintegration of the container and to prevent it from leaking. Further advantage may be taken of the thermoplastic coating material by utilizing it to bond together aps 19 to form the container -bottom wall.
  • a gas-red, infra-red heating unit 20 is positioned at station c.
  • the end portion of the container comprised of the ilaps 19 is moved into the heating zone of the heating unit 20 where it will remain for the operation-performing dwell period of 0.5 second.
  • the coating on the flaps is heated to a temperature sufciently high to plasticize it.
  • plasticize it is to be understood, is meant that the thermoplastic material is reduced to a soft viscous state wherein it may be employed as a bonding and/or sealing agent.
  • the container 15 with the coating on its ilaps 19 now plasticized is carried to station d where mechanism indicated generally by reference character 22 folds the aps 19 and applies pressure to them to complete the sealing operation.
  • the sealed end of the container 15 is cooled by any suitable means (not shown).
  • the container is ejected from the arm 14, turned to an upright position, and moved to stations for filling the container and sealing its upper end. It is to be understood that the present invention is not limited in use to closing the bottom end of rectangular containers. On the contrary, it may, with minor modifications which will readily occur to the average mechanic familiar with the art, be used to seal a wide variety of closures on containers of many different shapes.
  • the flaps 19, which will subsequently form the containers bottom end, are positioned within a channel-shaped recess 24 of heating unit 20 which is open at both ends to facilitate movement of the container into and out of the channel as it is advanced by arm 14.
  • the side and end surfaces of the recess are heated to incandescence so that they will emit infra-red radiant energy to the container to plasticize the coating thereon.
  • a combustible mixture of gas and air is supplied to heating unit 20 from a premixer 26 connected to a gas supply line 28.
  • Gas Howing through the supply line is maintained at a xed pressure by a pressure regulator 30, and flows through a nozzle 32 threaded on the end of line 28 and an inlet port 33 into a chamber 34 in the premixer.
  • a radially bladed impeller or fan 36 driven by a motor 38.
  • Fan 36 induces a ow of air into chamber 34 through an air gap 40 between the end of nozzle 32 and the right-hand side wall of the distribution chamber and mixes the air and gas to form the combustible mixture which it delivers under pressure tothe burner through a pipe 42 having branches 44 and 46 which divide the gas flow equally between the two sides of the heating unit 2) (see FIGURE 8).
  • the position of the nozzle can be adjusted to regulate the proportion of air to gas by rotating it and thereby causing it to move toward (or away from) port 33.
  • the combustible mixture ows from pipe branches 44 and 46 to a U-shaped distribution chamber 48 (see FIG- URE 4).
  • Chamber 48 has an outer shell 49 formed of two side members 50, a top 52, and a bottom 54 (see FIGURE 8), welded together or connected in any other suitable manner into a rigid unit, and a back plate 56, fastened to flanges 58 formed on members 50, 52, and 54 of the welded shell assembly 49 by bolts 57.
  • the inner side of the distribution chamber is formed by the channel 24 which consists of three ceramic blocks 59 (FIGURE 9), a channel-shaped screen 66 (FIGURE 10), and a box-like support 62 (FIGURE 4) welded or otherwise rigidly secured within the outer shell 49.
  • the side and end walls of support 62 are cut away to form openings 64 of somewhat smaller dimensions than the ceramic blocks 59.
  • the ceramic blocks 59 are cemented or otherwise suitably retained within support 62 adjacent openings 64 and form three sides of the channel 24, which, as was mentioned above, is open on the fourth side and at both ends.
  • Blocks 59 have a large number of small through apertures 65 uniformly distributed over their face and extending through their thickness.
  • the gas-air mixture passes from distribution chamber 48 through openings 64 in support 62 and through apertures 65 to the inside of the channel 24 where it burns as it emerges Ifrom the through apertures to the channel-defining surfaces of the ceramic blocks.
  • This surface combustion heats the faces to a temperature on the order of 1700 F., causing them to emit infra-red radiation within the channel.
  • Ceramic radiant heating blocks of the types used in this burner are described in detail in United States Patent No. 2,775,294 issued Dec. 25, 1956, to G. Schwank for Radiation Burners to which reference may be had ⁇ if it is deemed necessary.
  • a U-shaped screen 66 Located within channel 24 adjacent ceramic blocks 59 is a U-shaped screen 66 (see FIGURE l0), fabricated of heat-resisting wires 68 such as Nichrome attached to a frame 70 also made of heat-resisting metal.
  • the screen is located not more than 1A inch away from the adjacent parallel faces of the ceramic blocks. As may be seen from FIGURES ⁇ 5 and 6, the screen is so dimensioned that it will closely surround the end of the container to be sealed when the latter is positioned in channel 24.
  • the screen has several functions.
  • the Nichrome wires which are heated to a high temperature by the heat emitted from ceramic blocks 59, reradiate heat to the faces of the blocks, helping to maintain them at a uniform high temperature and increasing the emission of radiant energy therefrom.
  • the screen in addition, adds to the radiating surface, prevents disturbance of the flame, and confines the ame close to the faces of the ceramic blocks.
  • the frame 70 supports the screen from flanges 72 on support 62, to which it is attached by bolts 74. Frame 70 also protects these flanges from the heat radiated from the ceramic blocks and reduces the amount of heat transferred from the blocks to support 62, thereby helping to prevent flashback of the burning mixture from the faces of the blocks through apertures 65 to distribution chamber 48.
  • the ceramic blocks 59 are insulated from support 62 by strips of high-temperature insulating material 74a (see FIGURE 13) such as Carborundum Co.s Fiberfrax cloth #970-1, cemented in place with an appropriate high-temperature cement such as Fiberfrax cement #OF-180.
  • high-temperature insulating material 74a see FIGURE 13
  • Fiberfrax cloth #970-1 cemented in place with an appropriate high-temperature cement such as Fiberfrax cement #OF-180.
  • the heating unit 20 may be mounted on the container closing and sealing machine in any desired manner, the particular ymounting arrangement depending on the construction of the unit to which it is attached.
  • the heating unit is attached to the machine 12 by bolts 75 connecting back plate 56 of distribution chamber housin-g 49 to a pedestal 78 formed on the machine (see FIGURE 3).
  • heating unit 77 illustrated therein is similar to the heating unit 20 described above, and like reference characters have, therefore, been employed to designate like parts.
  • Heating unit 77 includes additional structure for heating a gaseous medium and causing it to ow over and into intimate contact with coating on the container closure elements to assist in plasticizing it.
  • heating unit 77 is provided with a gaseous medium supply pipe 78 which extends upwardly through channel 24 closely adjacent the back of the screen 66.
  • the lower portion of supply pipe 78 is bent in a configuration substantially coextensive with the rectangle formed by the four side walls 17 of the container 15 on which it is desired to plasticize the coating.
  • Formed in the side walls supply pipe 78 opposite screen 66 are four spaced apart jet apertures 80 which are located substantially on lines comprising extensions of the four intersections of or container corners formed by the side walls 17 of the container 15. l
  • supply pipe 78 is connected to a suitable pressurized source of gas, normally air.
  • a suitable pressurized source of gas normally air.
  • the heated air escapes at high velocity through the jet apertures 80 and sweeps across the interior, apposed surfaces of the closure elements of the container 15 positioned in channel 24, giving up its heat content to the coating on those elements.
  • the flow of compressed air through supply line 78 may be controlled by a suitable valve actuated by an automatic control (not shown) responsive to the indexing of table 13 of the closing and sealing machine. Normally, this control would be arranged to actuate the flow-controlling valve to the open position to permit a blast of heated air from the jet apertures 80 during the dwell period when a container is positioned in the heating channel 24 and to actuate the flow-controlling valve 4to the closed position to discontinue the blast of air at the end of this period.
  • apparatus for closing and sealing a coated container means for plasticizing said coating by the application of heat thereto, comprising:
  • At least one radiant heating member having a radiant energy emitting surface adapted to have the closure forming portions of a coated container to be sealed positioned in close physical proximity to it to provide radiant heat transfer to said portions;
  • said conduit means is positioned immediately adjacent said radiant energy emitting surface and has means defining jet apertures therein opposite said surface for directing ow of said gaseous medium from said conduit means at generally right angles to and away from said radiant surface toward a container positioned as above-described;
  • said delivery means further comprising means for forcing said heated gaseous medium from said conduit means through said apertures at high velocity, whereby said heated gaseous medium entrains the combustion products adjacent said radiant energy emitting surface and flows into intimate contact with said closure forming portions, said heated gaseous medium and said entrained combustion products thereby both imparting heat to the coating on said portions.
  • the containers to be sealed have ap portions foldable over an opening therein to form a closure over said opening, said flap portions having a coating thereon adapted to be heated and plasticized by said gaseous medium and the radiant energy emitted from said heating members, and the apparatus further includes means for applying pressure to said flap portions subsequent to plasticization of the coating thereon to thereby bond together said ap portions to form said closure.
  • means for plasticizing said ⁇ coating by the application of heat thereto comprising:
  • bracket means rigid with said distribution chamber for supporting said perforated members
  • conduit means extending along and closely adjacent the screen over-lying the web portion of said channel-like structure, said conduit means being disposed generally parallel to said screen, and on the opposite side of said screen from said web portion, said conduit means having means defining jet apertures therein opposite said screen; and '(g) means for supplying a gaseous medium under pressure to said conduit means.
  • ⁇ (d) means for supplying a combustible mixture to said distribution chamber and forcing said mixture through the perforations in said members to combustion zones at the surfaces of said members inside said channel, said means for supplying combustible mixture to said distribution chamber comprising comlbustible mixture supply conduits communicating with the interior of said distribution chamber through one end thereof between the corners of the U-shaped channel and the corners of the distribution tube there adjacent to thereby insure even distribution of said mixture to said radiant members; and
  • Heating apparatus comprising:
  • conduit means positioned immediately adjacent and parallel to the internal back surface of said channel and adapted to be heated by radiant energy emitted from the radiating surfaces of said radiant members, there being jet apertures through the wall of said www ...M
  • conduit means on the side thereof opposite said surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

July 18, 1967 T. F. MULLANr-:Y
APPARATUS FOR BONDING CONTAINER CLOSUHES 4 Sheets-Sheet l Original Filed Dec. 2l, 1961 5i" ZE INVENTOR Thomas E Mulloney Mam, 7/o
T. F. MULLANEY APPARATUS FOR BONDING CONTAINER CLOSURES July 18, 1967 4 Sheets-Sheet 2 Original Filed Dec. 21, 1961 mad/n INVENTOR Thomas F Mulloney 76e@ /zma ATTO NEY,5`
july 18, i967 T. F. MULLANEY APPARATUS FOR BONDING CONTANER CLOSURES 4 Sheets-Sheet Original Filed Deo. 2l, 1951 INVENTOR Thomas F Mulloney BY a w y AWRNEYS July 18, 1967 T.'F. MULLANEY 3,331,293
APPARATUS FOR BONDING CONTAINER CLOSURES 4 Sheets-Sheet 4 Original Filed Dec. 2l, 1951 INVENTOR Thomas F Mulloney United States Patent O 3,331,293 APPARATUS FOR BON DING CONTAINER CLOSURES Thomas F. Mullaney, Birmingham, Mich., assigner, by
mesne assignments, to Fostoria-Fannon, Inc., a corporation of hio Original application Dec. 21, 1961, Ser. No. 161,119, now Patent No. 3,236,160, dated Feb. 22, 1966. Divided and this application June 29, 1965, Ser. No. 482,649
6 Claims. (Cl. 93-44.1)
This application is a division of copending application Ser. No. 161,119, filed Dec. 2l, 1961, now Patent No. 3,236,160, for method of Bonding Container Closures.
This patent relates to industrial heating equipment and, more specifically, to gas-fired, infra-red heating units for heating plastic coated container closure elements to seal the container and to methods for sealing plastic coated containers.
It is, at the present time, a common practice to deliver milk, orange juice, and other liquid foods to the consumer in paper containers. These containers are made of a single piece of coated paper stock, folded and sealed to form a four-sided box with a flat bottom and a gabled top.
The containers are delivered to the diary as flattened tubes. In the `diary plant, they are placed in machines which automatically open each container to form a square tube, heat the end to be folded to soften or plasticize the coating, fold the stock at one end of the tube to form a flat bottom, and apply pressure to the heated and folded stock to seal the end. Following the sealing operation, the machine sequentially delivers the container in an upright position to a filling unit where it is filled with a measured amount of liquid it is to contain, closes the top to form a gabled end, and applies pressure to the gabled top to seal it.
Such containers were formerly coated with wax which was plasticized by heating the end of the container to be sealed with electric resistance heaters. Recently, however, it has been found that plastic coated paper provides a much more suitable container for liquid foods and this material is rapidly superseding wax coated paper for this purpose. The plastics commonly employed, however, soften at much higher temperatures than the waxes formerly used and, as a result, electric heating units cannot soften the Coating fast enough to maintain the desired production speed.
In the type of machine described above, containers are commonly filled at a rate of about one per second, with about half of this time being used to advance the container from one machine station to the next. Thus, only about one-half second is available to heat the plastic to softened stage necessary to provide a satisfactory bond when pressure is subsequently applied to the closure elements of the container. As a result of exhaustive experimentation looking toward a solution of this problem, it has been discovered that a suitably designed, gas-tired, infra-red heating unit will heat the coating to the desired temperature in this brief time interval of one-half second.
It is, therefore, the primary object of this invention to provide container sealing apparatus having a gas-fired, infra-red heating unit which will uniformly distribute radiant heat over that portion of the container to be sealed at such a rate that the coating will be heated to a temperature suitably plasticizing the coating in a time interval on the order of one-half second.
In fulfilling this object, a combustible gas-air mixture is distributed to a large area surface on which it burns, heating the surface to incandescence whereby the surface will radiate heat to the portion of the container on which it is desired the coating be plasticized. It is a requisite to obtaining the desired degree of softening in the allotted time that the radiant heat be uniformly distributed to this portion of the container. It has been found that uniform heat distribution can best be achieved by locating the container end (or other opening) to be sealed and those portions of the sides of the container adjacent that end within a channel-shaped structure having a radiant heating surface maintained at a temperature ranging from 1500 to 1700 F.
It is, therefore, a further object of this invention to provide a gas-fired, infra-red heating unit having radiant surfaces maintained at temperatures ranging from 1500" to l700 F. with said surfaces being shaped to provide a channel in which that part of the container which is to form the bottom or other closure can be positioned with said surfaces being closely adjacent and surrounding the sides and end of the container.
To plasticize the coating in the allotted time interval, the radiant surface must be maintained at the abovementioned high temperatures. However, as temperatures appreciably higher than 1700 F. will rapidly deteriorate the material forming or defining the radiant surface, it is necessary to maintain a highly uniform temperature distribution over the radiant surface to avoid hot spots. To accomplish such uniform temperature distribution, it is necessary that the gas-air mixture be uniformly distributed over the radiant surface.
It is, therefore, a further object of the invention to provide, in conjunction with the channel-shaped radiant heating surface, a U-shaped distribution chamber enclosing the outside of the radiant surface defining structure for distributing the gas-air mixture uniformly to all parts of the heating surface.
While, for the reasons discussed above, the radiant surface must be maintained at a uniformly high temperautre, the distribution chamber must be kept relatively cool to avoid flashback and consequent ignition of the gas-air mixture within this chamber.
It is, therefore, a further object of the invention to provide a gas-fired, infra-red radiant heating unit having a high-temperature, channel-shaped, radiant surface surrounded by a distribution chamber with means for reducing the ow of heat from the radiant heating surface to the distribution chamber.
While a heating unit constructed pursuant to the foregoing objects and having the above-described features is, in general, eminently satisfactory, there are containers where closure elements are so configured and/or physically related that radiant heat will not envelop all of the coated surfaces with the degree of uniformity necessary to satisfactory plasticize the coating in the allotted time interval and wherein additional heating is therefore required.
Accordingly, it is a further object of this invention to provide, in apparatus for sealing coated containers, burners providing both radiant and convective heating elements for plasticizing the coating on the container closure element.
The space available for burner installation is very limited in the standard commercial machines used for preparing coated containers for filling.
Accordingly, it is a further object of this invention to provide a suitable heater which is very compact and, therefore, readily installed in the limited space available.
Further objects of the present invention include the provision of a heater of the type described above which is practical, which is economical to manufacture, which will have a long life, and which will require a minimum amount of servicing.
Further novel features and other objects of the present invention will become apparent from the following detailed description, discussion, and the appended claims taken in conjunction with the accompanying drawings showing preferred structures and embodiments in which:
FIGURE l is a perspective view of a paper tube to be made into a container for transporting liquids by apparatus constructed in accordance with the principles of the present invention;
FIGURE 2 is an end view of the tube of FIGURE 1;
FIGURE 3 is a schematic illustration of a portion of a machine for closing and sealing the lbottom of the container including a heating unit constructed in accordance with the principles of the present invention and a premixer for supplying the heating unit with a combustible fuel-air mixture;
FIGURE 4 is a sectional perspective view of the heating unit with said heating unit being oriented in a manner some-what differently than in its normal operative position to better show its internal construction;
FIGURE 5 is a plan view of the heating unit with the container to be sealed in heating position and is taken substantially along line 5-5 of FIGURE 3;
FIGURE 6 is a horizontal sectional view through the heating unit taken substantially along line 6 6 of FIGl URE 3;
FIGURE 7 is a vertical sectional view through the heating unit taken substantially along line 7-7 of FIG- URE 5 with certain of the heating unit components being broken away to better show its internal construction;
FIGURE 8 is an elvational view of the heating unit viewed from the right of FIGURE 3;
FIGURE 9 is a perspective view of one of the ceramic blocks providing the radiant energy emitting surfaces of the heating unit;
FIGURE 10 is a perspective view of the radiant screen located adjacent the ceramic blocks;
FIGURE l1 is a view similar to FIGURE 7 but showing an alternative embodiment of the present invention;
FIGURE 12 is a vertical sectional view of the embodiment of FIGURE ll and is taken substantially along line 12-12 of that figure; and
FIGURE 13 is a fragment of FIGURE 6 to an enlarged scale, showing insulating strips employed in the heating unit to isolate the ceramic blocks of the unit from its distribution chamber.
Referring now to the drawings and, in particular, to FIGURE 3, a typical container forming machine 12 incorporates a revolving indexing head or table 13 having a plurality of equally spaced, container-supporting arms 14 extending therefrom. Table 13 is advanced in` termittently rotatably in the direction indicated by the arrow about an axle or shaft 16 on which it is rotatably supported by suitable bearings (not shown). More specically, at the end of equal time intervals, the table 13 is advanced through an angle equal to the angle between adjacent arms 14, coming to rest after each advance with one of the arms 14 at each of the work stations a, b, c, d, e, f, g, and l1. After each advance, table 13 remains stationary for a time interval of sufficient duration for completing the slowest of the operations performed at the several kwork stations. In a typical machine of this type, 0.5 se-cond is required to advance arms 14 from one station to the next and the arms dwell or remain at each station for 0.5 second.
While the table 13 is at rest, a partially completed container 15 is slid over the arm 14 at station a to the position shown in FIGURE 3, by suitable automatic mechanism (not shown) or manually, this operation bein-g the initial step in the container forming, lling, and sealing sequence. As is shown in FIGURES 1 and 2, container 15 at this stage is formed from a single piece of material folded to provide a hollow, rectangular, open-ended, tube-like structure. The side edges of the material from which the container is formed are overlapped and sealed together as indicated generally by the reference character 16a. The side walls 17 of the as yet embryonic container 15 thus formed are scored along the lines 18 to provide foldable closure forming elements or flaps 19 which, when folded into juxtaposition and bonded together, will form a bottom end wall for the container. Similar aps 19' are formed at the upper ends of container side walls 17 to provide a top wall for the container after it is lled.
In order to adapt containers fabricated from paper or similar materials for carrying liquid food products such as milk, juices, and the like, the interior and exterior surfaces of container side walls 17 and/or flaps 19 may be coated with a suitable thermoplastic material to prevent disintegration of the container and to prevent it from leaking. Further advantage may be taken of the thermoplastic coating material by utilizing it to bond together aps 19 to form the container -bottom wall. To this end, a gas-red, infra-red heating unit 20 is positioned at station c. When the open-ended container 15 is carried by the arm 14 on which it is disposed to station c, the end portion of the container comprised of the ilaps 19 is moved into the heating zone of the heating unit 20 where it will remain for the operation-performing dwell period of 0.5 second. In this interval, the coating on the flaps is heated to a temperature sufciently high to plasticize it. By the term plasticize, it is to be understood, is meant that the thermoplastic material is reduced to a soft viscous state wherein it may be employed as a bonding and/or sealing agent.
Following the heating operation, the container 15 with the coating on its ilaps 19 now plasticized is carried to station d where mechanism indicated generally by reference character 22 folds the aps 19 and applies pressure to them to complete the sealing operation. At the next station e the sealed end of the container 15 is cooled by any suitable means (not shown). At subsequent stations the container is ejected from the arm 14, turned to an upright position, and moved to stations for filling the container and sealing its upper end. It is to be understood that the present invention is not limited in use to closing the bottom end of rectangular containers. On the contrary, it may, with minor modifications which will readily occur to the average mechanic familiar with the art, be used to seal a wide variety of closures on containers of many different shapes.
Referring now to FIGURE 5, when container 15 is at station c, the flaps 19, which will subsequently form the containers bottom end, are positioned within a channel-shaped recess 24 of heating unit 20 which is open at both ends to facilitate movement of the container into and out of the channel as it is advanced by arm 14. As will be described in detail later, the side and end surfaces of the recess are heated to incandescence so that they will emit infra-red radiant energy to the container to plasticize the coating thereon.
Turning again to FIGURE 3, a combustible mixture of gas and air is supplied to heating unit 20 from a premixer 26 connected to a gas supply line 28. Gas Howing through the supply line is maintained at a xed pressure by a pressure regulator 30, and flows through a nozzle 32 threaded on the end of line 28 and an inlet port 33 into a chamber 34 in the premixer. Mounted in chamber 34 is a radially bladed impeller or fan 36 driven by a motor 38. Fan 36 induces a ow of air into chamber 34 through an air gap 40 between the end of nozzle 32 and the right-hand side wall of the distribution chamber and mixes the air and gas to form the combustible mixture which it delivers under pressure tothe burner through a pipe 42 having branches 44 and 46 which divide the gas flow equally between the two sides of the heating unit 2) (see FIGURE 8). As is conventional, the position of the nozzle can be adjusted to regulate the proportion of air to gas by rotating it and thereby causing it to move toward (or away from) port 33.
Las, ,I
The combustible mixture ows from pipe branches 44 and 46 to a U-shaped distribution chamber 48 (see FIG- URE 4). Chamber 48 has an outer shell 49 formed of two side members 50, a top 52, and a bottom 54 (see FIGURE 8), welded together or connected in any other suitable manner into a rigid unit, and a back plate 56, fastened to flanges 58 formed on members 50, 52, and 54 of the welded shell assembly 49 by bolts 57. The inner side of the distribution chamber is formed by the channel 24 which consists of three ceramic blocks 59 (FIGURE 9), a channel-shaped screen 66 (FIGURE 10), and a box-like support 62 (FIGURE 4) welded or otherwise rigidly secured within the outer shell 49.
As is best shown in FIGURE 4. the side and end walls of support 62 are cut away to form openings 64 of somewhat smaller dimensions than the ceramic blocks 59. The ceramic blocks 59 are cemented or otherwise suitably retained within support 62 adjacent openings 64 and form three sides of the channel 24, which, as was mentioned above, is open on the fourth side and at both ends. Blocks 59 have a large number of small through apertures 65 uniformly distributed over their face and extending through their thickness. The gas-air mixture passes from distribution chamber 48 through openings 64 in support 62 and through apertures 65 to the inside of the channel 24 where it burns as it emerges Ifrom the through apertures to the channel-defining surfaces of the ceramic blocks. This surface combustion heats the faces to a temperature on the order of 1700 F., causing them to emit infra-red radiation within the channel. Ceramic radiant heating blocks of the types used in this burner are described in detail in United States Patent No. 2,775,294 issued Dec. 25, 1956, to G. Schwank for Radiation Burners to which reference may be had `if it is deemed necessary.
Located within channel 24 adjacent ceramic blocks 59 is a U-shaped screen 66 (see FIGURE l0), fabricated of heat-resisting wires 68 such as Nichrome attached to a frame 70 also made of heat-resisting metal. Preferably, the screen is located not more than 1A inch away from the adjacent parallel faces of the ceramic blocks. As may be seen from FIGURES` 5 and 6, the screen is so dimensioned that it will closely surround the end of the container to be sealed when the latter is positioned in channel 24.
The screen has several functions. The Nichrome wires, which are heated to a high temperature by the heat emitted from ceramic blocks 59, reradiate heat to the faces of the blocks, helping to maintain them at a uniform high temperature and increasing the emission of radiant energy therefrom. The screen, in addition, adds to the radiating surface, prevents disturbance of the flame, and confines the ame close to the faces of the ceramic blocks. The frame 70 supports the screen from flanges 72 on support 62, to which it is attached by bolts 74. Frame 70 also protects these flanges from the heat radiated from the ceramic blocks and reduces the amount of heat transferred from the blocks to support 62, thereby helping to prevent flashback of the burning mixture from the faces of the blocks through apertures 65 to distribution chamber 48. To further reduce the transfer of heat to the shell 49 Iof distribution chamber 48, the ceramic blocks 59 are insulated from support 62 by strips of high-temperature insulating material 74a (see FIGURE 13) such as Carborundum Co.s Fiberfrax cloth #970-1, cemented in place with an appropriate high-temperature cement such as Fiberfrax cement #OF-180.
While the above-described embodiment of the present invention employs perforated ceramic blocks to provide radiant surfaces, other radiant surface providing structures such as a series of wire screens may be employed and are considered to be within the scope of the present invention. Suit-able screen burners are disclosed in copending application Ser. No. 50,421 filed Aug. 18, 1960 by John V. Fannon (now Patent No. 3,228,113). The burner may be ignited by a conventional spark, hot wire, or pilot flame igniter, or may be lit manually; and safety controls to prevent escape of gas in case of flame failure or to prevent excessive temperature of the ceramic blocks may be provided. Such control systems may be of any of the several types common in the prior art. The heating unit 20 may be mounted on the container closing and sealing machine in any desired manner, the particular ymounting arrangement depending on the construction of the unit to which it is attached. In the abovedescribed embodiment, the heating unit is attached to the machine 12 by bolts 75 connecting back plate 56 of distribution chamber housin-g 49 to a pedestal 78 formed on the machine (see FIGURE 3).
Referring next to FIGURE 1l, the gas-tired, infra-red heating unit 77 illustrated therein is similar to the heating unit 20 described above, and like reference characters have, therefore, been employed to designate like parts. As was discussed above, in some circumstances it is desirable to heat the container closure elements by convective as well as radiant heat transfer in order to more uniformly distribute heat to the coating. Heating unit 77 includes additional structure for heating a gaseous medium and causing it to ow over and into intimate contact with coating on the container closure elements to assist in plasticizing it. To this end, heating unit 77 is provided with a gaseous medium supply pipe 78 which extends upwardly through channel 24 closely adjacent the back of the screen 66. Referring next to FIGURE 12, the lower portion of supply pipe 78 is bent in a configuration substantially coextensive with the rectangle formed by the four side walls 17 of the container 15 on which it is desired to plasticize the coating. Formed in the side walls supply pipe 78 opposite screen 66 are four spaced apart jet apertures 80 which are located substantially on lines comprising extensions of the four intersections of or container corners formed by the side walls 17 of the container 15. l
In use, supply pipe 78 is connected to a suitable pressurized source of gas, normally air. As the compressed air yflows downwardly through supply pipe 78 and around the path provided by the bent lower portion of the pipe, it will be heated to a high temperature since it is located in close proximity to the incandescent ceramic block 59 forming the back of channel 24. The heated air then escapes at high velocity through the jet apertures 80 and sweeps across the interior, apposed surfaces of the closure elements of the container 15 positioned in channel 24, giving up its heat content to the coating on those elements. This blast of hot, c-ompressed air insures an adequate supply of plasticizing heat will be distributed to the interior surfaces of the closure elements 19 so that a rm bond will be established when the clos-ure elements 19 are subsequently brought into juxtaposition and sealed at station d.
The flow of compressed air through supply line 78 may be controlled by a suitable valve actuated by an automatic control (not shown) responsive to the indexing of table 13 of the closing and sealing machine. Normally, this control would be arranged to actuate the flow-controlling valve to the open position to permit a blast of heated air from the jet apertures 80 during the dwell period when a container is positioned in the heating channel 24 and to actuate the flow-controlling valve 4to the closed position to discontinue the blast of air at the end of this period.
It has 'been discovered that an additional benefit accrues from employing a blast of compressed air in the manner described. As was discussed above, the combustible mixture burns closely adjacent the faces of the ceramic blocks 59, the zone of burning being there confined by the heat resistant screen 66. As a result of the combustion process, a blanket of combustion products comprising, in the main, carbon monoxide, carbon dioxide and minute incandescent particles of unburned carbon is formed adjacent the faces of the ceramic blocks. When the blast of hot compressed air emerges through the jets 80 in the supply line 78, it entrains these combustion products, which retain a high heat content, and sweeps them along with the compressed air into contact with the coating on the container closure elements where an appreciable amount of the heat content of the entrained combustion products is given up to the coating, raising its temperature and assisting in plasticizing it. The sweep of hot compressed air and entrained combustion products across the container closure elements assist in uniformly distributing heat to the internal surfaces of these elements, thereby assuring that a rm seal will be obtained when pressure is applied to the closure elements at folding and sealing station d.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
What is claimed and desired to be secured by Letters Patent is:
1. In apparatus for closing and sealing a coated container, means for plasticizing said coating by the application of heat thereto, comprising:
(a) at least one radiant heating member having a radiant energy emitting surface adapted to have the closure forming portions of a coated container to be sealed positioned in close physical proximity to it to provide radiant heat transfer to said portions;
(b) means for heating a gaseous medium to a temperature above the temperature required to plasticize said coating; and 4 (c) means including conduit means disposed in generally parallel, spaced relationship to said emitting surface for delivering said heated gaseous medium into intimate physical contact with said closure forming portions, for effecting transfer of heat from said gaseous medium to said coating.
2. The combination as claimed in claim 1, including means for effecting combustion of a fuel-air mixture on said radiant energy emitting surface and wherein:
(a) said conduit means is positioned immediately adjacent said radiant energy emitting surface and has means defining jet apertures therein opposite said surface for directing ow of said gaseous medium from said conduit means at generally right angles to and away from said radiant surface toward a container positioned as above-described; and
(b) said delivery means further comprising means for forcing said heated gaseous medium from said conduit means through said apertures at high velocity, whereby said heated gaseous medium entrains the combustion products adjacent said radiant energy emitting surface and flows into intimate contact with said closure forming portions, said heated gaseous medium and said entrained combustion products thereby both imparting heat to the coating on said portions.
3. The apparatus as claimed in claim 1, wherein the containers to be sealed have ap portions foldable over an opening therein to form a closure over said opening, said flap portions having a coating thereon adapted to be heated and plasticized by said gaseous medium and the radiant energy emitted from said heating members, and the apparatus further includes means for applying pressure to said flap portions subsequent to plasticization of the coating thereon to thereby bond together said ap portions to form said closure.
4. In apparatus for closing and sealing a coated container, means for plasticizing said` coating by the application of heat thereto, comprising:
(a) a channel-like structure `formed of a plurality of perforated members of low heat conductivity mala terial and adapted to receive therein a coated container to 'be sealed with the opposed inner surfaces of the leg and web portions of said structure surrounding the closure elements of said container, the ends of said structure being open, whereby said articles can be moved in a straight pass through said structure;
(b) means defining a distribution chamber surrounding said channel-like structure;
(c) bracket means rigid with said distribution chamber for supporting said perforated members;
(d) heat insulating means interposed between said perforated members and said :bracket means;
(e) a screen of heat resistant material supported from said distribution chamber defining means and overlying the inner surface of said leg and web portions;
(f) conduit means extending along and closely adjacent the screen over-lying the web portion of said channel-like structure, said conduit means being disposed generally parallel to said screen, and on the opposite side of said screen from said web portion, said conduit means having means defining jet apertures therein opposite said screen; and '(g) means for supplying a gaseous medium under pressure to said conduit means. `5'1 An infrared generator of the combustion type, comprising:
(a) a plurality of perforated radiant members of low heat conductivity material arranged to provide an elongated, open-ended, U-shaped channel;
(b) means defining a combustible mixture distribution cham-ber surrounding said channel on the exterior side thereof, the walls of said distribution chamber being generally parallel to the radiating surfaces of said radiant member and the ends of said distribution tube having recesses therein of substantially the same configuration as the ends of said channel whereby an object to be heated can be moved in a straight pass through said channel;
(c) bracket means xed to said distribution tube for supporting said radiant members therefrom;
\ (d) means for supplying a combustible mixture to said distribution chamber and forcing said mixture through the perforations in said members to combustion zones at the surfaces of said members inside said channel, said means for supplying combustible mixture to said distribution chamber comprising comlbustible mixture supply conduits communicating with the interior of said distribution chamber through one end thereof between the corners of the U-shaped channel and the corners of the distribution tube there adjacent to thereby insure even distribution of said mixture to said radiant members; and
(e) an open-ended, U-shaped reradiating screen of heat resistant material xed to said distribution tube within the channel formed by the radiant member, the surfaces of said screen being in parallel spaced relation to the radiant surfaces of said members.
6. Heating apparatus, comprising:
(a) a plurality of perforated radiant members arranged into an elongated, open-ended, U-shaped channel adapted to have an article to be heated moved in a straight pass therethrough;
(b) means for effecting a ow of combustible mixture from the exterior of said channel through the perforations in said radiant members to combustion zones at the surfaces of said members within the channel to thereby heat said surfaces to incandescence;
(c) conduit means positioned immediately adjacent and parallel to the internal back surface of said channel and adapted to be heated by radiant energy emitted from the radiating surfaces of said radiant members, there being jet apertures through the wall of said www ...M
conduit means on the side thereof opposite said surface; and
(d) means -for effecting a flow of a gaseous medium through said conduit means to heat said medium and then through the jet apertures in the wall thereof to increase the velocity thereof, whereby said heated rnedium will entrain combustion products in said channel and carry said products into contact With an article moving through said channel, said article thereby being heated by radiant energy emitted from the radiant members forming said channel 4and by heat imparted to it by said gaseous medium and the combustion products entrained therein.
References Cited UNITED 10 11/1951 Zinn 53-39 6/1953 Crossman 158-113 5/1954 Bedford 156-272 X 12/ 1961 Heimerl 158-99 10/ 1962 Wagner 158-99 7/1963 Kurz 158-99 X 10/1963 Van Swinderen 158-116 12/ 1963 Koltun 158-99 X 1'2/1963 Dadas 158-116 2/1964 Monroe et al. 53-186 4/1966 Bratko 158-99 FOREIGN PATENTS 3/ 1907 France. 10/ 1953 France. 12/1954 France.
O H. B. RAMEY, Assistant Examiner.

Claims (1)

1. IN APPARATUS FOR CLOSING AND SEALING A COATED CONTAINER, MEANS FOR PLASTICIZING SAID COATING BY THE APPLICATION OF HEAT THERETO, COMPRISING: (A) AT LEAST ONE RADIANT HEATING MEMBER HAVING A RADIANT ENERGY EMITTING SURFACE ADAPTED TO HAVE THE CLOSURE FORMING PORTIONS OF A COATED CONTAINER TO BE SEALED POSITIONED IN CLOSE PHYSICAL PROXIMITY TO IT TO PROVIDE RADIANT HEAT TRANSFER TO SAID PORTIONS; (B) MEANS FOR HEATING A GASEOUS MEDIUM TO A TEMPERATURE ABOVE THE TEMPERATURE RWQUIRED TO PLASTICIZE SAID COATING; AND (C) MEANS INCLUDING CONDUIT MEANS DISPOSED IN GENERALLY PARALLEL, SPACED RELATIONSHIP TO SAID EMITTING SURFACE FOR DELIVERING SAID HEATED GASEOUS MEDIUM INTO INTIMATE PHYSICAL CONTACT WITH SAID CLOSURE FORMING PORTIONS, FOR EFFECTING TRANSFER OF HEAT FROM SAID GASEOUS MEDIUM TO SAID COATING.
US482649A 1961-12-21 1965-06-29 Apparatus for bonding container closures Expired - Lifetime US3331293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US482649A US3331293A (en) 1961-12-21 1965-06-29 Apparatus for bonding container closures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US161119A US3236160A (en) 1961-12-21 1961-12-21 Method of bonding container closures
US482649A US3331293A (en) 1961-12-21 1965-06-29 Apparatus for bonding container closures

Publications (1)

Publication Number Publication Date
US3331293A true US3331293A (en) 1967-07-18

Family

ID=26857527

Family Applications (1)

Application Number Title Priority Date Filing Date
US482649A Expired - Lifetime US3331293A (en) 1961-12-21 1965-06-29 Apparatus for bonding container closures

Country Status (1)

Country Link
US (1) US3331293A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392458A (en) * 1967-05-04 1968-07-16 Ex Cell O Corp Selective heater for container closures
US3507093A (en) * 1967-08-16 1970-04-21 Maryland Cup Corp Container capping machine
US3536306A (en) * 1968-04-05 1970-10-27 Railway Transport Inst Multiflame burners
US3785255A (en) * 1972-11-10 1974-01-15 Peters Mach Co Hot air sealing apparatus for cartons
US3877354A (en) * 1972-11-30 1975-04-15 Alfred Schmermund Revolver for a packaging machine
US5236327A (en) * 1990-11-16 1993-08-17 American Gas Association Low NOx burner
US20030041963A1 (en) * 2001-08-20 2003-03-06 Lie-Zhong Gong Reactivatable adhesives
EP1415789A1 (en) * 2002-10-31 2004-05-06 Hans Georg Schulz Method for welding plastic parts, in particular for connecting plastic parts along a weld line
US20050276938A1 (en) * 2004-05-25 2005-12-15 Mccormick Demetrius T Adhesive for bag sealing application
US20180326671A1 (en) * 2015-08-28 2018-11-15 Sig Technology Ag Heating Unit for Heating Package Sleeves and Apparatus Comprising Such a Heating Unit

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1103500A (en) * 1912-02-02 1914-07-14 Rowland Machine Company Wrapping-machine.
US1818497A (en) * 1926-10-28 1931-08-11 F B Redington Company Wrapping and sealing machine
US2075726A (en) * 1935-05-04 1937-03-30 Duplate Corp Method of heating safety glass assemblies
US2358455A (en) * 1939-12-06 1944-09-19 Harold E Hallman Radiant heat seal
US2575544A (en) * 1949-01-26 1951-11-20 Jr Julius A Zinn Method and apparatus for closing and sealing containers
US2641313A (en) * 1949-08-04 1953-06-09 Francis M Crossman Fluid fuel-fired heat radiation generator
FR1056454A (en) * 1954-02-26
US2679469A (en) * 1950-04-06 1954-05-25 Ciba Pharm Prod Inc Method of welding polyethylene and like plastic materials
FR1095865A (en) * 1954-01-07 1955-06-07 Heating apparatus using the catalytic oxidation reaction of combustible gases
US3013602A (en) * 1956-09-18 1961-12-19 American Infra Red Radiant Co Radiant gas burner
US3057400A (en) * 1954-11-12 1962-10-09 Fireless Gas Heater Corp Glow burner for fuel-air mixture
US3099258A (en) * 1960-10-26 1963-07-30 Calinter S A Soc Catalytic heating apparatus
US3107720A (en) * 1955-02-21 1963-10-22 Antargaz Gas-fired radiant heaters
US3114363A (en) * 1959-09-10 1963-12-17 Hardwick Stove Company Broiler oven with radiant gas burner
US3114411A (en) * 1961-03-13 1963-12-17 Pyronics Inc Burner means for air-gas mixtures
US3120089A (en) * 1960-11-07 1964-02-04 Ex Cell O Corp Machine for forming plastic coated paperboard containers
US3248099A (en) * 1963-11-20 1966-04-26 Rudolph S Bratko Infra-red industrial oven

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1056454A (en) * 1954-02-26
US1103500A (en) * 1912-02-02 1914-07-14 Rowland Machine Company Wrapping-machine.
US1818497A (en) * 1926-10-28 1931-08-11 F B Redington Company Wrapping and sealing machine
US2075726A (en) * 1935-05-04 1937-03-30 Duplate Corp Method of heating safety glass assemblies
US2358455A (en) * 1939-12-06 1944-09-19 Harold E Hallman Radiant heat seal
US2575544A (en) * 1949-01-26 1951-11-20 Jr Julius A Zinn Method and apparatus for closing and sealing containers
US2641313A (en) * 1949-08-04 1953-06-09 Francis M Crossman Fluid fuel-fired heat radiation generator
US2679469A (en) * 1950-04-06 1954-05-25 Ciba Pharm Prod Inc Method of welding polyethylene and like plastic materials
FR1095865A (en) * 1954-01-07 1955-06-07 Heating apparatus using the catalytic oxidation reaction of combustible gases
US3057400A (en) * 1954-11-12 1962-10-09 Fireless Gas Heater Corp Glow burner for fuel-air mixture
US3107720A (en) * 1955-02-21 1963-10-22 Antargaz Gas-fired radiant heaters
US3013602A (en) * 1956-09-18 1961-12-19 American Infra Red Radiant Co Radiant gas burner
US3114363A (en) * 1959-09-10 1963-12-17 Hardwick Stove Company Broiler oven with radiant gas burner
US3099258A (en) * 1960-10-26 1963-07-30 Calinter S A Soc Catalytic heating apparatus
US3120089A (en) * 1960-11-07 1964-02-04 Ex Cell O Corp Machine for forming plastic coated paperboard containers
US3114411A (en) * 1961-03-13 1963-12-17 Pyronics Inc Burner means for air-gas mixtures
US3248099A (en) * 1963-11-20 1966-04-26 Rudolph S Bratko Infra-red industrial oven

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392458A (en) * 1967-05-04 1968-07-16 Ex Cell O Corp Selective heater for container closures
US3507093A (en) * 1967-08-16 1970-04-21 Maryland Cup Corp Container capping machine
US3536306A (en) * 1968-04-05 1970-10-27 Railway Transport Inst Multiflame burners
US3785255A (en) * 1972-11-10 1974-01-15 Peters Mach Co Hot air sealing apparatus for cartons
US3877354A (en) * 1972-11-30 1975-04-15 Alfred Schmermund Revolver for a packaging machine
US5236327A (en) * 1990-11-16 1993-08-17 American Gas Association Low NOx burner
US5460513A (en) * 1990-11-16 1995-10-24 American Gas Association Low NOx burner
US20030041963A1 (en) * 2001-08-20 2003-03-06 Lie-Zhong Gong Reactivatable adhesives
EP1415789A1 (en) * 2002-10-31 2004-05-06 Hans Georg Schulz Method for welding plastic parts, in particular for connecting plastic parts along a weld line
US20050276938A1 (en) * 2004-05-25 2005-12-15 Mccormick Demetrius T Adhesive for bag sealing application
US20180326671A1 (en) * 2015-08-28 2018-11-15 Sig Technology Ag Heating Unit for Heating Package Sleeves and Apparatus Comprising Such a Heating Unit
US11207842B2 (en) * 2015-08-28 2021-12-28 Sig Technology Ag Heating unit for heating package sleeves and apparatus comprising such a heating unit

Similar Documents

Publication Publication Date Title
US3331293A (en) Apparatus for bonding container closures
US3236160A (en) Method of bonding container closures
US5022352A (en) Burner for forced draft controlled mixture heating system using a closed combustion chamber
US2127956A (en) Method and apparatus for drying printing ink
JPH0412212B2 (en)
CN105854317B (en) Cool flame fire-fighting sends out equipment
US4694990A (en) Thermal spray apparatus for coating a substrate with molten fluent material
US4327665A (en) Method and apparatus for coating composition on can seams
US3349502A (en) Apparatus for shrinking film-wrappings on articles
US3099258A (en) Catalytic heating apparatus
US6868622B2 (en) Heat generating conveyor and tunnel oven
US3426953A (en) Method and apparatus for brazing
US3654431A (en) Bunsen burner simulating flameless electric heater
US2591307A (en) Web drying device
US2994520A (en) Apparatus for generating radiant heat and delivering hot gaseous products
US2196982A (en) Can body making machine
US3193263A (en) Catalytic radiant heat treating apparatus
US3565406A (en) Space heater
US4111142A (en) Apparatus for heating seams of cans
US3830221A (en) Oil heater protection system
US3692288A (en) Gas-fired thermoforming machine
US3273988A (en) Apparatus for producing all-glass multiple sheet glazing units
US1416746A (en) Gas furnace
US1446365A (en) Heater
US1760319A (en) Liquid-fuel radiant heater