US3109716A - Lamellar metal structure - Google Patents

Lamellar metal structure Download PDF

Info

Publication number
US3109716A
US3109716A US673188A US67318857A US3109716A US 3109716 A US3109716 A US 3109716A US 673188 A US673188 A US 673188A US 67318857 A US67318857 A US 67318857A US 3109716 A US3109716 A US 3109716A
Authority
US
United States
Prior art keywords
alloy
noble metal
envelope
noble
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US673188A
Inventor
Slayter Games
Robert M Woodward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US673188A priority Critical patent/US3109716A/en
Priority to US188487A priority patent/US3206846A/en
Application granted granted Critical
Publication of US3109716A publication Critical patent/US3109716A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/932Abrasive or cutting feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12069Plural nonparticulate metal components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component

Definitions

  • This invention relates to a lamellar metal structure, and, more particularly, to such a structure comprising two integrated layers, one of which comprises primarily a noble metal, and the other of which comprises primarily a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix of at least one noble metal.
  • a laminate has a combination of desirable properties which has not heretofore been achieved, so far as is known.
  • noble metal alloys have heretofore been used to perform specific functions where their unique properties have justified their high cost.
  • certain assemblies made from noble metal alloys have been employed in conjunction with glass melting tanks, often as inserts through which streams of molten glass flow and are attenuated into fibers of desired diameters.
  • the highly refractory nature of the alloys, and their resistance to abrasion by molten glass are properties, in such applications, which justify the expense involved.
  • noble metal alloys which have even better high temperature strength properties, and even greater resistance to sag and creep under high temperature operating conditions, specifically, at tempea-tures near the melting points of the noble metals.
  • a brittle base metal sheet generally of the type described in the preceding paragraph can be laminated with a base metal sheet to produce a sandwichtype-, or lamellar-structure which is comparatively ductile by virtue of the pure metal portion thereof, and has improved impact resistance, high temperature strength and resistance to sag or creep by virtue of the portion thereof which includes refractory particles.
  • the present invention is based upon the discovery of a method for producing a lamellar structure comprising at least two integrated layers, one of which consists essentially of at least one noble metal, and the other of which consists essentially of a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix of at least one noble metal.
  • a lamellar structure comprising at least two integrated layers, one of which consists essentially of at least one noble metal, and the other of which consists essentially of a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix of at least one noble metal.
  • Such a structure has properties which are predominantly metallic in nature, and can have high temperature strength and resistance to creep or sag characteristics which are better than any known noble metal or noble metal alloy.
  • It is a further object of the invention to provide an integrated lamellar structure comprising a noble metal or noble metal alloy layer and a layer, structurally integral with the first layer, which is composed of a plurality of masses of a hard, refractory material dispersed in a noble metalor noble metal alloy-matrix.
  • FIG. 1 is a View in perspective, showing an envelope structure which is useful in producing a laminate according to the invention
  • FIG. 2 is an end view of an assembly which represents one step in the production of the envelope of FIG. 1;
  • FIG. 3 is a schematic representation in vertical section showing details of a test apparatus that has been used to demonstrate the improvement of physical properties achieved with a laminate according to the invention
  • FIG. 4 is a schematic sectional view along the line 4-4 of FIG. 3 showing further details of the test apparatus.
  • FIG. 5 is a reproduction of a photomicrograph of a lamellar structure according to the invention.
  • Such lamellar structure comprises a layer consisting essentially of at least one noble metal, and a second layer structurally integral with the first layer, the second layer consisting essentially of a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix consisting essentially of at least one noble metal.
  • One layer of a lamellar structure according to the invention consists essentially of at least one noble metal, and another layer in such structure includes a matrix which consists essentially of at least one noble metal.
  • a layer or matrix can include any of the noble metals, platinum, palladium, rhodium, ruthenium, osmium, iridium, silver and gold, and can, in some instances, contain limited amounts of certain base metals.
  • certain noble metal alloys with nickel possess favorable properties for utilization at elevated temperatures. Platinum, palladium and rhodium, and alloys thereof, are the most useful, and therefore preferred, noble metals in lamellar structures according to the in vention.
  • Platinum and rhodium and their alloys have extremely low vapor pressures at temperatures in the vicinity of 2500 R, which temperatures metal puts must withstand when used in contact with molten glass. It is known that the vapor pressure of platinum, in millimeters of mercury, is 1.l l at 1832 F., and 1.1 l( at 2732 F. The vapor pressure of rhodium parallels that of platinum. On the other hand palladium, ruthenium, osmium, iridium, gold and silver all have significant vapor pressures at such temperatures, and are volatilized at an appreciable rate when used in this way at such high temperatures.
  • lamellar structures according to the invention wherein either the metal layer or the matrix of the layer integrated therewith comprises palladium, ruthenium, osmium, iridium, gold or silver are significantly improved over similar structures made from the pure metals.
  • Palladium can be present in lamellar structures according to the invention for service up to about 2000 F.
  • ruthenium, osmium, iridium, gold and silver in structures for somewhat lower service temperatures.
  • the plurality of bodily separate masses of a hard, refractory material dispersed in a noble metal or alloy matrix in one of the layers of a lamellar structure according to the invention are preferably refractory metal oxides, and can be particulate, or can be in the form of fibers or flakes-
  • Preferred refractory metal oxide materials for extremely high temperature service are alumina (A1 0 zirconia (ZrO thoria (ThO and beryllia (BeO). These materials are used in particulate form only, unless glass-forming ingredients are associated therewith. When beryllia (BeO) is used as the refractory material, care should be taken in processing to avoid hazard to personnel.
  • refractory materials dispersed in a noble metal matrix can also be employed.
  • silica and any of many known high temperature glasses can be used where a noble metal structure having added strength at relatively lower temperatures is required.
  • fiberizable high temperature glasses are used as the refractory material, they can be either in fibrous or particulate form.
  • a lamellar structure according to the invention can be produced according to the method of the invention.
  • Such method comprises assembling a plurality of sheets, each of which sheets consists essentially of at least one noble metal, and a material consisting essentially of at least one noble metal and a plurality of bodily separate masses of a hard, refractory material coated with at least one noble metal, into a structure wherein the material is disposed between adjacent noble metal sheets, and subjecting the structure so produced to heat and pressure for a time sufficient to produce an integrated lamellar structure.
  • refractory material is fibrous, for example is aluminum silicate fibers or is any of numerous other known refractory fibers, such fibers should have a diameter of from about A micron to about microns.
  • the noble metal sheets used in accordance with such method can be any of those previously discussed, and the hard, refractory material can be any of those previously discussed. It is essential that the hard, refractory material, whether in the form of fibers, flakes or particles, be coated with a noble metal or with a noble metal alloy, because, as has previously been indicated, it is not known to be possible to produce a lamellar structure from a plurality of masses of an uncoated, hard, refnactory material dispersed in a noble metal matrix and adhered to a noble metal sheet.
  • the noble metal coating can be provided on the hard, refractory material in any suitable way. A preferred method for applying such coating involves the step of immersing the material in a solution of a compound of the noble metal or noble metal alloy.
  • Example I A gram portion of alloy A, identified above, was dissolved in 300 cc. of concentrated aqua regia. The resulting solution comprising chloroplatinic acid and chlororhodic acid was evaporated to a syrupy state, and the syrupy material remaining was mixed with a 50 cc. portion of 37 percent hydrochloric acid. This solution was again evaporated to a syrupy condition, and the resulting syrup was again mixed with a 50 cc. portion of 37 percent hydrochloric acid. The resulting solution was again evaporated to a syrup, and the syrup again mixed with a 50 cc. portion of 37 percent hydrochloric acid; re-evaporated to a syrup; mixed with 50 cc.
  • a 495.5 gram portion of finely divided particulate alloy A produced as described in the preceding ara graph and a 4.5 gram portion of graded, 0.3 micron powdered, fused alumina were charged into a 1 quart ball mill which was lined with a refractory material and contained 135 ceramic balls of approximately /2 inch diameter.
  • a cc. portion of the final solution of chloroplatinic acid and chlororhodic acid, produced as described in the preceding paragraph was mixed with 50 cc. of distilled water to produce a diluted final solution, and the diluted final solution was added to the charge in the ball mill. The entire charge was then ball milled for 24 hours.
  • the ball milled charged was dried and heated to 700 F. in air to decompose the chloroplatinic acid and chlororhodic acid to platinum and rhodium. The material was then reduced at 700 F. 'for 15 minutes in hydrogen.
  • the resulting sheets were gray in appearance and extremely brittle.
  • a particulate material comprising a mixture of powdered alloy A and 0.3 micron fused alumina grains coated with alloy A, produced as described above, was poured into voids within an open-ended envelope structure indicated generally at'10 in FIG. 1, which envelope was made entirely of alloy A.
  • a sheet 11 of alloy A constituted the bottom of the envelope in
  • a sheet 12 of alloy A constituted the top thereof
  • sheets l3, l4 and 15, of alloy A which were parallel to one another and to the sheets 11 and 12, divided the space between the top and bottom sheets into four compartments of approximately equal height.
  • An adjacent side 16 of the envelope as well as an opposed side 17 was completely closed, as was an end '18 of the envelope It).
  • the mixture of powdered material was poured into an open end 19 of the envelope, and filled the voids between adjacent ones of the sheets 11, 12, 13, 14 and 15. The remaining open end of the envelope was then closed, as subsequently discussed, and an opening 2t) approximately 0.020 inch in diameter, was provided through each end of the Wall 16 to enable the escape of air from each of the compart ments within the envelope during subsequent processing.
  • a sheet of vitrified mullite was then placed in contact With the exterior of the sheet 11 and with the exterior of the sheet 12, and a sheet of a heat resistant iron-nickelchromium alloy was placed in contact with the opposite surface of each mullite sheet. The entire assembly was then placed under compression by tightening a C clamp against the heat resistant alloy sheets.
  • the C clamp was tightened manually, so that the total pressure exerted thereby was of the order of about 500 pounds. Ele trical contacts were then applied to the ends of the envelope structure, and electricity was passed therethrough to heat the assembly to 2500 F, and to maintain the assembly at 2500 F. for 1 hour. The 'C clamp was then removed from the envelope, and the envelope was heated in a furnace to 2500 F., in contact with air, and then hot rolled to a desired thickness of about 7 inch.
  • the envelope 1% was produced from two U-shaped members made of alloy A, and designated 21 and 22, and theree H-shaped members made of alloy A, and designated 23, 24 and 25, assembled as shown in FIG. 2. These members, when so assembled, produce the envelope it except that both ends are open, and except that the component U and H-shaped members are bodily separate.
  • the first step in producing the envelope structure therefore, is to make welds along each of the lines of abutment between component members. This can be done with an oxy-hydrogen torch.
  • the resulting weldments are designated at 26 in FIG. 1.
  • the next step in producing the envelope is to close the end 13, by compression thereof in a suitable die, followed by oxy-hydrogen welding to close all openings therethrough.
  • the resulting wel-dments are designated at 27 in FIG. 1.
  • an envelope identical with that described above is filled either with sintered sheets produced from the same mixture of ball milled alumina particles and alloy A particles, and either ground dry or ground in the presence of water, but without providing an alloy A coating on the alumina, it is found that there is no appreciable bonding between the discrete layers after hot pressing to produce a final structure, so that the structure is not a laminate.
  • one specific way for applying a noble metalor noble metal alloy-coating on bodily separate masses of a hard, refractory material to be used in producing a laminar structure according to the invention involves treating the masses of the material with a solution of a compound of the noble metal or noble metal alloy, and then drying the solution and converting the compound to the noble '6 metal or noble metal-alloy.
  • a noble metal or noble metal alloy coating can also be applied in other ways, which will be apparent to one skilled in the art, and that the invention is not limited to the application of such coating in the indicated way.
  • contact between the noble metal and base metals should be avoided at all times when the noble metal is at an elevated temperature.
  • Contact between the noble metal and certain oxide materials such as vitreous mullite does not cause contamination, because of the inherent repugnance of noble metals to oxides. This inherent repugnance of noble metals is believed to explain the inability to produce a laminar structure when the hard, refractory material is not coated with a noble metal.
  • the laminar structure so far as can be determined by available methods, is not contaminated by hot pressing in contact with vitreous mullite in sheet form.
  • a specimen, designated 28 in FIGS. 3 and 4, 3 /2" x /2" x was rigidly attached within a vitreous mullite block 29 to a depth of /2" and supported in a globar heated furnace 30.
  • a simple lever 31 of iron-nickel-chromium alloy was used for a short-time test, with one end resting under the specimen 28, /2 from the free end thereof, and with the lever 31 supported on a fulcrum 32.
  • a platform 33 was provided on the free end of the lever 31 to receive weights.
  • the hot rolling operation furthers the integration of the separate layers.
  • the final laminar structure is one wherein the separate layers are integrated, as can be seen by an examination of FIG. 5 or" the drawings, which is a photomicrograph of a sample cut from a final rolled sheet which was produced by the procedure described in Example 1 wherein a particulate mixture of alloy A and alumina coated with alloy A was hot pressed in the envelope. It is believed that, if a sufficiently high pressure is employed, an integrated structure can be produced in a matter of a few minutes at 2500 F, for example, or in a longer period of time at a somewhat lower temperature.
  • the following example illustrates the production of a laminar structure according to the invention from layers comprising a particulate noble metal alloy and bodily separate masses, in the form of fibers, coated with the noble metal alloy.
  • Example 2 A mixture of 24.15 grams of alloy A powder produced as described in Example 1 with 17 cc. of final solution of chloroplatinic acid and chlororhodic acid produced as there-described was formed into a paste which was manually pressed through a mat of aluminum silicate fibers weighing 6.04 grams.
  • the fibers in the mat were in a jack-straw arrangement, rmdomly positioned, but all 1ying in essentially parallel planes. Most of the fibers in the mat had diameters ranging from 4 to 6 microns, but some were as fine as about 1 micron, and others were as coarse as about 10 microns.
  • the resulting mat was dried and inserted into a platinum-rhodium envelope similar to the envelope 1% of FIGS. 1 and 2, having one closed end, but composed of only two alloy A sheets and sides.
  • a hole, 0.020 in diameter, had previously been drilled on each side of the envelope near each end to enable the escape of air therefrom during subsequent processing.
  • the structure was heated at 800 F. for 3 hours to decompose the platinum-rhodium compounds to their respective metals in the form of a coating on the aluminum silicate fibers.
  • the open end of the envelope was then closed and oxy-hydrogen welded, as previously described.
  • the structure was cold pressed, then heated by resistance, and hot pressed at 2500 F. for one hours as in Example 1. It was then lightly rolled at 2500 F.
  • the specific composition of the aluminum silicate fibers used was as follows: A1 52.67 percent; SiO 45.77 percent; B 0 1.06 percentyand Na 0 0.50 percent.
  • a lamellar composite structure comprising two outer layers and an intermediate layer, each of said two outer layers being formed of an alloy consisting essentially of approximately weight percent platium and approximately 1t) weight percent rhodium, and said intermediate layer being located between, sintered, hot pressed and bonded to each of said two outer layers, said intermediate layer consisting essentially of about 5 volume percent of hard, refractory, metal oxide particles, and about volume percent of a matrix metal consisting essentially of approximately 90 weight percent platinum and approximately 10 weight percent rhodium, said refractory metal oxide particles being dispersed throughout and coated by said matrix metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Description

Nov. 5, 1963 G. SLAYTER 3,109,716
LAMELLAR METAL STRUCTURE Filed July 22. 1957 2 Sheets-Sheet 1 2? 2% 28- W A /f Games 6/0 fer Roberf M l/gaoc/wara IQTT NNE Y Nov. 5, 1963 SLAYTER 3,109,716
LAMELLAR METAL STRUCTURE Filed July 22, 1957 2 Sheets-Sheet 2 INVENTOR Games J/ayfer Ruben /7. Woodward VQM ATT ORM E15 United States Patent Ofi ice 3, l dd]? 1 5 l atented Nov. 5, l. 963
3,109,716 LAMELLAFR METAL STRUCTURE Games Slayter and Robert M. Woodward, Newark, (Bhio, assignors t'o Qwens-(Iorniug Fiberglas Corporation, a corporation of Delaware Filed July 22, N57, Ser. No. 673,188 1 Claim. (Q. 29-1913) This invention relates to a lamellar metal structure, and, more particularly, to such a structure comprising two integrated layers, one of which comprises primarily a noble metal, and the other of which comprises primarily a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix of at least one noble metal. Such a laminate has a combination of desirable properties which has not heretofore been achieved, so far as is known.
Various noble metal alloys have heretofore been used to perform specific functions where their unique properties have justified their high cost. As a specific example of such use, certain assemblies made from noble metal alloys have been employed in conjunction with glass melting tanks, often as inserts through which streams of molten glass flow and are attenuated into fibers of desired diameters. The highly refractory nature of the alloys, and their resistance to abrasion by molten glass are properties, in such applications, which justify the expense involved. There is a substantial need, however, for noble metal alloys which have even better high temperature strength properties, and even greater resistance to sag and creep under high temperature operating conditions, specifically, at tempea-tures near the melting points of the noble metals.
Many instances have previously been reported of improving high temperature strength properties and resistance to sag and creep of metals by using techniques of powder metallurgy. Improvements in these properties have been achieved by sintering a shape pressed from a mixture of the powdered metal and a hard, refractory, particulate material. Such products, When a continuous metal phase was produced, have been called cermets. In cermets, improved high temperature strength and resistance to creep and sag are achieved but with corresponding loss of machinability and ductility. What has been denominated sintered aluminum powder is an example of a cermet which can be so produced from a rnixtu-re of powdered aluminum and powdered alumina.
It might be expected that such high temperature properties of noble metal alloys could be improved by similar powdered metallurgical techniques. However, when powdered alumina, for example, is mixed with a powdered noble metal or noble metaballoy, and the mixture is pressed to a desired shape and the shape fired, it is found that the resulting product does not have metallic properties, and, in fact, is so brittle as to be worthless for use in connection with glass melting tanks, as suggested above.
it has been found by Dr. Thomas S. Shevlin, the Ohio State University, that a brittle base metal sheet generally of the type described in the preceding paragraph can be laminated with a base metal sheet to produce a sandwichtype-, or lamellar-structure which is comparatively ductile by virtue of the pure metal portion thereof, and has improved impact resistance, high temperature strength and resistance to sag or creep by virtue of the portion thereof which includes refractory particles.
When his attempted to produce a lamellar structure from a layer of the brittle noble metal-alumina product identified above and a noble metalor noble metal alloylayer, however, it is found that techniques which are suitable when working with base metals are useless. For example, if a brittle sheet product by sintering a mixture composed of 5 volume percent of alumina and 95 volume percent of an alloy of weight percent platinum and 10 weight percent rhodium (such an alloy is hereinafter, for convenience, referred to as alloy A) is placed between two alloy A sheets to produce a lamellar structure, and the resulting structure is hot pressed at a suitable temperature of about 2590 F., it is found that the brittle layer has crumbled during processing, but fragments thereof have not been bonded to any appreciable extent to the alloy A layers. Similarly, no adhesion is obtained if the powdered constituents of the brittle layer, 5 volumes of powdered alumina and volumes of powdered alloy A, are so positioned between two sheets of alloy A and hot pressed. So far as is known, there was no available way, prior to the instant invention, for producing an integrated laminate composed of a brittle noble metalalumina layer and a noble metalor noble metal alloylayer. Similarly, there was no way known for producing a useful article comprising a noble metal or noble metal alloy continuous phase with a plurality of bodily separate masses of a hard, refractory material dispersed therein.
The terms percent and parts are used herein, and in the appended claim, to refer to percent and parts by weight, unless otherwise indicated.
The present invention is based upon the discovery of a method for producing a lamellar structure comprising at least two integrated layers, one of which consists essentially of at least one noble metal, and the other of which consists essentially of a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix of at least one noble metal. Such a structure has properties which are predominantly metallic in nature, and can have high temperature strength and resistance to creep or sag characteristics which are better than any known noble metal or noble metal alloy.
It is, therefore, an object of the invention to provide an improved noble metalor noble metal alloy-structure.
It is a further object of the invention to provide an integrated lamellar structure comprising a noble metal or noble metal alloy layer and a layer, structurally integral with the first layer, which is composed of a plurality of masses of a hard, refractory material dispersed in a noble metalor noble metal alloy-matrix.
It is a further object of the invention to provide a method for producing such a lamellar structure.
Other objects and advantages will be apparent rom the description which follows, which is intended only to illustrate and disclose, but in no way to limit, the invention, reference being had to the accompanying drawings, in which FIG. 1 is a View in perspective, showing an envelope structure which is useful in producing a laminate according to the invention;
FIG. 2 is an end view of an assembly which represents one step in the production of the envelope of FIG. 1;
FIG. 3 is a schematic representation in vertical section showing details of a test apparatus that has been used to demonstrate the improvement of physical properties achieved with a laminate according to the invention;
FIG. 4 is a schematic sectional view along the line 4-4 of FIG. 3 showing further details of the test apparatus; and
FIG. 5 is a reproduction of a photomicrograph of a lamellar structure according to the invention.
According to the invention an improved lamellar structure is provided. Such lamellar structure comprises a layer consisting essentially of at least one noble metal, and a second layer structurally integral with the first layer, the second layer consisting essentially of a plurality of bodily separate masses of a hard, refractory material dispersed in a matrix consisting essentially of at least one noble metal.
One layer of a lamellar structure according to the invention consists essentially of at least one noble metal, and another layer in such structure includes a matrix which consists essentially of at least one noble metal. Such layer or matrix can include any of the noble metals, platinum, palladium, rhodium, ruthenium, osmium, iridium, silver and gold, and can, in some instances, contain limited amounts of certain base metals. For example, certain noble metal alloys with nickel possess favorable properties for utilization at elevated temperatures. Platinum, palladium and rhodium, and alloys thereof, are the most useful, and therefore preferred, noble metals in lamellar structures according to the in vention. Platinum and rhodium and their alloys have extremely low vapor pressures at temperatures in the vicinity of 2500 R, which temperatures metal puts must withstand when used in contact with molten glass. It is known that the vapor pressure of platinum, in millimeters of mercury, is 1.l l at 1832 F., and 1.1 l( at 2732 F. The vapor pressure of rhodium parallels that of platinum. On the other hand palladium, ruthenium, osmium, iridium, gold and silver all have significant vapor pressures at such temperatures, and are volatilized at an appreciable rate when used in this way at such high temperatures. However, lamellar structures according to the invention wherein either the metal layer or the matrix of the layer integrated therewith comprises palladium, ruthenium, osmium, iridium, gold or silver are significantly improved over similar structures made from the pure metals. Palladium can be present in lamellar structures according to the invention for service up to about 2000 F., and ruthenium, osmium, iridium, gold and silver in structures for somewhat lower service temperatures.
The plurality of bodily separate masses of a hard, refractory material dispersed in a noble metal or alloy matrix in one of the layers of a lamellar structure according to the invention are preferably refractory metal oxides, and can be particulate, or can be in the form of fibers or flakes- Preferred refractory metal oxide materials for extremely high temperature service are alumina (A1 0 zirconia (ZrO thoria (ThO and beryllia (BeO). These materials are used in particulate form only, unless glass-forming ingredients are associated therewith. When beryllia (BeO) is used as the refractory material, care should be taken in processing to avoid hazard to personnel. Other hard, refractory materials dispersed in a noble metal matrix, however, can also be employed. As a specific further example, silica and any of many known high temperature glasses can be used where a noble metal structure having added strength at relatively lower temperatures is required. When fiberizable high temperature glasses are used as the refractory material, they can be either in fibrous or particulate form.
A lamellar structure according to the invention can be produced according to the method of the invention. Such method comprises assembling a plurality of sheets, each of which sheets consists essentially of at least one noble metal, and a material consisting essentially of at least one noble metal and a plurality of bodily separate masses of a hard, refractory material coated with at least one noble metal, into a structure wherein the material is disposed between adjacent noble metal sheets, and subjecting the structure so produced to heat and pressure for a time sufficient to produce an integrated lamellar structure.
Satisfactory results have been secured using hard particulate refractory materials when these have ranged in size from about 4 micron to about microns. Particulate alumina having a size of about 0.3 micron has been utilized with excellent results. Where the refractory material is fibrous, for example is aluminum silicate fibers or is any of numerous other known refractory fibers, such fibers should have a diameter of from about A micron to about microns.
The noble metal sheets used in accordance with such method can be any of those previously discussed, and the hard, refractory material can be any of those previously discussed. It is essential that the hard, refractory material, whether in the form of fibers, flakes or particles, be coated with a noble metal or with a noble metal alloy, because, as has previously been indicated, it is not known to be possible to produce a lamellar structure from a plurality of masses of an uncoated, hard, refnactory material dispersed in a noble metal matrix and adhered to a noble metal sheet. The noble metal coating can be provided on the hard, refractory material in any suitable way. A preferred method for applying such coating involves the step of immersing the material in a solution of a compound of the noble metal or noble metal alloy.
A specific way for applying a particular coating to a hard refractory material, as well as the use of such coated material in the production of a lainellar structure according to the invention, will now be described by way of example.
Example I A gram portion of alloy A, identified above, was dissolved in 300 cc. of concentrated aqua regia. The resulting solution comprising chloroplatinic acid and chlororhodic acid was evaporated to a syrupy state, and the syrupy material remaining was mixed with a 50 cc. portion of 37 percent hydrochloric acid. This solution was again evaporated to a syrupy condition, and the resulting syrup was again mixed with a 50 cc. portion of 37 percent hydrochloric acid. The resulting solution was again evaporated to a syrup, and the syrup again mixed with a 50 cc. portion of 37 percent hydrochloric acid; re-evaporated to a syrup; mixed with 50 cc. of distilled water; re-evaporated to a syrup; and finally diluted with distilled water to produce a final solution of chloroplatinic acid and chlororhodic acid in a concentration of (Ll gram of solids, calculated as pure alloy A, per cc. A 40 cc. portion of 85 percent hydrazine hydrate was then added, with stirring, to the final solution, at a temperature of F.; the solution was made alkaline with ammonium hydroxide; and an additional 10 cc. portion of 85 percent hydrazine hydrate was added to the alkaline material. A precipitate of finely divided, particulate alloy A was allowed to settle; was collected on a filter paper; was washed with distilled water; and was dried,
A 495.5 gram portion of finely divided particulate alloy A produced as described in the preceding ara graph and a 4.5 gram portion of graded, 0.3 micron powdered, fused alumina were charged into a 1 quart ball mill which was lined with a refractory material and contained 135 ceramic balls of approximately /2 inch diameter. A cc. portion of the final solution of chloroplatinic acid and chlororhodic acid, produced as described in the preceding paragraph was mixed with 50 cc. of distilled water to produce a diluted final solution, and the diluted final solution was added to the charge in the ball mill. The entire charge was then ball milled for 24 hours. The ball milled charged was dried and heated to 700 F. in air to decompose the chloroplatinic acid and chlororhodic acid to platinum and rhodium. The material was then reduced at 700 F. 'for 15 minutes in hydrogen.
A part of the finely divided particulate material produced as described above, and consisting essentially of 0.3 micron alumina powder coated with alloy A, and intimately associated with finely divided alloy A, was pressed into sheets approximately 6 inches in length, 1 inch in width and A. inch in thickness, and heated in air to 2500 F. to siuter the particles together. The resulting sheets were gray in appearance and extremely brittle.
A particulate material comprising a mixture of powdered alloy A and 0.3 micron fused alumina grains coated with alloy A, produced as described above, was poured into voids within an open-ended envelope structure indicated generally at'10 in FIG. 1, which envelope Was made entirely of alloy A. A sheet 11 of alloy A constituted the bottom of the envelope in, a sheet 12 of alloy A constituted the top thereof, and sheets l3, l4 and 15, of alloy A, which were parallel to one another and to the sheets 11 and 12, divided the space between the top and bottom sheets into four compartments of approximately equal height. An adjacent side 16 of the envelope as well as an opposed side 17 was completely closed, as was an end '18 of the envelope It). The mixture of powdered material was poured into an open end 19 of the envelope, and filled the voids between adjacent ones of the sheets 11, 12, 13, 14 and 15. The remaining open end of the envelope was then closed, as subsequently discussed, and an opening 2t) approximately 0.020 inch in diameter, was provided through each end of the Wall 16 to enable the escape of air from each of the compart ments within the envelope during subsequent processing. A sheet of vitrified mullite was then placed in contact With the exterior of the sheet 11 and with the exterior of the sheet 12, and a sheet of a heat resistant iron-nickelchromium alloy was placed in contact with the opposite surface of each mullite sheet. The entire assembly was then placed under compression by tightening a C clamp against the heat resistant alloy sheets. The C clamp was tightened manually, so that the total pressure exerted thereby was of the order of about 500 pounds. Ele trical contacts were then applied to the ends of the envelope structure, and electricity was passed therethrough to heat the assembly to 2500 F, and to maintain the assembly at 2500 F. for 1 hour. The 'C clamp was then removed from the envelope, and the envelope was heated in a furnace to 2500 F., in contact with air, and then hot rolled to a desired thickness of about 7 inch.
The procedure described in the preceding paragraph was also repeated except that the sintered sheets produced from the particulate mixture of alloy A and coated alumina grains, produced as described above, were positioned within the envelope instead of the particulate mixture itself. Otherwise, the fabricating steps were identical with those previously described.
The envelope 1% was produced from two U-shaped members made of alloy A, and designated 21 and 22, and theree H-shaped members made of alloy A, and designated 23, 24 and 25, assembled as shown in FIG. 2. These members, when so assembled, produce the envelope it except that both ends are open, and except that the component U and H-shaped members are bodily separate. The first step in producing the envelope structure, therefore, is to make welds along each of the lines of abutment between component members. This can be done with an oxy-hydrogen torch. The resulting weldments are designated at 26 in FIG. 1. The next step in producing the envelope is to close the end 13, by compression thereof in a suitable die, followed by oxy-hydrogen welding to close all openings therethrough. The resulting wel-dments are designated at 27 in FIG. 1.
If, for purposes of comparison, but not in accordance with the invention, an envelope identical with that described above is filled either with sintered sheets produced from the same mixture of ball milled alumina particles and alloy A particles, and either ground dry or ground in the presence of water, but without providing an alloy A coating on the alumina, it is found that there is no appreciable bonding between the discrete layers after hot pressing to produce a final structure, so that the structure is not a laminate.
It will be apparent from the foregoing example that one specific way for applying a noble metalor noble metal alloy-coating on bodily separate masses of a hard, refractory material to be used in producing a laminar structure according to the invention involves treating the masses of the material with a solution of a compound of the noble metal or noble metal alloy, and then drying the solution and converting the compound to the noble '6 metal or noble metal-alloy. It is to be appreciated, however, that such noble metal or noble metal alloy coating can also be applied in other ways, which will be apparent to one skilled in the art, and that the invention is not limited to the application of such coating in the indicated way.
'It will also be appreciated that, while the use of an envelope structure wherein sintered sheets or constituents thereof are positioned between s aced, parallel, noble metalor noble metal alloy-sheets which are supported in position is a preferred Way for practicing the invention, either sintered sheets or constituents used to produce such sheets can merely be positioned between noble metalor noble metal alloy-sheets and hot pressed to achieve the result.
Where extremely pure noble metal laminates are desired, contact between the noble metal and base metals should be avoided at all times when the noble metal is at an elevated temperature. Contact between the noble metal and certain oxide materials such as vitreous mullite does not cause contamination, because of the inherent repugnance of noble metals to oxides. This inherent repugnance of noble metals is believed to explain the inability to produce a laminar structure when the hard, refractory material is not coated with a noble metal. The laminar structure, so far as can be determined by available methods, is not contaminated by hot pressing in contact with vitreous mullite in sheet form.
The elevated temperature properties of the inch thick laminar structures produced as described above were compared with the elevated temperature properties of pure alloy A sheets of the same size by the following comparative tests:
A specimen, designated 28 in FIGS. 3 and 4, 3 /2" x /2" x was rigidly attached within a vitreous mullite block 29 to a depth of /2" and supported in a globar heated furnace 30.
A simple lever 31 of iron-nickel-chromium alloy was used for a short-time test, with one end resting under the specimen 28, /2 from the free end thereof, and with the lever 31 supported on a fulcrum 32. A platform 33 was provided on the free end of the lever 31 to receive weights.
At 2000 R, an alloy A specimen was bent when 1500 grams were placed on the platform 33, while 1800 grams were required to bend a specimen of the laminated structure produced as described in Example 1.
It will be apparent that various combinations of temperatures and pressures can be used in the hot pressing ste which is involved in producing a laminar structure according to the invention. The hot rolling operation furthers the integration of the separate layers. The final laminar structure is one wherein the separate layers are integrated, as can be seen by an examination of FIG. 5 or" the drawings, which is a photomicrograph of a sample cut from a final rolled sheet which was produced by the procedure described in Example 1 wherein a particulate mixture of alloy A and alumina coated with alloy A was hot pressed in the envelope. It is believed that, if a sufficiently high pressure is employed, an integrated structure can be produced in a matter of a few minutes at 2500 F, for example, or in a longer period of time at a somewhat lower temperature. The interdependence of pressure and temperature in powdered metallurgical techniques is well known in the art, so that a more detailed discussion of these conditions is unnecessary here. in this connection, however, it is noteworthy that the melting point of alloy A is 3333 R, so that a hot pressing temperature 833 F. lower than the melting point of the alloy was satisfactory.
The following example illustrates the production of a laminar structure according to the invention from layers comprising a particulate noble metal alloy and bodily separate masses, in the form of fibers, coated with the noble metal alloy. I
7 Example 2 A mixture of 24.15 grams of alloy A powder produced as described in Example 1 with 17 cc. of final solution of chloroplatinic acid and chlororhodic acid produced as there-described was formed into a paste which was manually pressed through a mat of aluminum silicate fibers weighing 6.04 grams. The fibers in the mat were in a jack-straw arrangement, rmdomly positioned, but all 1ying in essentially parallel planes. Most of the fibers in the mat had diameters ranging from 4 to 6 microns, but some were as fine as about 1 micron, and others were as coarse as about 10 microns.
The resulting mat was dried and inserted into a platinum-rhodium envelope similar to the envelope 1% of FIGS. 1 and 2, having one closed end, but composed of only two alloy A sheets and sides. A hole, 0.020 in diameter, had previously been drilled on each side of the envelope near each end to enable the escape of air therefrom during subsequent processing.
The structure was heated at 800 F. for 3 hours to decompose the platinum-rhodium compounds to their respective metals in the form of a coating on the aluminum silicate fibers.
The open end of the envelope was then closed and oxy-hydrogen welded, as previously described.
The structure was cold pressed, then heated by resistance, and hot pressed at 2500 F. for one hours as in Example 1. It was then lightly rolled at 2500 F.
The specific composition of the aluminum silicate fibers used was as follows: A1 52.67 percent; SiO 45.77 percent; B 0 1.06 percentyand Na 0 0.50 percent.
It will be apparent that various changes and modifications can be made from the specific details of the invention disclosed herein without departing from the spirit and scope of the attached claim.
\Vhat We claim is:
A lamellar composite structure comprising two outer layers and an intermediate layer, each of said two outer layers being formed of an alloy consisting essentially of approximately weight percent platium and approximately 1t) weight percent rhodium, and said intermediate layer being located between, sintered, hot pressed and bonded to each of said two outer layers, said intermediate layer consisting essentially of about 5 volume percent of hard, refractory, metal oxide particles, and about volume percent of a matrix metal consisting essentially of approximately 90 weight percent platinum and approximately 10 weight percent rhodium, said refractory metal oxide particles being dispersed throughout and coated by said matrix metal.
References Cited in the file of this patent UNITED STATES PATENTS 2,191,666 Kielier Feb. 27, 1940 2,319,364 Ziegs May 18, 1943 2,396,101 l-lensel Mar. 5, 1946 2,406,172 Smithells et a1 Aug. 20, 1946 2,417,459 Eitel Mar. 18, 1947 2,432,842 Wellman Dec. 16, 1947 2,434,305 Wise Ian. 13, 1948 2,473,712 Kinney June 21, 1949 2,486,341 StumbOck Oct. 25, 1949 2,490,214 Hensel Dec. 6, 1949 2,683,671 Findlay July 13, 1954 2,708,253 Cohn May 10, 1955 2,984,894 Hill May 23, 1961
US673188A 1957-07-22 1957-07-22 Lamellar metal structure Expired - Lifetime US3109716A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US673188A US3109716A (en) 1957-07-22 1957-07-22 Lamellar metal structure
US188487A US3206846A (en) 1957-07-22 1962-04-18 Method of producing a lamellar metal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US673188A US3109716A (en) 1957-07-22 1957-07-22 Lamellar metal structure

Publications (1)

Publication Number Publication Date
US3109716A true US3109716A (en) 1963-11-05

Family

ID=24701633

Family Applications (1)

Application Number Title Priority Date Filing Date
US673188A Expired - Lifetime US3109716A (en) 1957-07-22 1957-07-22 Lamellar metal structure

Country Status (1)

Country Link
US (1) US3109716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297431A (en) * 1965-06-02 1967-01-10 Standard Oil Co Cellarized metal and method of producing same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2191666A (en) * 1935-01-12 1940-02-27 American Cutting Alloys Inc Tool element
US2319364A (en) * 1938-05-06 1943-05-18 Ziegs Paul Electrical heating conductor and method of producing same
US2396101A (en) * 1942-10-23 1946-03-05 Mallory & Co Inc P R Electrical contact
US2406172A (en) * 1942-02-07 1946-08-20 Baker And Co Inc Platinum or allied metals, or their alloys, and articles made therefrom
US2417459A (en) * 1945-05-21 1947-03-18 Eitel Mccullough Inc Electron tube and electrode for the same
US2432842A (en) * 1942-02-02 1947-12-16 Sk Wellman Co Method of making metallic disk structures
US2434305A (en) * 1943-10-12 1948-01-13 Int Nickel Co Electric contact
US2473712A (en) * 1944-07-24 1949-06-21 American Cladmetals Company Procedure for making multiply metal stock
US2486341A (en) * 1945-06-30 1949-10-25 Baker & Co Inc Electrical contact element containing tin oxide
US2490214A (en) * 1945-07-19 1949-12-06 Mallory & Co Inc P R Electrical contacting element
US2683671A (en) * 1952-07-17 1954-07-13 Westinghouse Electric Corp Low primary and secondary electron emission surface
US2708253A (en) * 1950-11-18 1955-05-10 Baker & Co Inc Fuel igniters
US2984894A (en) * 1956-11-30 1961-05-23 Engelhard Ind Inc Composite material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2191666A (en) * 1935-01-12 1940-02-27 American Cutting Alloys Inc Tool element
US2319364A (en) * 1938-05-06 1943-05-18 Ziegs Paul Electrical heating conductor and method of producing same
US2432842A (en) * 1942-02-02 1947-12-16 Sk Wellman Co Method of making metallic disk structures
US2406172A (en) * 1942-02-07 1946-08-20 Baker And Co Inc Platinum or allied metals, or their alloys, and articles made therefrom
US2396101A (en) * 1942-10-23 1946-03-05 Mallory & Co Inc P R Electrical contact
US2434305A (en) * 1943-10-12 1948-01-13 Int Nickel Co Electric contact
US2473712A (en) * 1944-07-24 1949-06-21 American Cladmetals Company Procedure for making multiply metal stock
US2417459A (en) * 1945-05-21 1947-03-18 Eitel Mccullough Inc Electron tube and electrode for the same
US2486341A (en) * 1945-06-30 1949-10-25 Baker & Co Inc Electrical contact element containing tin oxide
US2490214A (en) * 1945-07-19 1949-12-06 Mallory & Co Inc P R Electrical contacting element
US2708253A (en) * 1950-11-18 1955-05-10 Baker & Co Inc Fuel igniters
US2683671A (en) * 1952-07-17 1954-07-13 Westinghouse Electric Corp Low primary and secondary electron emission surface
US2984894A (en) * 1956-11-30 1961-05-23 Engelhard Ind Inc Composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297431A (en) * 1965-06-02 1967-01-10 Standard Oil Co Cellarized metal and method of producing same

Similar Documents

Publication Publication Date Title
US3163500A (en) Sandwich composite brazing alloy
US3876407A (en) Method for producing a metal coated glass-ceramic article
US3206846A (en) Method of producing a lamellar metal structure
US3248190A (en) Lamellar structure
JPH1081924A (en) Production of iron aluminide by thermochemical treatment for element powder
US3184835A (en) Process for internally oxidationhardening alloys, and alloys and structures made therefrom
CA1200660A (en) Composite material
US3869335A (en) Impact resistant inorganic composites
US2358326A (en) Metal composition
US3109716A (en) Lamellar metal structure
US4440572A (en) Metal modified dispersion strengthened copper
US4756754A (en) Cermet composite
US3086284A (en) Thermal insulating construction
US2861327A (en) Applying protective metal coatings on molybdenum
JPS63182283A (en) Ceramic supporter-mounted non-volatile getter equipment and manufacture
JPS63212088A (en) Homogeneous low melting-point copper base alloy
CN102275352B (en) Layered composite material and preparation method thereof
US3353933A (en) Tungsten powder bodies infiltrated with copper-titanium alloys
WO1982001510A1 (en) Articles for contacting molten glass
CN102764890B (en) Method for preparing laminated precious metal composite material
US3201863A (en) Method of making molybdenum and high temperature oxidation resistant alloy laminatedcomposite material
KR100292119B1 (en) Electrode material, method for manufacturing electrode material, and method for manufacturing electrode
US3926571A (en) Metallized isotropic boron nitride body
US3098743A (en) Brazing alloy
US4507156A (en) Creep resistant dispersion strengthened metals