US3064953A - Manual auxiliary control system for automatic chokes - Google Patents

Manual auxiliary control system for automatic chokes Download PDF

Info

Publication number
US3064953A
US3064953A US25746A US2574660A US3064953A US 3064953 A US3064953 A US 3064953A US 25746 A US25746 A US 25746A US 2574660 A US2574660 A US 2574660A US 3064953 A US3064953 A US 3064953A
Authority
US
United States
Prior art keywords
choke
lever
engine
plate
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US25746A
Inventor
John C Hayes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US25746A priority Critical patent/US3064953A/en
Application granted granted Critical
Publication of US3064953A publication Critical patent/US3064953A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/02Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling being chokes for enriching fuel-air mixture

Definitions

  • This invention relates generally to automobile carburetors, and specifically it pertains to an auxiliary manual atet control choke system for carburetors that are equipped Y with automatic chokes.
  • the automatic choke of an automobile In cold weather, such as early in the morning, the automatic choke of an automobile is kept closed in order to facilitate the starting of the engine thereof. Normally, it will take from three to ten miles of equivalent driving before the automatic choke is open all the way.
  • the automatic choke is controlled by a thermostatic coil. When this coil is cold, it is in a contracted position, and it maintains a tension on the choke to keep it in a closed position.
  • the heat from the mainifold then begins to heat the thermostatic coil, with the result that it expands. The result is that the tension on the choke is reduced, and the choke then begins to open.
  • Still another object of this invention is to provide an auxiliary manually controlled choke system for the carburetor of an automobile engine, which can be used concurrently or independently of the automatic choke thereof.
  • Another object of this invention is to provide a novel manually controlled choke system which can be easily adapted to conventional carburetors for automobile engines having automatic chokes.
  • Yet another object of this invention is to provide a manually controlled choke system for automobile engines which is economical to manufacture, efficient and reliable in operational use, and which is easy to install and maintain.
  • FIG. 1 is a side elevation of a conventional automati cally choked carburetor with an auxiliary manual choke control system incorporating features of the present invention installed thereon;
  • FIG. 2 is a perspective view further illustrating the arrangement of the manual auxiliary choke of this invention.
  • FIGS. 1 and 2 of the drawings there is shown an auxiliary manual choke control system ill installed upon an automatically choked carburetor 12.
  • the carburetor 12 is of generally conventional design, and includes an air intake horn l4, and a thermostatic choke control assembly 16 which opens or closes a choke plate 13.
  • the choke plate 18 is secured to a shaft 20, which carries a lever 22 that drives or is driven by a link 24- which connects with a fast idle cam lever 2-8 and its associated fast idle cam 26.
  • the choke plate 18 When the engine is first started during cool weather, the choke plate 18 is on a nearly closed position as shown in FIG. 2.
  • the lever 22 is in a horizontal position and holds the fast idle cam 26 against a screw 29, thereby maintaining a throttle lever 3G in a partially open position.
  • the closed choke plate 13 causes a richer fuel mixture to be fed to the engine during warm-up and the ree partially open throttle increases the idling speed of the engine.
  • the hose 15 can become fouled, or the spring in the choke control 16 can weaken.
  • the choke plate 18 and its shaft 20 can become gummed or varnished with the consequence that the choke plate 18 will only open part way or, at least, will take much longer than necessary to open fully.
  • Continuous running with a partially closed choke in addition to causing a rough idle of the engine, is extremely wasteful of fuel and is a principal cause of plug fouling. Further, the excess fuel will drain down the cylinder walls carrying away the lubricating film and diluting the contents of the crankcase.
  • the foregoing disadvantages are readily obviated or eliminated by utilizing a manual choke control system 10 which can be very easily installed on the majority of carburetors now in use.
  • the manual choke control system 10 of this invention including a mounting plate 38 which is secured at one end to the carburetor 12 by a screw 40.
  • a pair of clamps 42 and 44 are fixed to the other end of the plate 38, by means of a screw 46 and locknuts 48.
  • the clamps 42 and 44 secure one end of each of a pair of choke cable assemblies 50 and 52, respectively to the mounting plate and screw 46.
  • each of the cable assemblies 50 and 52 is fashioned with a threaded ferrule 58 and 60, respectively, both of which are secured to a mounting bracket 64 by nuts 62.
  • the bracket 64 is hung from the undersurface of the dash panel 66 of the automobile by nuts and bolts 68.
  • the cable assemblies 5% and 52 are provided with actuating knobs '70 and 72-, respectively.
  • the other end of chain 74 engages a hole in one end of a short extension link 76, the other end of which is fastened by screw 78 to the choke lever 22.
  • the other end of chain 80 is fastened to a clamp type lever 82 by a screw 84.
  • the screw 84 also serves to secure the lever 32 to the link 24.
  • knob 70 may be full-out and thereby holding choke plate 18 closed, flooring the accelerator pedal will cause a throttle rod 32 to drive throttle lever 30 in a clockwise direction. As the throttle lever 30 rotates, it will carry its integral unloader arm 34 around with it causing the arm 34 to strike a projecting tab 36 on fast idle cam 26. Fast idle lever 23, the link as and the lever 22 will then be pulled downwardly thereby fully opening the choke plate and simultaneously knob 70 will be pulled back in.
  • an automatically choked carburetor for an engine having an air intake horn, a rotatable mounted shaft in said air intake horn, a choke plate mounted on said shaft in said air intake horn, a thermostatic choke control assembly for rotating said shaft to open as well as close said choke plate depending upon temperature environments of said engine, a choke plate lever pivotally secured to one end of said shaft, a link pivotally connected to said lever for driving as well as being driven by said lever, a fast idle cam lever connected to said link, a fast idle cam associated with said idle cam lever, a throttle lever for controlling the idle speed of said engine, and a screw located between said idle cam lever and throttle lever; in combination with a manual choke control system for said carburetor, said system including a mounting plate, a pair of spaced choke cable assemblies secured to said mounting plate and the other ends thereof to a fixed support, each choke cable assembly including a core wire having a loop formed on one end, a short chain connected to each loop, the other end of each core wire having a handle, an extension lever connected
  • an automatically choked carburetor for an engine having an air intake horn, a rotatable mounted shaft in said air intake horn, a choke plate mounted on said shaft in said air intake horn, a thermostatic choke control assembly for rotating said shaft to open as well as close said choke plate depending upon temperature environments of said engine, a choke plate lever pivotally secured to one end of said shaft, a link pivotally connected to said lever for driving as well as being driven by said lever, a fast idle cam lever connected to said link, a fast idle cam associated with said idle cam lever, a throttle lever for controlling the idle speed of said engine, and a screw located between said idle cam lever and throttle lever; in combination with a manual choke control system for said carburetor, said system including a mounting plate, a choke cable assembly secured to said mounting plate and to a fixed support, said choke cable assembly including a core Wire having a loop formed on one end, a short chain having one end connected to said loop and its opposite end connected to said link, said chain having sufficient slack so that movement of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)

Description

J. C. HAYES Nov. 20, 1962 MANUAL AUXILIARY CONTROL SYSTEM FOR AUTOMATIC CHOKES Filed April 29, 1960 JOHN 0. HA YES INVENTUR.
ATTORNEY Stats llnie This invention relates generally to automobile carburetors, and specifically it pertains to an auxiliary manual atet control choke system for carburetors that are equipped Y with automatic chokes.
In cold weather, such as early in the morning, the automatic choke of an automobile is kept closed in order to facilitate the starting of the engine thereof. Normally, it will take from three to ten miles of equivalent driving before the automatic choke is open all the way. The automatic choke is controlled by a thermostatic coil. When this coil is cold, it is in a contracted position, and it maintains a tension on the choke to keep it in a closed position. When the engine of the automobile begins to heat up, the heat from the mainifold then begins to heat the thermostatic coil, with the result that it expands. The result is that the tension on the choke is reduced, and the choke then begins to open.
It is an object of this invention, therefore, to provide an auxiliary manual controlled choke system for a carburetor of an engine which is equipped with an automatic choke to facilitate the starting of the engine in cold weather.
Still another object of this invention is to provide an auxiliary manually controlled choke system for the carburetor of an automobile engine, which can be used concurrently or independently of the automatic choke thereof.
And another object of this invention is to provide a novel manually controlled choke system which can be easily adapted to conventional carburetors for automobile engines having automatic chokes.
Even another object of this invention is to provide a manually controlled choke system for automobile engines which is economical to manufacture, efficient and reliable in operational use, and which is easy to install and maintain.
These objects and other attendant advantages of this invention will become more readily apparent from the following detailed specification and accompanying drawings in which:
FIG. 1 is a side elevation of a conventional automati cally choked carburetor with an auxiliary manual choke control system incorporating features of the present invention installed thereon; and
FIG. 2 is a perspective view further illustrating the arrangement of the manual auxiliary choke of this invention.
Referring now to FIGS. 1 and 2 of the drawings, there is shown an auxiliary manual choke control system ill installed upon an automatically choked carburetor 12. The carburetor 12 is of generally conventional design, and includes an air intake horn l4, and a thermostatic choke control assembly 16 which opens or closes a choke plate 13. The choke plate 18 is secured to a shaft 20, which carries a lever 22 that drives or is driven by a link 24- which connects with a fast idle cam lever 2-8 and its associated fast idle cam 26.
When the engine is first started during cool weather, the choke plate 18 is on a nearly closed position as shown in FIG. 2. The lever 22 is in a horizontal position and holds the fast idle cam 26 against a screw 29, thereby maintaining a throttle lever 3G in a partially open position. The closed choke plate 13 causes a richer fuel mixture to be fed to the engine during warm-up and the ree partially open throttle increases the idling speed of the engine.
As the engine temperature increases, manifold heat is fed through a hose 15, with the thermostatic choke control 16 which starts opening the choke plate 18. When the engine reaches a normal operating temperature, the choke plate 18 should open fully which movement will drop lever 22 and drive the fast idle cam 26 out or" contact with the screw 29. Thus, the fuel mixture will be leaned and the idle speed of the engine reduced. It should be noted that the various carburetor elements are illustrated in FIG. 1 in a choke open position.
Frequently, several factors tend to prevent the proper functioning of the above described system. The hose 15 can become fouled, or the spring in the choke control 16 can weaken. In addition, the choke plate 18 and its shaft 20 can become gummed or varnished with the consequence that the choke plate 18 will only open part way or, at least, will take much longer than necessary to open fully. Continuous running with a partially closed choke, in addition to causing a rough idle of the engine, is extremely wasteful of fuel and is a principal cause of plug fouling. Further, the excess fuel will drain down the cylinder walls carrying away the lubricating film and diluting the contents of the crankcase.
The foregoing disadvantages are readily obviated or eliminated by utilizing a manual choke control system 10 which can be very easily installed on the majority of carburetors now in use. The manual choke control system 10 of this invention including a mounting plate 38 which is secured at one end to the carburetor 12 by a screw 40.
A pair of clamps 42 and 44 are fixed to the other end of the plate 38, by means of a screw 46 and locknuts 48. The clamps 42 and 44 secure one end of each of a pair of choke cable assemblies 50 and 52, respectively to the mounting plate and screw 46.
The opposite end of each of the cable assemblies 50 and 52 is fashioned with a threaded ferrule 58 and 60, respectively, both of which are secured to a mounting bracket 64 by nuts 62. The bracket 64 is hung from the undersurface of the dash panel 66 of the automobile by nuts and bolts 68. The cable assemblies 5% and 52 are provided with actuating knobs '70 and 72-, respectively.
Returning now to the carburetor end of the choke cable assemblies 50 and 52, it is to be noted that their respective core wires 54 and 56 are formed in loops which receive one end each of a pair of short chains 74 and 80.
The other end of chain 74 engages a hole in one end of a short extension link 76, the other end of which is fastened by screw 78 to the choke lever 22. The other end of chain 80 is fastened to a clamp type lever 82 by a screw 84. The screw 84 also serves to secure the lever 32 to the link 24.
It is now to be noted that pulling knob 7% will cause lever 22 to rotate in a clockwise direction, thereby closing choke plate 18 whereas pulling knob 72 will cause lever 22 to rotate in a counterclockwise direction, thereby opening the choke plate 18. The latter condition is illustrated in FIG. 1. As shown in FIG. 2, sufficient slack is provided in chains 74 and 80 so as to eliminate any interference with the automatic choke control when both knobs 7i and 72 are pushed in.
The usual operation of the manual choke control system 10 will now be described. After starting the engine and getting underway, the operator can elect to open the choke manually in advance of the automatic system by pulling knob 72 out, thereby saving considerable fuel. If, however, a need for more power should arise before the engine reaches its normal operating temperature, the
3 Choke can be restored to the setting determined by the automatic choke control by pushing knob 72 back in or by pulling knob 70 out.
It should be noted that pushing knob '72 in slackens the chain 80, thereby allowing the choke plate 13 to return to the position determined by the automatic choke control 16. On the other hand, pulling knob 7% full out will override the automatic choke control 16 and completly close the choke plate 18. It should be further noted that the manual system ltl will in no way interfere with the unloader system built into most carburetors.
For instance, should the engine become flooded during starting, it is only necessary for the operator to floor the accelerator pedal while cranking in order to dump the excess fuel through the exhaust system. Even though knob 70 may be full-out and thereby holding choke plate 18 closed, flooring the accelerator pedal will cause a throttle rod 32 to drive throttle lever 30 in a clockwise direction. As the throttle lever 30 rotates, it will carry its integral unloader arm 34 around with it causing the arm 34 to strike a projecting tab 36 on fast idle cam 26. Fast idle lever 23, the link as and the lever 22 will then be pulled downwardly thereby fully opening the choke plate and simultaneously knob 70 will be pulled back in.
Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. In an automatically choked carburetor for an engine having an air intake horn, a rotatable mounted shaft in said air intake horn, a choke plate mounted on said shaft in said air intake horn, a thermostatic choke control assembly for rotating said shaft to open as well as close said choke plate depending upon temperature environments of said engine, a choke plate lever pivotally secured to one end of said shaft, a link pivotally connected to said lever for driving as well as being driven by said lever, a fast idle cam lever connected to said link, a fast idle cam associated with said idle cam lever, a throttle lever for controlling the idle speed of said engine, and a screw located between said idle cam lever and throttle lever; in combination with a manual choke control system for said carburetor, said system including a mounting plate, a pair of spaced choke cable assemblies secured to said mounting plate and the other ends thereof to a fixed support, each choke cable assembly including a core wire having a loop formed on one end, a short chain connected to each loop, the other end of each core wire having a handle, an extension lever connected to said choke lever, one of said chains for one of said choke assemblies being connected to said extension lever and the other of said chains of said other of said choke assemblies being coupled to said link, each said chains having sufiicient slack so that movement of said choke plate can be controlled by the thermostatic choke control assembly without movement of the corresponding core wires, said choke assemblies being used to selectively open as well as close said choke plate in said air intake horn. I
2. In an automatically choked carburetor for an engine having an air intake horn, a rotatable mounted shaft in said air intake horn, a choke plate mounted on said shaft in said air intake horn, a thermostatic choke control assembly for rotating said shaft to open as well as close said choke plate depending upon temperature environments of said engine, a choke plate lever pivotally secured to one end of said shaft, a link pivotally connected to said lever for driving as well as being driven by said lever, a fast idle cam lever connected to said link, a fast idle cam associated with said idle cam lever, a throttle lever for controlling the idle speed of said engine, and a screw located between said idle cam lever and throttle lever; in combination with a manual choke control system for said carburetor, said system including a mounting plate, a choke cable assembly secured to said mounting plate and to a fixed support, said choke cable assembly including a core Wire having a loop formed on one end, a short chain having one end connected to said loop and its opposite end connected to said link, said chain having sufficient slack so that movement of said choke plate can be controlled by the thermostatic choke control assembly without movement of said core wire, the other end of said core wire having a handle so that said choke assembly can be operated to open said choke plate in said air intake horn.
Neuser Oct, 16, 1951 Carlson Mar. 28, 1961
US25746A 1960-04-29 1960-04-29 Manual auxiliary control system for automatic chokes Expired - Lifetime US3064953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US25746A US3064953A (en) 1960-04-29 1960-04-29 Manual auxiliary control system for automatic chokes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25746A US3064953A (en) 1960-04-29 1960-04-29 Manual auxiliary control system for automatic chokes

Publications (1)

Publication Number Publication Date
US3064953A true US3064953A (en) 1962-11-20

Family

ID=21827838

Family Applications (1)

Application Number Title Priority Date Filing Date
US25746A Expired - Lifetime US3064953A (en) 1960-04-29 1960-04-29 Manual auxiliary control system for automatic chokes

Country Status (1)

Country Link
US (1) US3064953A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263973A (en) * 1963-11-22 1966-08-02 James M Purcell Choke release
US20090299614A1 (en) * 2008-05-27 2009-12-03 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US20130206093A1 (en) * 2012-02-10 2013-08-15 Briggs & Stratton Corporation Choke override for an engine
US9429107B2 (en) 2013-02-22 2016-08-30 Briggs & Stratton Corporation Solenoid autochoke for an engine
US9932936B2 (en) 2015-11-11 2018-04-03 Briggs & Stratton Corporation Carburetor choke removal mechanism for pressure washers
US9945326B2 (en) 2015-05-07 2018-04-17 Briggs & Stratton Corporation Automatic choking mechanism for internal combustion engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2571602A (en) * 1948-07-16 1951-10-16 Edwin P Neuser Carburetor choke
US2977101A (en) * 1958-03-05 1961-03-28 Acf Ind Inc Automatic choke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2571602A (en) * 1948-07-16 1951-10-16 Edwin P Neuser Carburetor choke
US2977101A (en) * 1958-03-05 1961-03-28 Acf Ind Inc Automatic choke

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263973A (en) * 1963-11-22 1966-08-02 James M Purcell Choke release
US20090299614A1 (en) * 2008-05-27 2009-12-03 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US20090293828A1 (en) * 2008-05-27 2009-12-03 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8219305B2 (en) 2008-05-27 2012-07-10 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8434444B2 (en) 2008-05-27 2013-05-07 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8434445B2 (en) 2008-05-27 2013-05-07 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US20130206093A1 (en) * 2012-02-10 2013-08-15 Briggs & Stratton Corporation Choke override for an engine
US10215130B2 (en) * 2012-02-10 2019-02-26 Briggs & Stratton Corporation Choke override for an engine
US9429107B2 (en) 2013-02-22 2016-08-30 Briggs & Stratton Corporation Solenoid autochoke for an engine
US9945326B2 (en) 2015-05-07 2018-04-17 Briggs & Stratton Corporation Automatic choking mechanism for internal combustion engines
US9932936B2 (en) 2015-11-11 2018-04-03 Briggs & Stratton Corporation Carburetor choke removal mechanism for pressure washers

Similar Documents

Publication Publication Date Title
US3760785A (en) Carburetor throttle valve positioner
US2998233A (en) Automatic choke
US2982275A (en) Carburetor control
US3276439A (en) Dual-range governor for internal combustion engines
US3064953A (en) Manual auxiliary control system for automatic chokes
US3791358A (en) Carburetor control mechanism for an automotive gasoline powered internal combustion engine
JPH08326606A (en) Engine starting control device
US3190623A (en) Automatic choke for carburetor
US3730153A (en) Carburetor throttle valve positioner
US3736915A (en) Carburetor emission control device
US2946577A (en) Choke lock-out
US2834586A (en) Automatic choke latch
US2867424A (en) Carburetor
US2783984A (en) Dual throttle and choke control attachment
US2571602A (en) Carburetor choke
US2597606A (en) Engine starting device
US3278119A (en) Automatic choke auxiliary thermostat
US3263973A (en) Choke release
US2309170A (en) Internal combustion engine
US1968951A (en) Power plant control
US2102428A (en) Internal combustion engine fuel system
US2341685A (en) Carburetor
US2518794A (en) Automatic choke
US2048130A (en) Centralized motor control
US2766004A (en) Carburetor valve with adjustable stop