US3024290A - Process for replacing vinylic halogens with fluorine - Google Patents

Process for replacing vinylic halogens with fluorine Download PDF

Info

Publication number
US3024290A
US3024290A US12970A US1297060A US3024290A US 3024290 A US3024290 A US 3024290A US 12970 A US12970 A US 12970A US 1297060 A US1297060 A US 1297060A US 3024290 A US3024290 A US 3024290A
Authority
US
United States
Prior art keywords
parts
fluorine
fluoride
bomb
halogens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12970A
Inventor
Albert L Henne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US12970A priority Critical patent/US3024290A/en
Application granted granted Critical
Publication of US3024290A publication Critical patent/US3024290A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/208Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being MX

Definitions

  • This invention relates to a fluorination process and more particularly to a process for replacing vinylic halogens with fluorine.
  • the process of this invention is conveniently carried out in a pressure vessel since the reactants and/ or products may be gases at the temperatures involved.
  • Conventional steel, glass or glass-lined equipment is satisfactory.
  • the alkali metal fluoride is a solid which may be incompletely soluble under the conditions of the reaction, agitation is normally used to provide for improved contact of the reactants.
  • the temperature at which the reaction takes place will vary with the specific compounds treated. Generally, a temperature of at least 60 C. is necessary. Temperatures above 200 C. are usually unnecessary. A pre-.
  • ferred range is 70 to 160 C. Within this range, reaction takes place at reasonable speeds in good yield.
  • the compounds which may be used in the process of the present invention may be represented by the general structure wherein X, Y, A and rt are as defined above.
  • the perfluoroalkyl radical represented by A may have up to about twelve carbon atoms with the lower perfluoroalkyl radicals being preferred.
  • the integer represented by It may range from to with the preferred range being 0 to 2.
  • These compounds may be characterized as having perfluoro groups attached to a vinyl halide group. Representative compounds include:
  • the reactants should be dry and the alkali metal fluoride should be finely powdered to expose a maximum surface for reaction.
  • an excess of metal fluoride is required.
  • at least l.l mole of alkali metal fluoride is used per halogen atom to be replaced. Greater excesses of alkali metal fluoride may be used, but amounts in excess of 2 moles of alkali metal fluoride per halogen to be replaced are usually not required.
  • the solvent used is an organic carboxylic acid amide or a dialkyl sulfoxide.
  • the solvent must be inert, be a liquid at the temperature of reaction and must be stable under the conditions of reaction.
  • Typical solvents are: formarnide, acetamide, dimethylformamide, dimethyl acetamide, N-methylpyrrolidone, dimethyl sulfoxide, diethyl sulfoxide, etc.
  • miscible hydrocarbons such as xylene, may also be used in conjunction with these solvents. These hydrocarbons aid in dispersing the solids present in the reaction mass.
  • any of the fluorides of the alkali metals, Li, Na, K, Cs, Rb, may be used. Of these, potassium fluoride is preferred because of its ready availability. Cesium fluoride, While more expensive, is more reactive and-gives the same degree of conversion as potassium fluoride in about one-l1alf the time, other factors being equal. Sodium fluoride is less reactive and requires more mechanical agitation to remove the coating of sodium chloride which forms on the surface. Lithium fluoride is similar.
  • the fluorinated olefines which are obtained by the process of this invention have a Wide variety of uses. They may be further halogenated to yield compounds useful as heat transfer media and as dielectrics. In many cases, the compounds are useful as propellants and refrigerants, either alone or in combination with other fluorinated hydrocarbons such as difluorodichloromethane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

llnited States Patent tlflce 3,024,290- PROCESS FOR REPLACENG IC HALOGENS WETH FLUQRWE Albert L. Henne, Columbus, Ohio, assignor, by mesne assignments, to E. I. du Pont de Nemours and Company,
Wilmington, Del., a corporation of Delaware No Drawing. Filed Mar. 7, 1960, Ser. No. 12,970 14 Claims. (Cl. 260-648) This invention relates to a fluorination process and more particularly to a process for replacing vinylic halogens with fluorine.
It is an object of the present invention to provide a process for replacing v-inylic halogens with fluorine on an organic compound containing perfluoro groups attached to a vinyl halide group. Other objects will appear hereinafter.
These and other objects of this invention are accomplished by the process of substituting fluorine for at least one other halogen in a compound having the general structure r r A o Fi-C=OC Fm i t CF2-C=C-CF1 F91) wherein X is chlorine, bromine or iodine; Y is chlorine, bromine, iodine, fluorine, hydrogen or a -CF;, radical; A is either fluorine or a perfluoroalkyl radical; and n is an integer including zero; which comprises heating said compound with an alkali metal fluoride in the presence of an inert organic carboxylic acid amide solvent or a dialkyl sulfoxide solvent at a temperature of from about 60 to 200 C.
The process of this invention is conveniently carried out in a pressure vessel since the reactants and/ or products may be gases at the temperatures involved. Conventional steel, glass or glass-lined equipment is satisfactory. Since the alkali metal fluoride is a solid which may be incompletely soluble under the conditions of the reaction, agitation is normally used to provide for improved contact of the reactants.
The temperature at which the reaction takes place will vary with the specific compounds treated. Generally, a temperature of at least 60 C. is necessary. Temperatures above 200 C. are usually unnecessary. A pre-.
ferred range is 70 to 160 C. Within this range, reaction takes place at reasonable speeds in good yield.
The compounds which may be used in the process of the present invention may be represented by the general structure wherein X, Y, A and rt are as defined above. The perfluoroalkyl radical represented by A may have up to about twelve carbon atoms with the lower perfluoroalkyl radicals being preferred. The integer represented by It may range from to with the preferred range being 0 to 2. These compounds may be characterized as having perfluoro groups attached to a vinyl halide group. Representative compounds include:
3,924,290 iatented Mar. 6, 1962 that of the first or a prolonged period of heating at the The heating time is not critical and same temperature. will vary with the particular alkali metal fluoride employed. Specific illustrations are given in the examples.
The reactants should be dry and the alkali metal fluoride should be finely powdered to expose a maximum surface for reaction. In order to replace all of the halogen an excess of metal fluoride is required. Preferably, at least l.l mole of alkali metal fluoride is used per halogen atom to be replaced. Greater excesses of alkali metal fluoride may be used, but amounts in excess of 2 moles of alkali metal fluoride per halogen to be replaced are usually not required.
The solvent used is an organic carboxylic acid amide or a dialkyl sulfoxide. The solvent must be inert, be a liquid at the temperature of reaction and must be stable under the conditions of reaction. Typical solvents are: formarnide, acetamide, dimethylformamide, dimethyl acetamide, N-methylpyrrolidone, dimethyl sulfoxide, diethyl sulfoxide, etc. if desired, miscible hydrocarbons, such as xylene, may also be used in conjunction with these solvents. These hydrocarbons aid in dispersing the solids present in the reaction mass.
Any of the fluorides of the alkali metals, Li, Na, K, Cs, Rb, may be used. Of these, potassium fluoride is preferred because of its ready availability. Cesium fluoride, While more expensive, is more reactive and-gives the same degree of conversion as potassium fluoride in about one-l1alf the time, other factors being equal. Sodium fluoride is less reactive and requires more mechanical agitation to remove the coating of sodium chloride which forms on the surface. Lithium fluoride is similar.
The fluorinated olefines which are obtained by the process of this invention have a Wide variety of uses. They may be further halogenated to yield compounds useful as heat transfer media and as dielectrics. In many cases, the compounds are useful as propellants and refrigerants, either alone or in combination with other fluorinated hydrocarbons such as difluorodichloromethane.
The following examples will better illustrate the nature of the present invention; however, the invention is not intended to be limited to these examples. Parts are by weight unless otherwise indicated.
Example 1 23.3 parts of 2,3-dichlorohexafluorobutene-2 (CF CC1=CClCF 23.2 parts of dry powdered potassium fluoride and 60 parts of dimethyl formamide were heated in a steel rocker bomb for 4 hours at 100 C. The bomb was then cooled. Analysis by chromatography and infrared showed the presence of major proportions of cisand trans-CF CF CClCF The bomb was then closed and heated to 100 C. The temperature was then raised progressively over a period of 6 hours to 160 C. The bomb was cooled and the contents fractionally distilled. A fraction of 12 parts was collected at C. Chromatographic analysis showed two compounds. Infrared analysis gave a spectrum corresponding exactly with that for the known cisand transmixture of the compound CF -CF=CFCF It is estimated that the cisztrans ratio was approximately 1:3.
Example 2 24.5 parts of 1,2-dichlorohexafluorocyclopentene (cm-o C1=CClCFr-CF2) 23.2 parts of potassium fluoride and 60 parts of dimethyl formamide were heated in a steel bomb at 90 C. for 5 hours. At the end of this time a chromatographic analysis showed that the starting material had been essentially all transformed to a mixture of The reaction temperature was then raised gradually to 140 C. over a period of 5 hot; rs. The bomb was cooled and discharged. Chromatographic analysis showed only one peak corresponding to the perfluorocyclopentene. The contents of the bomb were distilled to give a fraction of 12.5 parts of perfluorocyclopentene boiling at 2527 C. having a major infrared absorption peak at 5.85 microns.
Example 3 23 parts of 2,3-dichlorohexafluorobutene-2 (CF CCl= CClCF 23.2 parts of potassium fluoride and 60 parts of dimethyl sulfoxide were heated in a steel bomb at 80 C. for 3 hours. Chromatographic analysis showed that the major products consisted of cisand trans- CF CF=CClCF The mixture was then heated an additional 6 hours at 160 C. Fractional distillation of the mass yielded 6.5 parts of CF CF=CFCF approximately half of the starting material had been converted to FC=CC1 Fi 3 F2 After a further 8 hours heating at 70 C. a major proportion had been transformed into FC=CF F3C-OF2 4 Some saturated by-product was also obtained due to the addition of HP to the double bond.
(B) Essentially the same results were obtained in a shorter time when the same quantities of materials were heated in a steel rocker bomb for 3 hours at C., followed by 1 hour at C., 1 hour at C., and 1 hour at C.
Example 5 23.3 parts of 2,3-dichlorohexafluorobutene-2, 61 parts of cesium fluoride and 120 parts of N-methyl-pyrrolidone were heated in a steel rocker bomb for 2 hours at 100 C. and then the temperature was gradually raised to C. over a period of 3 hours. The contents of the bomb were fractionally distilled to yield approximately 12 parts of a mixture of cisand trans- CF CF=CPCF boiling at 10 C. The reaction was particularly clean, the reaction mass being essentially free of any decomposition products.
Example 6 23.3 parts of 2,3-dichlorohexafluorobutene-Z, 17.6 parts of sodium fluoride and 60 parts of N-methyl-pyrrolidone were heated in a rocker bomb for 4 hours at 100 C. and then the temperature was progressively raised to 160 C. over a period of 6 hours. On distilling the contents of the bomb, a fraction of about 6 parts of a mixture of cisand trans- CF CF=CFCF was collected.
As many widely different embodiments of this invention may be made without departing from the spirit and scope thereof, it is to be understood that this invention is not limited to the specific embodiments thereof except as defined in the appended claims.
What is claimed is:
1. A process for substituting fluorine for at least one other halogen in an unsaturated compound selected from the group consisting of wherein X is selected from the group consisting of chlorine, bromine and iodine; Y is selected from the group consisting of chlorine, bromine, iodine, fluorine, hydrogen and a ---CF;; radical; A is independently selected from the group consisting of fluorine and a perfluoroalkyl radical of up to about twelve carbon atoms and n is an integer from zero to ten; which comprises heating said compound With an alkali metal fluoride in the presence of an inert solvent selected from the group consisting of an organic carboxylic acid amide and a dialkyl sulfoxide at a temperature of from about 60 to 200 C.
2. A process according to claim 1 wherein the unsaturated compound is 2,3-dichlorohexafluorobutene-Z.
3. A process according to claim 1 wherein the unsaturated compound is 1,2-dichlorohexafluorocyclopentene.
4. A process according to claim 1 wherein the alkali metal fluoride is potassium fluoride.
5. A process according to claim 2 wherein the alkali metal fluoride is potassium fluoride.
6. A process according to claim 2 wherein the alkali metal fluoride is cesium fluoride.
7. A process according to claim 3 wherein the alkali metal fluoride is potassium fluoride.
8. A process according to claim 1 wherein the solvent is N-methylpyrrolidone.
9. A process according to claim 1 wherein the solvent is dimethyl formarnide.
10. A process according to claim 5 wherein the solvent is N-methylpyrrolidone.
11. A process according to claim 5 wherein the solvent is dimethyl formarnide.
12. A process according to claim 5 wherein the solvent References Cited in the file of this patent is dimethyl sulfoxide.
13. A process according to claim 7 wherein the solvent UNITED STATES PATENTS is formamide. Mlner 14. A process according to claim 1 wherein the re- 5 action is carried out at a temperature of 70 to 160 C.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,024,290 March 6, 1962 Albert L. Henne It is hereby certified that error appears in the above numbered pat ent requiring correction and that the said Letters Patent should read as corrected below.
Co}umn 4, lines 41 to 45, the formula should appear as shown below instead of as in the patent:
I I CF2-C=C-CF2 Signed and sealed this 17th day of July 1962. SEAL) Attest:
DAVID L. LADD ERNEST W. SWIDER Commissioner of Patents Attesting Officer

Claims (1)

1. A PROCESS FOR SUBSTITUTING FLUORINE FOR AT LEAST ONE OTHER HALOGEN IN AN UNSATURATED COMPOUND SELECTED FROM THE GROUP CONSISTING OF
US12970A 1960-03-07 1960-03-07 Process for replacing vinylic halogens with fluorine Expired - Lifetime US3024290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12970A US3024290A (en) 1960-03-07 1960-03-07 Process for replacing vinylic halogens with fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12970A US3024290A (en) 1960-03-07 1960-03-07 Process for replacing vinylic halogens with fluorine

Publications (1)

Publication Number Publication Date
US3024290A true US3024290A (en) 1962-03-06

Family

ID=21757625

Family Applications (1)

Application Number Title Priority Date Filing Date
US12970A Expired - Lifetime US3024290A (en) 1960-03-07 1960-03-07 Process for replacing vinylic halogens with fluorine

Country Status (1)

Country Link
US (1) US3024290A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178482A (en) * 1960-05-04 1965-04-13 Hooker Chemical Corp Process for fluorinating chlorofluorocyclopentenes
US3197513A (en) * 1962-05-21 1965-07-27 Dow Corning Preparation of perfluoroolefins
US3287425A (en) * 1961-03-07 1966-11-22 Du Pont Fluorinated compounds and their preparation
US3331880A (en) * 1965-02-10 1967-07-18 Allied Chem Process for preparing polyfluorocyclohexenes
US3356748A (en) * 1964-01-30 1967-12-05 Du Pont Synthesis of fluoroolefins from olefins
US3365499A (en) * 1963-07-11 1968-01-23 Gulf Research Development Co Oxidation of olefins to ketones
US3481986A (en) * 1966-10-21 1969-12-02 Marathon Oil Co Chemical process for the production of carbonyl addition compounds
EP0768289A1 (en) * 1994-06-30 1997-04-16 JAPAN as represented by DIRECTOR GENERAL, AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY Process for producing fluorinated alkene derivative and fluorinated alkane derivative
US20090270522A1 (en) * 2008-04-25 2009-10-29 Honeywell International Inc. Blowing agents for polymeric foams
JP2010100592A (en) * 2008-10-27 2010-05-06 National Institute Of Advanced Industrial Science & Technology Method for producing fluorine-containing compound
US20110060170A1 (en) * 2008-07-18 2011-03-10 Zeon Corporation Method for producing hydrogen-containing fluoroolefin compound
WO2018235567A1 (en) * 2017-06-22 2018-12-27 日本ゼオン株式会社 Method for producing octafluorocyclopentene
WO2018235566A1 (en) * 2017-06-22 2018-12-27 日本ゼオン株式会社 Method for producing octafluorocyclopentene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842603A (en) * 1955-03-04 1958-07-08 Minnesota Mining & Mfg Preparation of perhalofluoroolefins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842603A (en) * 1955-03-04 1958-07-08 Minnesota Mining & Mfg Preparation of perhalofluoroolefins

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178482A (en) * 1960-05-04 1965-04-13 Hooker Chemical Corp Process for fluorinating chlorofluorocyclopentenes
US3287425A (en) * 1961-03-07 1966-11-22 Du Pont Fluorinated compounds and their preparation
US3197513A (en) * 1962-05-21 1965-07-27 Dow Corning Preparation of perfluoroolefins
US3365499A (en) * 1963-07-11 1968-01-23 Gulf Research Development Co Oxidation of olefins to ketones
US3356748A (en) * 1964-01-30 1967-12-05 Du Pont Synthesis of fluoroolefins from olefins
US3331880A (en) * 1965-02-10 1967-07-18 Allied Chem Process for preparing polyfluorocyclohexenes
US3481986A (en) * 1966-10-21 1969-12-02 Marathon Oil Co Chemical process for the production of carbonyl addition compounds
EP0768289A4 (en) * 1994-06-30 1997-09-17 Agency Ind Science Techn Process for producing fluorinated alkene derivative and fluorinated alkane derivative
EP0768289A1 (en) * 1994-06-30 1997-04-16 JAPAN as represented by DIRECTOR GENERAL, AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY Process for producing fluorinated alkene derivative and fluorinated alkane derivative
US5847243A (en) * 1994-06-30 1998-12-08 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Process for producing fluorinated alkene and fluorinated alkane
US20090270522A1 (en) * 2008-04-25 2009-10-29 Honeywell International Inc. Blowing agents for polymeric foams
US20110060170A1 (en) * 2008-07-18 2011-03-10 Zeon Corporation Method for producing hydrogen-containing fluoroolefin compound
US8318991B2 (en) 2008-07-18 2012-11-27 Zeon Corporation Method for producing hydrogen-containing fluoroolefin compound
JP2010100592A (en) * 2008-10-27 2010-05-06 National Institute Of Advanced Industrial Science & Technology Method for producing fluorine-containing compound
WO2018235567A1 (en) * 2017-06-22 2018-12-27 日本ゼオン株式会社 Method for producing octafluorocyclopentene
WO2018235566A1 (en) * 2017-06-22 2018-12-27 日本ゼオン株式会社 Method for producing octafluorocyclopentene
JPWO2018235567A1 (en) * 2017-06-22 2020-04-23 日本ゼオン株式会社 Method for producing octafluorocyclopentene
JPWO2018235566A1 (en) * 2017-06-22 2020-04-23 日本ゼオン株式会社 Method for producing octafluorocyclopentene
JP7095696B2 (en) 2017-06-22 2022-07-05 日本ゼオン株式会社 Manufacturing method of octafluorocyclopentene

Similar Documents

Publication Publication Date Title
US3024290A (en) Process for replacing vinylic halogens with fluorine
US2889379A (en) Preparation of 3, 3, 3-trifluoropropene
US2885427A (en) Fluorination of trichloroethylene
US2668182A (en) Polyunsaturated fluoroolefins
US2462402A (en) Fluorinated hydrocarbons
US2490764A (en) Fluorinated organic compounds
US2716141A (en) Preparation of halo aliphatic compounds
US3132185A (en) Improvement in the preparation of perfluoroalkyl iodides from tetrafluoroethylene
US3567788A (en) Preparation of fluorine-containing compounds
US2543530A (en) Treatment of polymeric chlorotrifluoroethylene
US3287425A (en) Fluorinated compounds and their preparation
US3574775A (en) Fluorination of perhalo compounds
US2705229A (en) Preparation of octafluorohexatriene
US3453337A (en) Fluorination of halogenated organic compounds
Hauptschein et al. Thermal Syntheses of Telomers of Fluorinated Olefins. II. 1, 1-Difluoroethylene1
US2842603A (en) Preparation of perhalofluoroolefins
Haszeldine et al. 540. Addition of free radicals to unsaturated systems. Part XIV. The direction of radical addition to trifluoroethylene
US3312746A (en) Preparation of fluorochlorobenzenes
US2724004A (en) Preparation of 1, 1-difluoro-1, 2, 2-trichloroethane
US3377390A (en) Iodoperfluoroalkane fluorides and their use to promote telomerization of iodoperfluoroalkanes with olefins
US2399024A (en) Process for obtaining 1,2-dichloro-1,1-difluoroethane
US2546997A (en) Perfluoro carbon compounds
US2894042A (en) Preparation of hexafluorobutadiene
US2404706A (en) Fluorination
USRE23425E (en) Polyfluorinated compounds