US2998231A - Accelerating pump - Google Patents

Accelerating pump Download PDF

Info

Publication number
US2998231A
US2998231A US41309A US4130960A US2998231A US 2998231 A US2998231 A US 2998231A US 41309 A US41309 A US 41309A US 4130960 A US4130960 A US 4130960A US 2998231 A US2998231 A US 2998231A
Authority
US
United States
Prior art keywords
conduit
fuel
nozzle
chamber
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US41309A
Inventor
Frederick J Marsee
Stanley H Benmore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holley Performance Products Inc
Original Assignee
Holley Carburetor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holley Carburetor Co filed Critical Holley Carburetor Co
Priority to US41309A priority Critical patent/US2998231A/en
Application granted granted Critical
Publication of US2998231A publication Critical patent/US2998231A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/43Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel
    • F02M2700/4302Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air and fuel are sucked into the mixture conduit
    • F02M2700/4335Transport devices
    • F02M2700/4338Acceleration pumps

Definitions

  • This invention relates generally to pumps, and more specifically to accelerating pumps used in earburetors for internal combustion engines.
  • the air ow through the carburetor responds almost immediately to the increased throttle opening; however, the fuel, which is heavier than air, lags a substantial amount behind the increased air flow, thereby causing a leaningout of the fuel-air ratio.
  • the accelerating pump is designed to correct this condition by supplying liquid fuel until the other fuel metering systems once again are providing the proper mixture.
  • thermostatically controlled means for removing vapor from within the accelerating pump system More specifically, it is an object of this invention to provide thermostatically controlled means for removing vapor from within the accelerating pump system.
  • FIGURE l is a side elevational View, with portions thereof cut away and in coss-section,y of a carburetor embodying the invention
  • FIGURE 2 is a perspective View of the carburetor shown by FIGURE l, with portions thereof c-ut away and in cross-section and having the fuel bowl removed, with the exception of the accelerating pump and associated linkage; f
  • FIGURE 3 is an enlarged View ofthe accelerating pump nozzle in cross-section, taken on a plane substantially through the center of the carburetor body and pump nozzle;
  • FIGURE 4 is a top plan view of the pump nozzle shown by FIGURE 3;
  • FIGURE 5 is an enlarged cross-sectional View of a modification of the invention, taken o-n the plane of line 5-5 of FIGURE 6 and looking in the direction of the arrows;
  • FIGURE 6 is ⁇ a fragmentary cross-sectional view, taken on the plane of line 6 6 of FIGURE 5 and looking in the direction of the arrows;
  • FIGURE 7 is a graphical representation of the performance of one of the modifications of the invention.
  • FIG- URE l illustrates a carburetor 10 having a body 12 with an induction passage 14 extending therethrough.
  • the carburetor is provided with the usual choke valve 16 controlling the entrance of the air intake 18 and throttle Patent Z valve 20 controlling the fiow of combustible mixture to the engine intake manifold 22.
  • a main fuel system is defined by metering restriction 24, conduits 26 and 28 and nozzle 30, which discharges as required within the induction passage 14.
  • An idle system having a minimum idle and a transfer portion is schematically comprised of restriction 32, conduits 34 and 36 and ports 38 and slot I40, which discharge selectively below the throttle valve 20.
  • a fuel bowl 42 defining a chamber 44 and having an inlet 46, is secured as by screws 4S to the body 12 -in a manner to supply all of the fuel systems with a source of fuel.
  • An accelerating pump 50 is attached to the bottom of the fuel bowl and is adapted to be actuated by levers S2 and 9S.
  • FIGURE 2 illustrates the pump 50 as being comprised of a reinforced diaphragm 54 secured to the bottom of the ⁇ fuel bowl by a member 56, thereby creating a chamber 58.
  • the chamber 58 communicates with chamber 44 of the fuel bowl 42 by means of a passage 59 having a gravity actuated ball check valve 60.
  • Chamber 5S also communicates with the pump nozzle assembly 62 by means of conduits 64, 66, 68 and 70.
  • a screw 72 and housing 74 cooperatively defining a chamber 76 constitute the basic nozzle assembly.
  • Nozzles 78 which may either be formed as part of housing 74 or secured thereto, communicate with chamber 76 and are directed towards the induction passage 14.
  • the screw 72 is threadably received by the body 12 and a passage 80 formed in screw 72, is provided as a means of communication between chamber 76 and conduit 70.
  • a seat 82 is provided within conduit 70, and a ball 84 and weight 86 are placed between the seat and chamber 76.
  • a calibrated passage 94 communicates between chamber 76 and conduit 88, while a second con'- duit 96, having a restriction 102, communicates at times between chamber and a source of engine vacuum.
  • a thermostatically controlled valve 104 suitably secured to insert 92, controls the ⁇ amount of flow from chamber 90 to conduit 96. As the temperature increases, the flow is corerspondingly increased.
  • the valve "104 is comprised of a metering portion 106 connected at one end to a bimetallic element 108 which is in turn secured as by rivet 110 to insert 92 at its other end.
  • FIGURES 5 and 6 are modifications of the invention. All elements which are like or similar to those of FIG- 'URES 3 and 4 are identified with like reference numerals. It willbe noticed that nozzles 112 differ from nozzles 78 in that a small restriction 114 is formed in the bottom portion. The housing 116 also differs in that separate conduits 118 and 120 pass about nozzles 112 and restrictions 114 and communicate between the atmosphere and branch conduits 122 and 124 of conduit 126, the latter being in communication with chamber 90.
  • the degree to which portion 106 opens is of course related to and dependent on the temperature of the engine and the carburetor structure.
  • FIGURES and 6 The operation of the modification illustrated in FIGURES and 6 is generally the same as that of the preferred embodiment.
  • air is drawn through conduits ⁇ 118 and 12), thereby causing a decrease of pressure at the trailing surfaces of nozzles 112.
  • the vapors are then drawn through nozzle 112 and restrictions 1114 into conduits 122 and 124 and subsequently to the engine intake manifold by -way of conduit 126.
  • a carburetor for an internal combustion engine having an induction passage with a throttle valve controlling the iiow of combustible mixtures therethrough, an acceleration fuel system', a nozzle associated with said system and adapted to discharge liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, said nozzle'extending through said conduit in a manner so as to enclose a portion thereof within said conduit, and a bleed restriction formed within the lower side of said nozzle portion continually cornmunicating between said nozzle and said conduit,
  • a carburetor for an internal combustion engine having a body pontion with an induction passage extending therethrough, a throttle valve controlling the ow of combustible mixture from said induction passage, an acceleration fuel system, a housing secured to sai-d body portion and having a nozzle associated therewith adapted to discharge -liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, and a passageway formed between said housing and said body portion communicating between said conduit means and said acceleration fuel system.
  • a carburetor for an internal combustion engine having a body portion rwith an induction passage extending therethrough, a throttle valve controlling the liow of combustible mixture from said induction passage, an acceleration fuel system, a housing secured to said body portion and having a nozzle associated therewith adapted to discharge liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, and a passageway formed between said housing and said body portion communicating between said conduit means and said acceleration fuel system and adapted to purge said acceleration fuel system of vapors.
  • a throttle valve controlling the flow of combustible mixture from said induction passage, an acceleration fuel system, an acceleration fuel discharge housing secured to said body portion, conduit means formed through said housing and communicating between a source of engine vacuum and air above said throttle valve, a nozzle member extending from said housing for discharging fuel into said induction passage, said nozzle member being of a smaller diameter than said conduit means and so positioned as to pass through said conduit means, and passage means formed on the low pressure side of said nozzle member communicating between said acceleration fuel system and said conduit means for purging said acceleration fuel system of vapors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Description

Aug.l29, 1961 F. J. MARSEE ETAL ACCELERATING PUMP l Amed July v, 1960 3 Sheets-Sheet l INVENTORS ATTORNEY All@ 29, 1961 F. J. MARSEE ET A1.- 2,998,231
ACCELERATING PUMP filed July '7, 1960 s sheets-sheet 2 Aug. 29,v 1961 F. J. MARSEE ETAL 2,998,231
ACCELERTING PUMP l med .July 7, 1960 s sheets-sheer s ATTORNEY v l 2,998,231 ACCELERATING PUMP Frederick J. Marsee, Hazel Park, and Stanley H. Benmore, Dearborn, Mich., assignors to Holley Carburetor Company, Van Dyke, Mich., a lcorporation of Michigan Filed July 7, 1960, Ser. No. 41,309 Claims. (Cl. 261-34) This invention relates generally to pumps, and more specifically to accelerating pumps used in earburetors for internal combustion engines.
When an engine is called upon to accelerate rapidly, the air ow through the carburetor responds almost immediately to the increased throttle opening; however, the fuel, which is heavier than air, lags a substantial amount behind the increased air flow, thereby causing a leaningout of the fuel-air ratio. The accelerating pump is designed to correct this condition by supplying liquid fuel until the other fuel metering systems once again are providing the proper mixture.
The performance of accelerating pumps, in general, has been seriously impaired by the fuel vapors trapped within the accelerating pump system. The presence of these vapors is attributed to those situations where an excessive amount of heat is created within the engine compartment, whether by a hot shut-down or prolonged idling of the engine. When vapor is trapped in the system, it displaces the volume therein which liquidfuel would normally occupy and therefore, when the accelerating pump is called upon for additional fuel,l none will be supplied because of the absence of liquid fuel.
Accordingly, it isY an object of this invention to provide means for removing any vapor within the accelerating pump system. Y
More specifically, it is an object of this invention to provide thermostatically controlled means for removing vapor from within the accelerating pump system.
Other objects and advantages will become apparent when reference is made to 4the following specification and illustration wherein:
FIGURE l is a side elevational View, with portions thereof cut away and in coss-section,y of a carburetor embodying the invention;
FIGURE 2 is a perspective View of the carburetor shown by FIGURE l, with portions thereof c-ut away and in cross-section and having the fuel bowl removed, with the exception of the accelerating pump and associated linkage; f
FIGURE 3 is an enlarged View ofthe accelerating pump nozzle in cross-section, taken on a plane substantially through the center of the carburetor body and pump nozzle;
FIGURE 4 is a top plan view of the pump nozzle shown by FIGURE 3;
FIGURE 5 is an enlarged cross-sectional View of a modification of the invention, taken o-n the plane of line 5-5 of FIGURE 6 and looking in the direction of the arrows;
FIGURE 6 is `a fragmentary cross-sectional view, taken on the plane of line 6 6 of FIGURE 5 and looking in the direction of the arrows;
FIGURE 7 is a graphical representation of the performance of one of the modifications of the invention.
Referring now in greater detail to the drawings, FIG- URE l illustrates a carburetor 10 having a body 12 with an induction passage 14 extending therethrough. The carburetor is provided with the usual choke valve 16 controlling the entrance of the air intake 18 and throttle Patent Z valve 20 controlling the fiow of combustible mixture to the engine intake manifold 22.
A main fuel system is defined by metering restriction 24, conduits 26 and 28 and nozzle 30, which discharges as required within the induction passage 14. An idle system having a minimum idle and a transfer portion is schematically comprised of restriction 32, conduits 34 and 36 and ports 38 and slot I40, which discharge selectively below the throttle valve 20. A fuel bowl 42, defining a chamber 44 and having an inlet 46, is secured as by screws 4S to the body 12 -in a manner to supply all of the fuel systems with a source of fuel. An accelerating pump 50 is attached to the bottom of the fuel bowl and is adapted to be actuated by levers S2 and 9S.
FIGURE 2 illustrates the pump 50 as being comprised of a reinforced diaphragm 54 secured to the bottom of the `fuel bowl by a member 56, thereby creating a chamber 58. The chamber 58 communicates with chamber 44 of the fuel bowl 42 by means of a passage 59 having a gravity actuated ball check valve 60. Chamber 5S also communicates with the pump nozzle assembly 62 by means of conduits 64, 66, 68 and 70.
A screw 72 and housing 74 cooperatively defining a chamber 76 constitute the basic nozzle assembly. Nozzles 78, which may either be formed as part of housing 74 or secured thereto, communicate with chamber 76 and are directed towards the induction passage 14. The screw 72 is threadably received by the body 12 and a passage 80 formed in screw 72, is provided as a means of communication between chamber 76 and conduit 70. A seat 82 is provided within conduit 70, and a ball 84 and weight 86 are placed between the seat and chamber 76.
A separate conduit S8 formed in body 12 and housing 74 communicates between the atmosphere and chamber 90, which is substantially formed by body 12 and an insert 92. A calibrated passage 94 communicates between chamber 76 and conduit 88, while a second con'- duit 96, having a restriction 102, communicates at times between chamber and a source of engine vacuum.
A thermostatically controlled valve 104, suitably secured to insert 92, controls the `amount of flow from chamber 90 to conduit 96. As the temperature increases, the flow is corerspondingly increased. The valve "104 is comprised of a metering portion 106 connected at one end to a bimetallic element 108 which is in turn secured as by rivet 110 to insert 92 at its other end.
FIGURES 5 and 6 are modifications of the invention. All elements which are like or similar to those of FIG- 'URES 3 and 4 are identified with like reference numerals. It willbe noticed that nozzles 112 differ from nozzles 78 in that a small restriction 114 is formed in the bottom portion. The housing 116 also differs in that separate conduits 118 and 120 pass about nozzles 112 and restrictions 114 and communicate between the atmosphere and branch conduits 122 and 124 of conduit 126, the latter being in communication with chamber 90.
Operation The general operation of the accelerating pump is briefly as follows: When the throttle 20 is opened, the pump linkages 52 and 98 force the pump diaphragm 54 upwards. forces the pump inlet ball check valve 60 closed, thereby preventing fuel from flowing back into the chamber 44. The fuel Within chamber 58 then flows through conduits 64, 66, 68 and to conduit 70 where it causes the ball 84 and weight 86 to raise, thereby discharging the fuel from chamber 76 through nozzle 78 into the induction passage 14.
As the throttle is moved toward the closed position, the linkages 52 and 98 return to their normal positions and the diaphragm 54 is forced downwardly by spring As the diaphragm moves up, the pressureV 100. As the diaphragm returns to its original position, the pump inlet ball check valve 60 is opened and the chamber S8 is lled with fuel from the fuel bowl.
The specific improvement contemplated by the invention will be more readily appreciated if it is first assumed that lthe engine has been started after a period of hot shut down. At this time, bimetal 108 will have moved the metering portion 1016 some distance away from conduit 96, thereby allowing engine vacuum into conduit 88 and causing air ow therethrough. As the air passes by calibrated passage 94, the vapors existing within the accelerating pump system are `drawn off into conduit 88 and subsequently into the engine intake manifold.
The degree to which portion 106 opens is of course related to and dependent on the temperature of the engine and the carburetor structure.
The operation of the modification illustrated in FIGURES and 6 is generally the same as that of the preferred embodiment. When the engine is started, air is drawn through conduits `118 and 12), thereby causing a decrease of pressure at the trailing surfaces of nozzles 112. The vapors are then drawn through nozzle 112 and restrictions 1114 into conduits 122 and 124 and subsequently to the engine intake manifold by -way of conduit 126.
It should be noted that the restrictions 114 and 94 could be so determined so as to have a critical ow point. If this was ydone then it would be possible to have the air iioW through conduit 88 or 126 increase steadily as temperature increased and yet have a maximum flow through restrictions 94 or 114, regardless of the ow through conduit 88 or 126. Figure 7 illustrates this possibility graphically.
Although but two embodiments of the invention have been disclosed and described, it is of course obvious that other modifications are possible without exceeding the scope of the appended claims.
What we claim as our invention is:
1. In'a carburetor for an internal combustion engine having an induction passage with a throttle Valve controlling the flow of combustible mixtures therethrough, an acceleration fuel system, a nozzle associated with said system and adapted vto discharge liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, said nozzle extending through said conduit in a manner so as to enclose a portion thereof within said conduit, and a passageway formed within said nozzle portion continually communicating between said nozzle and said conduit.
2. 'In a carburetor for an internal combustion engine having an induction passage with a throttle valve controlling the iiow of combustible mixtures therethrough, an acceleration fuel system', a nozzle associated with said system and adapted to discharge liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, said nozzle'extending through said conduit in a manner so as to enclose a portion thereof within said conduit, and a bleed restriction formed within the lower side of said nozzle portion continually cornmunicating between said nozzle and said conduit,
3. In a carburetor for an internal combustion engine having a body pontion with an induction passage extending therethrough, a throttle valve controlling the ow of combustible mixture from said induction passage, an acceleration fuel system, a housing secured to sai-d body portion and having a nozzle associated therewith adapted to discharge -liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, and a passageway formed between said housing and said body portion communicating between said conduit means and said acceleration fuel system.
4. In a carburetor for an internal combustion engine having a body portion rwith an induction passage extending therethrough, a throttle valve controlling the liow of combustible mixture from said induction passage, an acceleration fuel system, a housing secured to said body portion and having a nozzle associated therewith adapted to discharge liquid fuel into said induction passage as required, conduit means communicating between a source of engine vacuum and air above said throttle valve, and a passageway formed between said housing and said body portion communicating between said conduit means and said acceleration fuel system and adapted to purge said acceleration fuel system of vapors.
5. In a carburetor for an internal combustion engine having a body portion with an induction passage extending therethrough, a throttle valve controlling the flow of combustible mixture from said induction passage, an acceleration fuel system, an acceleration fuel discharge housing secured to said body portion, conduit means formed through said housing and communicating between a source of engine vacuum and air above said throttle valve, a nozzle member extending from said housing for discharging fuel into said induction passage, said nozzle member being of a smaller diameter than said conduit means and so positioned as to pass through said conduit means, and passage means formed on the low pressure side of said nozzle member communicating between said acceleration fuel system and said conduit means for purging said acceleration fuel system of vapors.
Smitley Mar. 24, 1959 Eiclnnann Nov. 24, 1959
US41309A 1960-07-07 1960-07-07 Accelerating pump Expired - Lifetime US2998231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US41309A US2998231A (en) 1960-07-07 1960-07-07 Accelerating pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41309A US2998231A (en) 1960-07-07 1960-07-07 Accelerating pump

Publications (1)

Publication Number Publication Date
US2998231A true US2998231A (en) 1961-08-29

Family

ID=21915857

Family Applications (1)

Application Number Title Priority Date Filing Date
US41309A Expired - Lifetime US2998231A (en) 1960-07-07 1960-07-07 Accelerating pump

Country Status (1)

Country Link
US (1) US2998231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243168A (en) * 1965-05-17 1966-03-29 Holley Carburetor Co Carburetor choke system
US4105719A (en) * 1976-11-12 1978-08-08 Toyota Jidosha Kogyo Kabushiki Kaisha Carburetor with auxiliary accelerator-pump system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2879048A (en) * 1956-09-24 1959-03-24 Holley Carburetor Co Accelerating pump vent
US2914307A (en) * 1955-09-29 1959-11-24 Acf Ind Inc Carburetor construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914307A (en) * 1955-09-29 1959-11-24 Acf Ind Inc Carburetor construction
US2879048A (en) * 1956-09-24 1959-03-24 Holley Carburetor Co Accelerating pump vent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243168A (en) * 1965-05-17 1966-03-29 Holley Carburetor Co Carburetor choke system
US4105719A (en) * 1976-11-12 1978-08-08 Toyota Jidosha Kogyo Kabushiki Kaisha Carburetor with auxiliary accelerator-pump system

Similar Documents

Publication Publication Date Title
US2224472A (en) Pressure fed carburetor
US2996051A (en) Carburetor
US3059909A (en) Thermostatic fuel mixture control
US3011770A (en) Altitude compensated carburetor
US2675792A (en) Thermostatic choke system
US3077341A (en) Carburetor
US3885545A (en) Carburetor cold enrichment device
US2905455A (en) Fuel supply
US2446339A (en) Speed density carburetor
US3017167A (en) Accelerating pump channel vapor purging system
US3473523A (en) Fuel injection system
US2195867A (en) Carburetor
US2998231A (en) Accelerating pump
US3001774A (en) Carburetor
US2860616A (en) Atmospheric nozzle control
US2915053A (en) Fuel injection system
US2649290A (en) Carburetor
US2860617A (en) Enrichment device for fuel injection system
US2447791A (en) Carburetor
US2396031A (en) Pressure carburetor
US2843098A (en) Charge forming means
US2460528A (en) Carburetor
US2596429A (en) Automotive pressure carburetor
US2552056A (en) Carburetor priming means
US2417734A (en) Carburetor