US2957424A - Centrifugal pump - Google Patents

Centrifugal pump Download PDF

Info

Publication number
US2957424A
US2957424A US774982A US77498258A US2957424A US 2957424 A US2957424 A US 2957424A US 774982 A US774982 A US 774982A US 77498258 A US77498258 A US 77498258A US 2957424 A US2957424 A US 2957424A
Authority
US
United States
Prior art keywords
shroud
pump
pressure
hub
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US774982A
Inventor
Phillip J Brundage
Jr Albert J Sobey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US774982A priority Critical patent/US2957424A/en
Application granted granted Critical
Publication of US2957424A publication Critical patent/US2957424A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/0038Varying behaviour or the very pump by varying the effective cross-sectional area of flow through the rotor

Definitions

  • the present invention relates to'an improved type of variable capacity centrifugal pump. More specifically this invention relates to an impeller type pump of the axial inflow-radial outflow type in which pump capacity is varied by varying the impeller inlet cross section.
  • the subject pump includes a multi-part impeller including a rotatable hub member and a shroud member having impeller blades formed thereon. Additionally, the shroud member is adapted to coact with the hub member to form an annular fluid inlet-outlet passage the cross section of which may be varied by moving the shroud relative to the hub. .
  • the shroud and hub are mounted within a casing member and the shroud coacts therewith to provide a pump outlet pressure. a The pump outlet pressure acts on the movable shroud to move the latter in a direction tending to decrease the cross section of the inlet as said pump pressure increases.
  • a servo valve. device for controlling the bleed of'the high pressure fluid from the servo to control the axialmovement of the shroud relative to the hub and accordingly the cross section of the pump inlet.
  • Figure 1 is a sectional view of the subject pump
  • Figure 2 is a view along line 2-2 of Figure 1.
  • a variable capacity pump is indicated generally at 10 and includes a pair of casing members 12 and 14. Casings 12 and 14 coact to define an annular chamber 16 from whence fluid under pressure is adapted to be discharged through an outlet 18. Casing 12 includes a fluid inlet passage 20.
  • a pump impeller is indicated generally at 22 and includes hub portion 24 rotatably supported on bearing members 26 within casing 14 and an adjustable shroud portion 28 fixed for rotation with the hub.
  • Hub 24 includes an input shaft 30 formed integrally therewith and extending exteriorly of casing 14 to be driven by any suitable driving means.
  • a collar 32 is threadably mounted on shaft 30 and abuttingly engages outer bearing 26 to prevent leftward movement of hub 24 as viewed in Figure 1.
  • An annular spiral seal 34 is formed on casing 14 proximate face 36 of hub 24 and coacts therewith to keep chamber 38 at low pressure and thus reduces leakage through bearings 26.
  • Shroud 28 is mounted for axial movement relative to casing 12 and hub 24.
  • Shroud 28 has impeller blades 40 formed integrally therewith and which blades are and servo chamber adapted to receive.
  • Shroud 28 coacts with rotor hub 24 to define a flow passage having an axial inlet 44 and a radial outlet 46. As the impeller is rotated, fluid will bedrawn in through inlet passage 20, pressurized by the rotation of impellers 40 and discharged through outlet 18.
  • the outer peripheral portion 48 of shroud 28 coacts with casing 12 to provide a high leakage rate seal.
  • the smaller diameter peripheral surface 50 of the shroud coacts with a corresponding surface of casing 12 to provide a low leakage rate seal.
  • Casing 12 and shroud 28 coact to define a servo chamber 56 which is in communication with the pump output pressure chamber 16 through the high leakage rate seal surface 48. Since the pressurized chamber 56 is charged from the highest pressure area in the pump, the mean effective pressure within the chamber acting on the left or back side 58 of the shroud ring is greater than the mean effective pressure acting on the opposite side and the shroud ring would tend to be forced to its extreme right position to restrict the output capacity of the pump. However, the actual axial position of the shroud ring is controlled by bleeding a portion of the pressure within chamber 56 through the low leakage rate seal 50 and the balance through a servo control mechanism indicated generally at 60.
  • Servo control mechanism 60 includes a cylinder 62 formed in casing 12 and communicating through a passage 64 with servo chamber 56.
  • a servo control valve member 66 is slidably disposed within cylinder 62 and includes a port 68 in communication with the high pressure passage 64 and an elongated port 70 in communication with the fluid inlet passage 20 through a casing port 72.
  • a piston member 74 is slidably disposed within valve member 66 and includes a stem 76 extending through an opening 78 in the end wall of cylinder 62 to engage with an annular rim 80 formed on face 58 of shroud ring 28.
  • a spring member 82 is disposed between servo valve member 66 and piston 74 to maintain the latter in engagement with shroud rim 80.
  • longitudinal passages 84 and 86 are respectively formed therethrough equalizing the pressure forces acting on the opposite faces thereof.
  • the operation of the pump is as follows: as the pressure builds up within servo chamber 56 there is a tendency for shroud ring 28 to move to the right or output decreasing direction. As such movement occurs, shroud rim 80 tends to move away from piston stem 76. However, spring 82 maintains the piston stem in engagement with the rim. In so doing, however, piston 74 uncovers port 68 in the servo valve member 66 and thereby bleeding high pressure fluid to the inlet or low pressure side of the pump. In this manner the pressure in chamber 56 will be diminished sufficiently to maintain shroud 28 in an essentially constant position relative to hub 24.
  • servo valve member 66 is moved to the left to increase the bleed opening between piston 74 and port 68 whereby the pressure within servo chamber 56 will be diminished.
  • the pressure drop within chamber 56 results in a pressure differential across shroud ring 28 causing the latter to be moved to the left increasing the pump inlet area and, in turn, the pump output capacity.
  • the servo valve member 66 is moved to the right blocking bleed port 68 and increasing the pressure within servo chamber 56 sufiiciently to move the shroud ring to the right to reduce the flow capacity of passage 44-46.
  • piston 74 will again uncover bleed port 68.
  • Piston 74 cooperating with servo valve member port 68 thus provides a sel -centering or follow-up control to limit movement of the shroud ring. In other words, once the position of servo valve member 66 is set the position of shroud ring 28 remains substantially constant.
  • control of servo valve member 66 may occur manually or automatically through any suitable control mechanism operatively connected to valve stem 88.
  • a variable capacity centrifugal pump comprising easing means having an axial inlet and a radial outlet, a hub member rotatably supported within said casing means, a shroud member mounted for rotation with said hub member and axially movable relative thereto, said shroud member having vanes formed thereon, said shroud and said hub coacting to define a fluid flow passage having an inlet and an outlet respectively communicating with said casing inlet and outlet, said shroud and said casing means coacting to define a servo chamber, said shroud member coacting with said casing means to provide a seal through which the pump discharge pressure may be communicated with said servo chamber, said shroud member also coacting with said casing means to provide a second seal through which said chamber is communicated with the inlet side of said pum the pressure within said servo chamber tending to move said shroud member toward said hub member to decrease the cross sectional area of said pump fluid flow passage, and a servo valve control mechanism adapted to bleed
  • a variable capacity centrifugal pump of the type set forth in claim 1 in which said hub includes a plurality of axially extending grooves corresponding in number and shape to said shroud vanes, said vanes being slidably supported within said grooves for axial movement relative thereto.
  • a variable capacity centrifugal pump as set forth in c aim 3 in which said valve device includes a cylinder communicating with said passage means, a valve element slidably disposed within said cylinder, first and second ports in said valve element respectively adapted to communicate with said passage means and said pump inlet, and a piston member slidably disposed within said valve element, said member adapted to coact with said element to control the pressure bleed through said first port, said piston member being movable with said shroud member.
  • a variable capacity centrifugal pump as set forth in claim 4 in which said piston includes a stem extending through said cylinder to engage said shroud.
  • a variable capacity centrifugal pump as set forth in claim 5 in which said shroud includes an annular rim disposed within said servo chamber in axial alignment with the piston stem, and a spring element biasing said stem into engagement with said rim.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Oct. 25, 1960 J, BRUNDAGE ETAL 2,957,424
CENTRIFUGAL PUMP Filed Nov. 19, 1958 IN VEN TORS J3 4 /202 azh/Tfod j ATTORNEY United States Patent 2,957,424 CENTRIFUGAL PUMP Filed Nov. 19, 1958, Ser. No. 774,982 6 Claims. (Cl. 103-97) The present invention relates to'an improved type of variable capacity centrifugal pump. More specifically this invention relates to an impeller type pump of the axial inflow-radial outflow type in which pump capacity is varied by varying the impeller inlet cross section.
.The subject pump includes a multi-part impeller including a rotatable hub member and a shroud member having impeller blades formed thereon. Additionally, the shroud member is adapted to coact with the hub member to form an annular fluid inlet-outlet passage the cross section of which may be varied by moving the shroud relative to the hub. .The shroud and hub are mounted within a casing member and the shroud coacts therewith to provide a pump outlet pressure. a The pump outlet pressure acts on the movable shroud to move the latter in a direction tending to decrease the cross section of the inlet as said pump pressure increases.
A servo valve. device is provided for controlling the bleed of'the high pressure fluid from the servo to control the axialmovement of the shroud relative to the hub and accordingly the cross section of the pump inlet. By reducing the rate of bleed from the servo the pump pressure will build up and reduce the pump inlet cross section and similarly reduce the pump output. On the other hand, increasing the rate of bleed from the servo will cause the pump discharge pressure to move the shroud to increase the pump inlet opening and thereby increase the pump capacity. 6 v
f The details as well as other objects and advantages of the present invention will be apparent from a perusual of the detailed description which follows.
In the drawings:
Figure 1 is a sectional view of the subject pump;
Figure 2 is a view along line 2-2 of Figure 1.
A variable capacity pump is indicated generally at 10 and includes a pair of casing members 12 and 14. Casings 12 and 14 coact to define an annular chamber 16 from whence fluid under pressure is adapted to be discharged through an outlet 18. Casing 12 includes a fluid inlet passage 20.
A pump impeller is indicated generally at 22 and includes hub portion 24 rotatably supported on bearing members 26 within casing 14 and an adjustable shroud portion 28 fixed for rotation with the hub. Hub 24 includes an input shaft 30 formed integrally therewith and extending exteriorly of casing 14 to be driven by any suitable driving means. A collar 32 is threadably mounted on shaft 30 and abuttingly engages outer bearing 26 to prevent leftward movement of hub 24 as viewed in Figure 1. An annular spiral seal 34 is formed on casing 14 proximate face 36 of hub 24 and coacts therewith to keep chamber 38 at low pressure and thus reduces leakage through bearings 26.
Shroud 28 is mounted for axial movement relative to casing 12 and hub 24. Shroud 28 has impeller blades 40 formed integrally therewith and which blades are and servo chamber adapted to receive.
2,957,424 Patented Oct- 25, 19 60 "ice adapted to extend within corresponding grooves or slots 42 formed within rotor hub 24.
Shroud 28 coacts with rotor hub 24 to define a flow passage having an axial inlet 44 and a radial outlet 46. As the impeller is rotated, fluid will bedrawn in through inlet passage 20, pressurized by the rotation of impellers 40 and discharged through outlet 18.
The outer peripheral portion 48 of shroud 28 coacts with casing 12 to provide a high leakage rate seal. The smaller diameter peripheral surface 50 of the shroud coacts with a corresponding surface of casing 12 to provide a low leakage rate seal.
Before describing the means whereby the axial movement of shroud 28 relative to hub 24 is achieved, it is well to note that as the shroud is moved toward the hub the cross sectional area of inlet 44 is decreased thereby decreasing the output capacity of the pump. Conversely, as the shroud is moved away from the hub the increased cross section of flow passage 4446 increases the pump output capacity. Thus it is the axial movement of the shroud that determines the pump output capacity.
Casing 12 and shroud 28 coact to define a servo chamber 56 which is in communication with the pump output pressure chamber 16 through the high leakage rate seal surface 48. Since the pressurized chamber 56 is charged from the highest pressure area in the pump, the mean effective pressure within the chamber acting on the left or back side 58 of the shroud ring is greater than the mean effective pressure acting on the opposite side and the shroud ring would tend to be forced to its extreme right position to restrict the output capacity of the pump. However, the actual axial position of the shroud ring is controlled by bleeding a portion of the pressure within chamber 56 through the low leakage rate seal 50 and the balance through a servo control mechanism indicated generally at 60.
Servo control mechanism 60 includes a cylinder 62 formed in casing 12 and communicating through a passage 64 with servo chamber 56. A servo control valve member 66 is slidably disposed within cylinder 62 and includes a port 68 in communication with the high pressure passage 64 and an elongated port 70 in communication with the fluid inlet passage 20 through a casing port 72. Further. a piston member 74 is slidably disposed within valve member 66 and includes a stem 76 extending through an opening 78 in the end wall of cylinder 62 to engage with an annular rim 80 formed on face 58 of shroud ring 28. A spring member 82 is disposed between servo valve member 66 and piston 74 to maintain the latter in engagement with shroud rim 80.
In order that piston 74 and valve member 66 are not responsive to fluid pressure acting thereon longitudinal passages 84 and 86 are respectively formed therethrough equalizing the pressure forces acting on the opposite faces thereof.
The operation of the pump is as follows: as the pressure builds up within servo chamber 56 there is a tendency for shroud ring 28 to move to the right or output decreasing direction. As such movement occurs, shroud rim 80 tends to move away from piston stem 76. However, spring 82 maintains the piston stem in engagement with the rim. In so doing, however, piston 74 uncovers port 68 in the servo valve member 66 and thereby bleeding high pressure fluid to the inlet or low pressure side of the pump. In this manner the pressure in chamber 56 will be diminished sufficiently to maintain shroud 28 in an essentially constant position relative to hub 24. In the event it is desired to increase the pump output capacity, servo valve member 66 is moved to the left to increase the bleed opening between piston 74 and port 68 whereby the pressure within servo chamber 56 will be diminished. The pressure drop within chamber 56 results in a pressure differential across shroud ring 28 causing the latter to be moved to the left increasing the pump inlet area and, in turn, the pump output capacity.
correspondingly to decrease the pump capacity, the servo valve member 66 is moved to the right blocking bleed port 68 and increasing the pressure within servo chamber 56 sufiiciently to move the shroud ring to the right to reduce the flow capacity of passage 44-46. After shroud 28 has moved to the right a predetermined amount, piston 74 will again uncover bleed port 68. Piston 74 cooperating with servo valve member port 68 thus provides a sel -centering or follow-up control to limit movement of the shroud ring. In other words, once the position of servo valve member 66 is set the position of shroud ring 28 remains substantially constant. This type of operation is best appreciated by considering the shroud ring with the servo control elements in the position as shown in Figure 1. Thus, with the valve member 66 set as shown, any increase in servo chamber pressure will tend to move shroud ring 28 to the right at which time bleed port 68 will be uncovered reducing the pressure in chamber 56 sufliciently to limit movement of the shroud ring.
Depending on the environment in which the subject pump is intended for use, control of servo valve member 66 may occur manually or automatically through any suitable control mechanism operatively connected to valve stem 88.
We claim:
1. A variable capacity centrifugal pump comprising easing means having an axial inlet and a radial outlet, a hub member rotatably supported within said casing means, a shroud member mounted for rotation with said hub member and axially movable relative thereto, said shroud member having vanes formed thereon, said shroud and said hub coacting to define a fluid flow passage having an inlet and an outlet respectively communicating with said casing inlet and outlet, said shroud and said casing means coacting to define a servo chamber, said shroud member coacting with said casing means to provide a seal through which the pump discharge pressure may be communicated with said servo chamber, said shroud member also coacting with said casing means to provide a second seal through which said chamber is communicated with the inlet side of said pum the pressure within said servo chamber tending to move said shroud member toward said hub member to decrease the cross sectional area of said pump fluid flow passage, and a servo valve control mechanism adapted to bleed the pressure within said servo chamber to the inlet side of said pump to control the axial position of said shroud relative to said hub.
2. A variable capacity centrifugal pump of the type set forth in claim 1 in which said hub includes a plurality of axially extending grooves corresponding in number and shape to said shroud vanes, said vanes being slidably supported within said grooves for axial movement relative thereto.
3. A variable capacity centrifugal pump as set forth in claim 1 in which the servo valve control mechanism includes passage means communicating the servo chamber with the pump inlet and a valve device in said passage means for bleeding pressure from the chamber to the inlet side of the pump and thereby controlling the axial position of said shroud.
4. A variable capacity centrifugal pump as set forth in c aim 3 in which said valve device includes a cylinder communicating with said passage means, a valve element slidably disposed within said cylinder, first and second ports in said valve element respectively adapted to communicate with said passage means and said pump inlet, and a piston member slidably disposed within said valve element, said member adapted to coact with said element to control the pressure bleed through said first port, said piston member being movable with said shroud member.
5. A variable capacity centrifugal pump as set forth in claim 4 in which said piston includes a stem extending through said cylinder to engage said shroud.
6. A variable capacity centrifugal pump as set forth in claim 5 in which said shroud includes an annular rim disposed within said servo chamber in axial alignment with the piston stem, and a spring element biasing said stem into engagement with said rim.
References Cited in the file of this patent UNITED STATES PATENTS
US774982A 1958-11-19 1958-11-19 Centrifugal pump Expired - Lifetime US2957424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US774982A US2957424A (en) 1958-11-19 1958-11-19 Centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US774982A US2957424A (en) 1958-11-19 1958-11-19 Centrifugal pump

Publications (1)

Publication Number Publication Date
US2957424A true US2957424A (en) 1960-10-25

Family

ID=25102935

Family Applications (1)

Application Number Title Priority Date Filing Date
US774982A Expired - Lifetime US2957424A (en) 1958-11-19 1958-11-19 Centrifugal pump

Country Status (1)

Country Link
US (1) US2957424A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160112A (en) * 1958-07-31 1964-12-08 Westinghouse Electric Corp Check valve and application thereof
US3204863A (en) * 1961-05-13 1965-09-07 Hausammann Werner Compressor
US3399626A (en) * 1966-08-23 1968-09-03 Lucas Industries Ltd Liquid displacement pumps
US3399625A (en) * 1966-08-23 1968-09-03 Lucas Industries Ltd Liquid displacement pumps
US3482523A (en) * 1968-03-06 1969-12-09 Crane Co Centrifugal pump with flow control by pressure feedback
US3516758A (en) * 1968-06-04 1970-06-23 Lucas Industries Ltd Liquid displacement pumps
US4219305A (en) * 1978-12-26 1980-08-26 Carrier Corporation Diffuser control
US4257733A (en) * 1978-12-26 1981-03-24 Carrier Corporation Diffuser control
US4445815A (en) * 1980-06-09 1984-05-01 United Technologies Corporation Temperature regulation of air cycle refrigeration systems
US4657481A (en) * 1984-05-15 1987-04-14 Kongsberg Vapenfabrikk Insertably adjustable and angularly adjustable inlet guide vane apparatus for a compressor
DE3732038A1 (en) * 1986-09-30 1988-04-07 Mitsubishi Motors Corp PUMP
US4752183A (en) * 1986-03-31 1988-06-21 Aisin Seiki Kabushiki Kaisha Water pump
US4828454A (en) * 1986-06-06 1989-05-09 The United States Of America As Represented By The Secretary Of The Navy Variable capacity centrifugal pump
US4828455A (en) * 1982-12-21 1989-05-09 Aisin Seiki Kabushiki Kaisha Temperature responsive blade shroud-disk for thermostatic water pump
US5211530A (en) * 1992-04-20 1993-05-18 The United States Of America As Represented By The Secretary Of The Navy Variable breadth impeller that provides a specific shutoff head
US5522697A (en) * 1993-11-19 1996-06-04 Holset Engineering Company, Ltd. Load reducing variable geometry turbine
US5941684A (en) * 1997-06-10 1999-08-24 Holset Engineering Company Ltd. Variable geometry turbine
US6419450B1 (en) * 2001-05-21 2002-07-16 Grundfos Pumps Manufacturing Corporation Variable width pump impeller
DE10247424A1 (en) * 2002-10-11 2004-04-22 Daimlerchrysler Ag Adjustable vane wheel for pump has induction channel directly in front of it able to be closed and/or throttled by blocking device
US20070227603A1 (en) * 2003-12-10 2007-10-04 Jean-Luc Perrin Variable Nozzle Device for a Turbocharger
US20090049834A1 (en) * 2007-08-21 2009-02-26 Emmanuel Bouvier Turbocharger with sliding piston assembly
EP2392828A3 (en) * 2010-06-07 2013-01-23 Schaeffler Technologies AG & Co. KG Seal for a controllable coolant pump
DE102014013224B3 (en) * 2014-09-05 2015-07-30 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt control device
EP3597925A1 (en) * 2018-07-16 2020-01-22 Airtex Products, S.A. Adjustable coolant pump
US11459958B2 (en) * 2019-03-22 2022-10-04 Pratt & Whitney Canada Corp. Rotodynamic pump having a body defining a body cavity with a first and second housing portion defining a portion of an impeller cavity and disposed within the body cavity wherein the body cavity extends at least in part around the second housing portion and the housing portions defining an impeller clearance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US916427A (en) * 1908-11-21 1909-03-30 Harry A Fee Turbine pump or blower.
FR587131A (en) * 1923-11-01 1925-04-11 Improvements to the regulating devices for vaned wheels
US1837887A (en) * 1929-06-20 1931-12-22 Schmidt Paul Device for regulating the output of centrifugal pumps
GB551218A (en) * 1941-09-08 1943-02-12 Blackburn Aircraft Ltd Improvements in superchargers for internal combustion engines, and like blowers
US2358744A (en) * 1943-09-06 1944-09-19 Ingersoll Rand Co Centrifugal pump
US2574631A (en) * 1950-04-28 1951-11-13 Ely George William Constant pressure centrifugal pump
US2683419A (en) * 1946-04-16 1954-07-13 Sfindex Guiding means for liquids and gases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US916427A (en) * 1908-11-21 1909-03-30 Harry A Fee Turbine pump or blower.
FR587131A (en) * 1923-11-01 1925-04-11 Improvements to the regulating devices for vaned wheels
US1837887A (en) * 1929-06-20 1931-12-22 Schmidt Paul Device for regulating the output of centrifugal pumps
GB551218A (en) * 1941-09-08 1943-02-12 Blackburn Aircraft Ltd Improvements in superchargers for internal combustion engines, and like blowers
US2358744A (en) * 1943-09-06 1944-09-19 Ingersoll Rand Co Centrifugal pump
US2683419A (en) * 1946-04-16 1954-07-13 Sfindex Guiding means for liquids and gases
US2574631A (en) * 1950-04-28 1951-11-13 Ely George William Constant pressure centrifugal pump

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160112A (en) * 1958-07-31 1964-12-08 Westinghouse Electric Corp Check valve and application thereof
US3204863A (en) * 1961-05-13 1965-09-07 Hausammann Werner Compressor
US3399626A (en) * 1966-08-23 1968-09-03 Lucas Industries Ltd Liquid displacement pumps
US3399625A (en) * 1966-08-23 1968-09-03 Lucas Industries Ltd Liquid displacement pumps
US3482523A (en) * 1968-03-06 1969-12-09 Crane Co Centrifugal pump with flow control by pressure feedback
US3516758A (en) * 1968-06-04 1970-06-23 Lucas Industries Ltd Liquid displacement pumps
US4219305A (en) * 1978-12-26 1980-08-26 Carrier Corporation Diffuser control
US4257733A (en) * 1978-12-26 1981-03-24 Carrier Corporation Diffuser control
US4445815A (en) * 1980-06-09 1984-05-01 United Technologies Corporation Temperature regulation of air cycle refrigeration systems
US4828455A (en) * 1982-12-21 1989-05-09 Aisin Seiki Kabushiki Kaisha Temperature responsive blade shroud-disk for thermostatic water pump
US4657481A (en) * 1984-05-15 1987-04-14 Kongsberg Vapenfabrikk Insertably adjustable and angularly adjustable inlet guide vane apparatus for a compressor
US4752183A (en) * 1986-03-31 1988-06-21 Aisin Seiki Kabushiki Kaisha Water pump
US4828454A (en) * 1986-06-06 1989-05-09 The United States Of America As Represented By The Secretary Of The Navy Variable capacity centrifugal pump
DE3732038A1 (en) * 1986-09-30 1988-04-07 Mitsubishi Motors Corp PUMP
US4798517A (en) * 1986-09-30 1989-01-17 Mitsubishi Jidousha Kogyo Kabushiki Kaisha Pump
DE3732038C2 (en) * 1986-09-30 1992-12-24 Mitsubishi Jidosha Kogyo K.K.
US5211530A (en) * 1992-04-20 1993-05-18 The United States Of America As Represented By The Secretary Of The Navy Variable breadth impeller that provides a specific shutoff head
US5522697A (en) * 1993-11-19 1996-06-04 Holset Engineering Company, Ltd. Load reducing variable geometry turbine
US5941684A (en) * 1997-06-10 1999-08-24 Holset Engineering Company Ltd. Variable geometry turbine
US6419450B1 (en) * 2001-05-21 2002-07-16 Grundfos Pumps Manufacturing Corporation Variable width pump impeller
DE10247424A1 (en) * 2002-10-11 2004-04-22 Daimlerchrysler Ag Adjustable vane wheel for pump has induction channel directly in front of it able to be closed and/or throttled by blocking device
US20070227603A1 (en) * 2003-12-10 2007-10-04 Jean-Luc Perrin Variable Nozzle Device for a Turbocharger
US7581394B2 (en) * 2003-12-10 2009-09-01 Honeywell International Inc. Variable nozzle device for a turbocharger
US20090049834A1 (en) * 2007-08-21 2009-02-26 Emmanuel Bouvier Turbocharger with sliding piston assembly
US7762067B2 (en) * 2007-08-21 2010-07-27 Honeywell International, Inc. Turbocharger with sliding piston assembly
EP2392828A3 (en) * 2010-06-07 2013-01-23 Schaeffler Technologies AG & Co. KG Seal for a controllable coolant pump
DE102014013224B3 (en) * 2014-09-05 2015-07-30 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt control device
WO2016034159A1 (en) 2014-09-05 2016-03-10 Nidec Gpm Gmbh Device for regulating the pump pressure of centrifugal pumps
EP3597925A1 (en) * 2018-07-16 2020-01-22 Airtex Products, S.A. Adjustable coolant pump
US11459958B2 (en) * 2019-03-22 2022-10-04 Pratt & Whitney Canada Corp. Rotodynamic pump having a body defining a body cavity with a first and second housing portion defining a portion of an impeller cavity and disposed within the body cavity wherein the body cavity extends at least in part around the second housing portion and the housing portions defining an impeller clearance

Similar Documents

Publication Publication Date Title
US2957424A (en) Centrifugal pump
US4070132A (en) Variable performance pump
US4802817A (en) Centrifugal pump with self-regulating impeller discharge shutter
US2715367A (en) Pump and turbine for jet power unit
US2768585A (en) Pump control mechanism
US3068801A (en) Centrifugal impeller pumps
US4828454A (en) Variable capacity centrifugal pump
GB1085418A (en) Centrifugal pumps
US2269189A (en) Fluid pump
US4094613A (en) Variable output centrifugal pump
US3482523A (en) Centrifugal pump with flow control by pressure feedback
US2630681A (en) Rotary pump and motor hydraulic drive having a substantially constant output speed
US3356034A (en) Fluid pump flow bypass control
US3204863A (en) Compressor
US3415194A (en) Pump
GB984255A (en) Rotary variable volume pump
US2847186A (en) Fluid driven power unit
US4213735A (en) Constant flow centrifugal pump
US2268358A (en) Centrifugal pump
US3382809A (en) Control for fluid pump bypass
US3930760A (en) Hydraulic pump incorporating means for limiting volume of flow
US3063245A (en) Torque converters
US3788770A (en) Fluid pump with flow control means
US2775946A (en) Constant delivery variable pressure pump
US4321008A (en) Wide range compressor