US2948148A - Supersonic wind-tunnel for a variable mach number - Google Patents

Supersonic wind-tunnel for a variable mach number Download PDF

Info

Publication number
US2948148A
US2948148A US554358A US55435855A US2948148A US 2948148 A US2948148 A US 2948148A US 554358 A US554358 A US 554358A US 55435855 A US55435855 A US 55435855A US 2948148 A US2948148 A US 2948148A
Authority
US
United States
Prior art keywords
nozzle
neck
tunnel
discharge
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US554358A
Other languages
English (en)
Inventor
M G De Jurquet De La Sal Louis
Jean H Bertin
Kadosch Marcel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Application granted granted Critical
Publication of US2948148A publication Critical patent/US2948148A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/04Arrangements of guide vanes in pipe elbows or duct bends; Construction of pipe conduit elements for elbows with respect to flow, e.g. for reducing losses of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the dimensions of the testing chamber are laid down before the wind-tunnel is constructed; in order to obtain different Mach numbers in this chamber, this implies the necessity of varying the section of the sonic neck situated on the upstream side of the chamber.
  • Asymmetric walls make it necessary in practice to pass the flow between two flat walls and prevent any tests being made in a circular jet.
  • Deformable walls for a jet of circular cross-section are very diflicult to construct.
  • the present invention enables this problem of the construction of a supersonic wind-tunnel for a progressive variable and controllable Mach number to be solved in a simple and effective manner.
  • the cross-section of the sonic neck on the upstream side of the testing chamber is regulated by aerodynamic striction by means of one or a number of auxiliary gaseous jets which can be regulated, and which are formed by nozzles in the proximity of the material sonic neck of the wind-tunnel, and in particular in the one which extends from the upstream side of the said neck to the neck itself.
  • auxiliary jet or jets may be arranged in a symmetrical manner.
  • a single jet may be provided discharged from a nozzle in the form of a slot which occupies the whole section of the discharge nozzle which forms the conduit including the sonic neck, and this section may be, in particular, a rectangular section.
  • the jet or jets which restrict the cross-section of passage available to the main jet and their effect may be p 2,948,148 Patented Aug. 9, 1960 regulated progressively by acting either on their intensity, or on their direction, or on both these characteristics conjointly.
  • the nozzles for the auxiliary jets are supplied with fluid from a source which has a total pressure greater than the static pressure of the main jet at the zone in which these nozzle discharge, for example, from the compressor which supplies the wind-tunnel in the case in which this latter is of the compression type, or from an auxiliary compressor, or again from the external atmosphere, especially in the case in 'Which the wind-tunnel is of the suction type.
  • the level of static pressure in the sonic neck is in this case very much lower than the level of atmospheric pressure.
  • the supply of the wake-zones of the jets may be effected in the same way, or by tapping-off from any point whatever of the wind-tunnel at which the pressure level is suitable.
  • Fig. l is a view in axial cross-section of one form of embodiment of a discharge nozzle for an improved supersonic wind-tunnel in accordance with the invention.
  • Figs. 2 and 4 are axial half cross-sections of alternative forms of embodiment.
  • Fig. 3 is partly an end view and partly a view in cross-section following the line IIIIII of the embodiment in accordance with Fig. 2. i i
  • the discharge-nozzle of the wind-tunnel is coupled at 1 to the intake of the gas which supplies this wind-tunnel, this gas being of any particular nature (for example, air) and may be displaced through the discharge-nozzle by any particular means (compressor, ejector, etc.).
  • the gas which has passed through the discharge-nozzle may also be re-cycled wholly or in part towards the dischargenozzle in accordance with a known method.
  • the discharge-nozzle may be a body .of revolution about the axis A-A. It forms a narrowed portion or neck 2, and then widens out progressively into a divergent portion 3' up to the testing chamber 4 which has a'substantially constant cross-section.
  • the chamber 4 is coupled on the downstream side to an air-evacuation device which may be of any type and may comprise for example a convergent portion 5 followed by an extractor fan shown diagrammatically by its moving wheel 6.
  • the walls of the discharge-nozzle are constructed in accordance with the known technique for supersonicdischarge-nozzles, in such manner that the flow in the chamber 14 is in conformity with fixed conditions, and in particular has a speed greater than that of sound, which is the lowest speed which it is proposed to obtain in the chamber 4.
  • the discharge-nozzle comprises in the vicinity of its neck 2, an annular slot 7 forming a nozzle directed towards the interior, through which there can be introduced a gas at a total pressure greater than the static pressure of the main jet of the wind-tunnel in the vicinity of the neck 2.
  • this auxiliary gas forms inside the discharge-nozzle a kind of fluid wall which modifies the cross-section of passage avail-able for the main flow arriving at 1.
  • a new neck 2' which is variable and which is substantially smaller than the physical neck 2.
  • the cross-section of passage available for the main flow depends on the angle of injection of the auxiliary gas with respect to the axis of the discharge-nozzle. If the auxiliary gas is injected parallel to the walls in the direction of the main flow, it occupies inside the discharge-nozzle a cross-section which is proportional to its rate of flow. If the injection slot is inclined towards the interior of the discharge-nozzle, the auxiliary gas soon becomes detached from the walls of the nozzle, leaving between itself and these walls a zone of depression 9 of dead gases which play the part of a physical obstacle which would have the same profile as that of the detached auxiliary jet, so that the restricted neck 2 is smaller than in the case of an injection made parallel to the walls.
  • Fig. 1 shows a nozzle 7 inclined at about 45 towards the upstream side of the main flow.
  • the progressive passage from the physical neck 2 of the discharge-nozzle to a fluid neck 2' having the minimum cross-section, that is to say the variation of the Mach number of the flow from a minimum value corresponding to the physical shape of the discharge-nozzle up to a maximum value corresponding to the power available from the source of auxiliary gas, is obtained by varying the opening of the valve 8 from zero to its maximum.
  • Figs. 2 and 3 show an embodiment of this kind applied to a discharge-nozzle having a rectangular section. A little on the upstream side of. the neck 2, and on two opposite sides, the wall of the discharge-nozzle is provided with slots 10 which are closed by cylinders 11, the external wall of which is tangential to the internal wall of the discharge-nozzle. These cylinders are hollow and are arranged to rotate about their respective axes, this rotation being controlled by levers 12, one for each cylinder. As can be seen from Fig.
  • the cylinders are pivotally mounted in fixed walls 13, one of the pivot spindles carrying the lever 12, the other pivot 14 being drilled axially and placing the corresponding cylinder in communication with a source 15 of fluid under pressure.
  • a slot 7 Along a generatrix of each cylinder is provided a slot 7, through which the fluid under pressure is injected into the discharge-nozzle.
  • the levers 12 will be coupled to each other in such manner that a single controlling action will produce equal but opposite rotations of the cylinders and thus the jets discharged through the slots 7 will be symmetrically disposed and equally throttling, although an individual adjustment of one cylinder with respect to the other will be preferably provided in order to obtain this symmetry by experiment,
  • a pinion 17 actuating two toothed racks 18 which are respectively pivoted to the levers 12.
  • the coupling between one of these toothed racks and the corresponding lever 12 comprises a screw 19 having two'oppositely-cut threads of the kind employed in tensioning devices and this enables the relative positionsfofthe cylinders 11 to be regulated.
  • auxiliary gas may be sufliciently maintained so astoform a continuous wall capable of being finally coupled with the fixed wall of the divergent portion on the downstream side of the neck and on the upstream. side of the chamber, it is useful to fill the space between the physical wall of the dischargenozzle and the fluid wall formed by the auxiliary jet.
  • a supply of this kind can be effected either by the intermediary of one or a number of jets of auxiliary gas injected on the downstream side of the constrictive jet, and which may have a lower pressure, since in a supersonic discharge-nozzle, the level of static pressure continues to decrease on the downstream side of the neck, or alternatively the supply may be taken from the atmosphere or from a zone in the circuit having a suitable pressure.
  • the nozzle 7 of Fig. 1 is sub-divided into three successive nozzles 7a, 7b, 7c, which have difierent inclinations.
  • the first which is inclined towards the upstream side of the main flow, has the greatest effect on the reduction of the cross-section available to the main flow.
  • the second which is at right angles to the axis, and the third which is inclined towards the downstream side, supply the depression zone and assist in the maintenance of the continuity of the fluid wall and in giving this fluid wall the correct shape of neck.
  • the nozzles 71) and 70 may be narrower than the nozzles 7a, so as to supply a smaller flow of auxiliary fluid.
  • nozzles supplied by the valve 8 are supplemented by an annular nozzle 20 located on the downstream side of the neck and the output of which may be regulated by a valve 21.
  • This nozzle 20 is inclined towards the downstream side of the main flow, in such manner that the auxiliary jet which is discharged vfrom it, is almost parallel to the wall of the discharge-nozzle, this injection acting as an injection of a limit layer facilitating the coupling of the fluid wall to the physical wall of the discharge-nozzle.
  • a slot 22 coupled through a valve 23 to a source of sub-pressure. The suction effected by this nozzle 20 enables the point of coupling of the fluid wall to the fixed wall to be determined in an exact manner.
  • valves 8, 21 and 23 enables the form and the progression of the fluid Wall which surrounds the main flow to be regulated.
  • the" source of auxiliary gas may be of any particular kind. It is only necessary that it should give, at the outlet of the blowing nozzles inside the discharge-nozzle, a total pressure which is greater than the static pressure of the main flow at that point.
  • This source may be a special compressor, a steam boiler, etc.
  • the blowing nozzles may also be supplied from the delivery side of the compressor of the wind-tunnel, if the latter is of the compressor type, since the expansion effected inside the discharge-nozzle introduces a substantial drop in the static pressure in the main flow.
  • Adjustable pressure-reducing devices may furthermore be placed on the supply lines of the various nozzles in order to regulate exactly the supply pressures.
  • a supersonic wind-tunnel comprising a test chamber
  • said throat a jet separating from said wall as it issues from said nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
US554358A 1954-12-20 1955-12-20 Supersonic wind-tunnel for a variable mach number Expired - Lifetime US2948148A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1117244T 1954-12-20

Publications (1)

Publication Number Publication Date
US2948148A true US2948148A (en) 1960-08-09

Family

ID=9629901

Family Applications (1)

Application Number Title Priority Date Filing Date
US554358A Expired - Lifetime US2948148A (en) 1954-12-20 1955-12-20 Supersonic wind-tunnel for a variable mach number

Country Status (3)

Country Link
US (1) US2948148A (fr)
FR (1) FR1117244A (fr)
GB (1) GB783046A (fr)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123285A (en) * 1964-03-03 Diffuser with boundary layer control
US3212515A (en) * 1962-07-13 1965-10-19 Giannini Controls Corp Fluid amplifier
US3280832A (en) * 1963-11-18 1966-10-25 Retec Inc Cycling valve
US3298599A (en) * 1964-06-22 1967-01-17 Cons Vacuum Corp Pump nozzle
US3302866A (en) * 1965-03-16 1967-02-07 Polytechnic Inst Brooklyn High velocity fluid accelerator
US3363545A (en) * 1966-07-08 1968-01-16 Owens Illinois Inc Electrical printing apparatus with means to control boundary layer effect
US3396738A (en) * 1964-11-27 1968-08-13 American Standard Inc Fluid guiding method and apparatus
US3452782A (en) * 1966-07-08 1969-07-01 Gen Electric Fluid discharge casing
US3474813A (en) * 1963-12-07 1969-10-28 Snecma Flow control device for multi-conduit structures
US3568703A (en) * 1969-04-07 1971-03-09 Us Army Supersonic jet engine inlet flueric bypass control
US3643431A (en) * 1968-12-06 1972-02-22 Technology Uk Flow control devices
US3665949A (en) * 1969-06-27 1972-05-30 Bendix Corp Gaseous controlled fluidic throttling valve
US3695290A (en) * 1970-07-22 1972-10-03 Kenneth R Evans Noise suppressing device for fluid flow lines
US4029430A (en) * 1975-09-02 1977-06-14 Fonda Bonardi Giusto Short subsonic diffuser for large pressure ratios
US4515524A (en) * 1982-09-27 1985-05-07 Allis-Chalmers Corporation Draft tube for hydraulic turbine
US4989807A (en) * 1988-04-07 1991-02-05 Grumman Aerospace Corporation S-shaped jet engine inlet diffuser
US5099685A (en) * 1990-08-09 1992-03-31 The Boeing Company Boundary layer control diffuser for a wind tunnel or the like
US5638683A (en) * 1993-12-16 1997-06-17 Daimler-Benz Aerospace Ag Injection device
US5996936A (en) * 1997-09-29 1999-12-07 General Electric Company Fluidic throat exhaust nozzle
US6336319B1 (en) 2000-05-26 2002-01-08 General Electric Company Fluidic nozzle control system
US6578607B2 (en) * 1999-06-08 2003-06-17 Delsys Pharmaceutical Corp. Article comprising a diffuser with flow control features
US20090165864A1 (en) * 2007-12-26 2009-07-02 Rolls-Royce North American Technologies, Inc. Supersonic inlet
US20090205309A1 (en) * 2006-08-30 2009-08-20 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Method for controlling the combustion in a combustion chamber and combustion chamber device
US20100243370A1 (en) * 2006-06-19 2010-09-30 Yen Tuan Aero-acoustic aviation engine inlet for aggressive noise abatement
US20120125954A1 (en) * 2010-11-20 2012-05-24 Vladimir Vladimirovich Fisenko Supersonic nozzle for boiling liquid
US8225592B1 (en) * 2003-06-09 2012-07-24 Florida State University Research Foundation Microjet noise suppression system for jet engines
EP2482966A1 (fr) * 2009-09-30 2012-08-08 Fisionic Holding Limited Dispositif pour la préparation d'une émulsion eau-carburant
CN103135624A (zh) * 2012-12-19 2013-06-05 中国空气动力研究与发展中心高速空气动力研究所 一种带引射功能的暂冲式超声速风洞控制方法
CN103954424A (zh) * 2014-04-30 2014-07-30 北京大学 扩大高超声速静音喷管静试验区的方法及高超声速喷管
CN107806977A (zh) * 2017-11-29 2018-03-16 中国航空工业集团公司沈阳空气动力研究所 一种组合式宽马赫数高焓脉冲风洞管体结构
EP3396121A1 (fr) * 2017-04-28 2018-10-31 Doosan Heavy Industries & Construction Co., Ltd. Diffuseur d'échappement ayant des trous d'éjection et des trous d'aspiration pour un moteur à turbine à gaz
CN109827737A (zh) * 2017-11-23 2019-05-31 成都凯天电子股份有限公司 变出口合成射流激励器
CN113959674A (zh) * 2021-10-27 2022-01-21 中国航发沈阳发动机研究所 一种矩形风洞端壁附面层吸除结构
CN114061891A (zh) * 2022-01-18 2022-02-18 中国空气动力研究与发展中心高速空气动力研究所 一种面向大型开***流风洞下吹引射式静压匹配控制方法
CN114061890A (zh) * 2022-01-18 2022-02-18 中国空气动力研究与发展中心高速空气动力研究所 一种面向大型开***流风洞下吹式静压匹配控制方法
CN114608792A (zh) * 2022-05-10 2022-06-10 中国空气动力研究与发展中心高速空气动力研究所 短轴探管测量高速射流风洞亚跨声速射流流场均匀区方法
CN116358825A (zh) * 2023-05-26 2023-06-30 中国航空工业集团公司沈阳空气动力研究所 一种连续式风洞马赫数微调机构及调节方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005338A (en) * 1957-09-23 1961-10-24 Paul A Libby Nozzle cooling apparatus and method
US4033185A (en) * 1976-05-18 1977-07-05 The United States Of America As Represented By The Secretary Of The Army Wind-tunnel simulator
CN104316287B (zh) * 2014-10-24 2017-01-11 中国人民解放军国防科学技术大学 二维变马赫数喷管及使用该喷管的超声速变马赫数风洞
CN107741313A (zh) * 2017-11-29 2018-02-27 中国航空工业集团公司沈阳空气动力研究所 一种低扰动宽马赫数风洞层流双喷管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569983A (en) * 1943-01-19 1951-10-02 Onera (Off Nat Aerospatiale) Aircraft wing flap with a leading edge roller
US2678560A (en) * 1952-10-09 1954-05-18 Us Navy Supersonic wind tunnel
US2729974A (en) * 1952-02-15 1956-01-10 United Aircraft Corp Transonic flow control with reduced power
US2788719A (en) * 1954-02-11 1957-04-16 Klmberly Clark Corp Flow control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569983A (en) * 1943-01-19 1951-10-02 Onera (Off Nat Aerospatiale) Aircraft wing flap with a leading edge roller
US2729974A (en) * 1952-02-15 1956-01-10 United Aircraft Corp Transonic flow control with reduced power
US2678560A (en) * 1952-10-09 1954-05-18 Us Navy Supersonic wind tunnel
US2788719A (en) * 1954-02-11 1957-04-16 Klmberly Clark Corp Flow control apparatus

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123285A (en) * 1964-03-03 Diffuser with boundary layer control
US3212515A (en) * 1962-07-13 1965-10-19 Giannini Controls Corp Fluid amplifier
US3280832A (en) * 1963-11-18 1966-10-25 Retec Inc Cycling valve
US3474813A (en) * 1963-12-07 1969-10-28 Snecma Flow control device for multi-conduit structures
US3298599A (en) * 1964-06-22 1967-01-17 Cons Vacuum Corp Pump nozzle
US3396738A (en) * 1964-11-27 1968-08-13 American Standard Inc Fluid guiding method and apparatus
US3302866A (en) * 1965-03-16 1967-02-07 Polytechnic Inst Brooklyn High velocity fluid accelerator
US3363545A (en) * 1966-07-08 1968-01-16 Owens Illinois Inc Electrical printing apparatus with means to control boundary layer effect
US3452782A (en) * 1966-07-08 1969-07-01 Gen Electric Fluid discharge casing
US3643431A (en) * 1968-12-06 1972-02-22 Technology Uk Flow control devices
US3568703A (en) * 1969-04-07 1971-03-09 Us Army Supersonic jet engine inlet flueric bypass control
US3665949A (en) * 1969-06-27 1972-05-30 Bendix Corp Gaseous controlled fluidic throttling valve
US3695290A (en) * 1970-07-22 1972-10-03 Kenneth R Evans Noise suppressing device for fluid flow lines
US4029430A (en) * 1975-09-02 1977-06-14 Fonda Bonardi Giusto Short subsonic diffuser for large pressure ratios
US4515524A (en) * 1982-09-27 1985-05-07 Allis-Chalmers Corporation Draft tube for hydraulic turbine
US4989807A (en) * 1988-04-07 1991-02-05 Grumman Aerospace Corporation S-shaped jet engine inlet diffuser
US5099685A (en) * 1990-08-09 1992-03-31 The Boeing Company Boundary layer control diffuser for a wind tunnel or the like
US5638683A (en) * 1993-12-16 1997-06-17 Daimler-Benz Aerospace Ag Injection device
US5996936A (en) * 1997-09-29 1999-12-07 General Electric Company Fluidic throat exhaust nozzle
US6578607B2 (en) * 1999-06-08 2003-06-17 Delsys Pharmaceutical Corp. Article comprising a diffuser with flow control features
US6336319B1 (en) 2000-05-26 2002-01-08 General Electric Company Fluidic nozzle control system
US8225592B1 (en) * 2003-06-09 2012-07-24 Florida State University Research Foundation Microjet noise suppression system for jet engines
US7967105B2 (en) * 2006-06-19 2011-06-28 Yen Tuan Aero-acoustic aviation engine inlet for aggressive noise abatement
US20100243370A1 (en) * 2006-06-19 2010-09-30 Yen Tuan Aero-acoustic aviation engine inlet for aggressive noise abatement
US20090205309A1 (en) * 2006-08-30 2009-08-20 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Method for controlling the combustion in a combustion chamber and combustion chamber device
US20090165864A1 (en) * 2007-12-26 2009-07-02 Rolls-Royce North American Technologies, Inc. Supersonic inlet
EP2482966A1 (fr) * 2009-09-30 2012-08-08 Fisionic Holding Limited Dispositif pour la préparation d'une émulsion eau-carburant
US8550693B2 (en) 2009-09-30 2013-10-08 Fisonic Holding Limited Device for preparation of water-fuel emulsion
US20120125954A1 (en) * 2010-11-20 2012-05-24 Vladimir Vladimirovich Fisenko Supersonic nozzle for boiling liquid
US8485455B2 (en) * 2010-11-20 2013-07-16 Fisonic Holding Limited Supersonic nozzle for boiling liquid
CN103135624A (zh) * 2012-12-19 2013-06-05 中国空气动力研究与发展中心高速空气动力研究所 一种带引射功能的暂冲式超声速风洞控制方法
CN103135624B (zh) * 2012-12-19 2015-05-13 中国空气动力研究与发展中心高速空气动力研究所 一种带引射功能的暂冲式超声速风洞控制方法
CN103954424A (zh) * 2014-04-30 2014-07-30 北京大学 扩大高超声速静音喷管静试验区的方法及高超声速喷管
CN103954424B (zh) * 2014-04-30 2016-05-04 北京大学 扩大高超声速静音喷管静试验区的方法及高超声速喷管
EP3396121A1 (fr) * 2017-04-28 2018-10-31 Doosan Heavy Industries & Construction Co., Ltd. Diffuseur d'échappement ayant des trous d'éjection et des trous d'aspiration pour un moteur à turbine à gaz
US10746059B2 (en) 2017-04-28 2020-08-18 DOOSAN Heavy Industries Construction Co., LTD Exhaust diffuser having ejection hole and suction hole, and gas turbine having the same
CN109827737A (zh) * 2017-11-23 2019-05-31 成都凯天电子股份有限公司 变出口合成射流激励器
CN109827737B (zh) * 2017-11-23 2023-08-11 成都凯天电子股份有限公司 变出口合成射流激励器
CN107806977B (zh) * 2017-11-29 2024-04-09 中国航空工业集团公司沈阳空气动力研究所 一种组合式宽马赫数高焓脉冲风洞管体结构
CN107806977A (zh) * 2017-11-29 2018-03-16 中国航空工业集团公司沈阳空气动力研究所 一种组合式宽马赫数高焓脉冲风洞管体结构
CN113959674B (zh) * 2021-10-27 2023-07-07 中国航发沈阳发动机研究所 一种矩形风洞端壁附面层吸除结构
CN113959674A (zh) * 2021-10-27 2022-01-21 中国航发沈阳发动机研究所 一种矩形风洞端壁附面层吸除结构
CN114061890B (zh) * 2022-01-18 2022-03-29 中国空气动力研究与发展中心高速空气动力研究所 一种面向大型开***流风洞下吹式静压匹配控制方法
CN114061890A (zh) * 2022-01-18 2022-02-18 中国空气动力研究与发展中心高速空气动力研究所 一种面向大型开***流风洞下吹式静压匹配控制方法
CN114061891A (zh) * 2022-01-18 2022-02-18 中国空气动力研究与发展中心高速空气动力研究所 一种面向大型开***流风洞下吹引射式静压匹配控制方法
CN114608792B (zh) * 2022-05-10 2022-07-15 中国空气动力研究与发展中心高速空气动力研究所 短轴探管测量高速射流风洞亚跨声速射流流场均匀区方法
CN114608792A (zh) * 2022-05-10 2022-06-10 中国空气动力研究与发展中心高速空气动力研究所 短轴探管测量高速射流风洞亚跨声速射流流场均匀区方法
CN116358825A (zh) * 2023-05-26 2023-06-30 中国航空工业集团公司沈阳空气动力研究所 一种连续式风洞马赫数微调机构及调节方法

Also Published As

Publication number Publication date
FR1117244A (fr) 1956-05-18
GB783046A (en) 1957-09-18

Similar Documents

Publication Publication Date Title
US2948148A (en) Supersonic wind-tunnel for a variable mach number
Fabri et al. Supersonic air ejectors
US2763984A (en) Device for regulating the effective cross-section of a discharge-nozzle
US2812636A (en) Process and device for deflecting jets
US2532554A (en) Method for atomizing by supersonic sound vibrations
GB1092119A (en) Methods and apparatus for generating sonic pressure waves
CN107504066B (zh) 一种向高压圆盘气体轴承供气的一体式轴对称射流稳压腔
US2795931A (en) Aerodynamic valve arrangement
US2914941A (en) High-speed wind tunnels
US2799990A (en) Supersonic jet deflection device
US3121312A (en) Unified pitch, yaw and roll shock control
US3230923A (en) Sonic pressure wave generator
US3016699A (en) Aerodynamically acting jet deflecting device
US2729974A (en) Transonic flow control with reduced power
Kravchenko et al. Mathematical modeling of the generation of acoustic waves in a two-channel system
US2990103A (en) Jet exhauster
US3029045A (en) Ejector systems applicable to thrust generation or augmentation
US2807137A (en) Jet deflecting device for jet propulsion units
US2134890A (en) Means for materializing the stream
GB1015450A (en) Jet nozzle
US3049005A (en) Wind tunnels
GB836385A (en) Wind tunnel
GB788852A (en) Improvements in or relating to aircraft
GB756288A (en) Improvements relating to thrust augmenters for rocket motors
US3035439A (en) Hypersonic wind tunnel test section