US2939200A - Fabric woven from coated yarns - Google Patents

Fabric woven from coated yarns Download PDF

Info

Publication number
US2939200A
US2939200A US429323A US42932354A US2939200A US 2939200 A US2939200 A US 2939200A US 429323 A US429323 A US 429323A US 42932354 A US42932354 A US 42932354A US 2939200 A US2939200 A US 2939200A
Authority
US
United States
Prior art keywords
yarn
fabric
yarns
coated
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US429323A
Inventor
Ewing Henry
Gentle Alexander Henderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acordis UK Ltd
Original Assignee
British Celanese Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Celanese Ltd filed Critical British Celanese Ltd
Application granted granted Critical
Publication of US2939200A publication Critical patent/US2939200A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0094Belts
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/225Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based artificial, e.g. viscose
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/33Ultrafine fibres, e.g. microfibres or nanofibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/527Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads waterproof or water-repellent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/28Cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/041Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polyvinyl chloride or polyvinylidene chloride
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S2/00Apparel
    • Y10S2/90Camouflaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/919Camouflaged article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Definitions

  • FIG. 2 m w H C L m V m w H m m m x CELLULOSIC YARN CELLULOSIC YARN PLASTICIZED POLYVINYL CHLORIDE FIG. 2
  • This invention relates to fabrics and other textile materials, and especially to the production of fabrics of good fire-resistance.
  • the fabrics of the invention are formed from yarn having a relatively heavy coherent overall coating (preferably from 80 to 150% of the uncoated yarn weight) of a rubber-like, water-resistant, non-inflammable filmforming material, preferably comprising a chlorine-containing polymer, especially gelled plasticized polyvinyl chloride.
  • a rubber-like, water-resistant, non-inflammable filmforming material preferably comprising a chlorine-containing polymer, especially gelled plasticized polyvinyl chloride.
  • rubber-like is meant having at ordinary temperature a recoverable extension of at least 30%.
  • Coated yarns of the kind specified are thought to be novel in themselves, and the invention includes such yarns.
  • the yarn is a multi-filament yarn of heavy denier. It may, for instance, contain 500 to 4,000, e.g. 1,000 to 3,000, filaments of denier between about 0.5 and about 4, e.g. 1 to 2.5.
  • One of the objects of the invention is to provide a waterproof, substantially non-inflammable, fiexible sheet material combining high strength with relatively low weight per unit area.
  • a waterproof, substantially non-inflammable, fiexible sheet material combining high strength with relatively low weight per unit area.
  • Such a material might be obtained by coating a fabric woven from high-tenacity, continuous-filament yarns with a non-inflammable, water-resistant, film-forming material. (By high-tenacity is meant of tenacity at least 3 gms. per denier.)
  • High-tenacity, continuous-filament yarns do not readily adhere to such film-forming materials. This lack of adhesive properties was a source of considerable difficulty. It seemed desirable to use for the material of the fabric a material of low or negligible infiammability.
  • the desired object could be achieved by coating a high-tenacity, regenerated cellulose, continuous-filament yam with a dispersion of polyvinyl chloride in tricresyl phosphate, heating the yarn to gel the plasticized polyvinyl chloride (Le. to form it into a coherent non-sticky layer), weaving a fabric from the coated yarn and subjecting the fabric to heat and pressure so as to seal the interstices in the fabric.
  • Example 1 describes making a waterproof, substantially non-inflammable sheet in this way.
  • Example I The textile material was a yarn of regenerated cellulose Patented June 7, 1960 length.
  • the filament strength of the regenerated cellulose was approximately 7 gms. per denier.
  • the film-forming material was a so-called P.V.C. paste, consisting of polyvinyl chloride dispersed in substantially the same weight of tricresyl phosphate.
  • the yarns were drawn in the form of a parallel sheet over a circumferentially-grooved furnishing roll, freely rotatable in a bath of the polyvinyl chloride paste, each yarn being accommodated in one groove in the roll.
  • a doctor blade extending across the roll controlled the amount of paste taken up in the grooves of the roll.
  • the yarns passed beneath this blade and thence partly round the roll. After leaving the roll they passed above an infra-red heater, which applied sufiicient heat to the travelling yarn to gel the coating of plasticized polyvinyl chloride.
  • the yarn was then taken up under substantially constant tension. (The yarn required to form the warp of the fabric was taken up on a warp beam, and that required for the weft on individual bobbins.)
  • a fabric was woven in a plain weave, but using two picks and two ends in place of one, and there being 30 ends and picks per inch, and both warp and weft consisting of the coated yarn.
  • the fabric weighed 19.3 ozs./sq. yd., the weight of the uncoated yarn being 9.5 ozs./sq. yd.
  • the fabric was pressed for five minutes at a temperature of C.
  • Yarn obtained in this way may have a tenacity within the range 3-7 gms. per denier, according to the degree to which the cellulose acetate yarn was stretched and the shrinkage effected in saponification or in an additional shrinking operation.
  • regenerated cellulose yarn obtained in this way appears to be different from that of other kinds of high-tenacity regenerated cellulose yarn, e.g. high-tenacity yarn obtained by the cuprammonium or viscose processes. Nevertheless, high-tenacity yarn of regenerated cellulose made by such processes may also be treated in the same way as the saponified cellulose acetate yarn referred to.
  • the coated flax As the film-forming material for coating the yarn, it is preferred to use polyvinyl chloride plasticized with tricresyl phosphate.
  • Other fire-resistant plasticizers for polyvinyl chloride can be used instead of or in addition to tricresyl phosphate.
  • Such plasticizers include other liquid aromatic phosphoric acid esters, e.g. trixylenyl phosphates.
  • Less fire-resistant plasticizers, e.g. dibutyl phthalate, di-Z-ethyl hexyl phthalate and other esters of dicarbonylic acids, especially phthalic acid, may also be used, but at some sacrifice of fire-resistance in the product.
  • plasticizer should be suiticient to impart to the polymer forming the basis of the film-forming material some degree of rubber-like elasticity.
  • polyvinyl chloride other polymers containing a relatively high proportion of chlorine and capable of exhibiting the desired rubber-like elasticity (if necessary when compounded with a suitable plasticizer) can be employed.
  • examples of such polymers are copolymers of vinyl chloride with a minor proportion (5-15 of the total of the copolymer weight) of vinyl acetate, copolymers of vinyl chloride with vinylidene chloride, and chlorinated polythenes.
  • Chlorine-containing polymers derived from dienes, e.g. polychloroprene, chlorinated rubber and rubber hydrochloride are less suitable.
  • the weight of the coating may range from about 40 to about 150% based on the weight of the yarn. We have found that amounts between about 80 and 150% of that weight, e.g. from 95-110% thereof, give satisfactory results in most cases. It will be appreciated that in the fabric, unless (as described below) an additional coating has been applied after weaving, the weight ratio of coating to fabric will be the same as that of coating to yarn.
  • the method of weaving a fabric from yarn coated with a plasticized, rubber-like, water-resistant, non-inflammable, film-forming material, and subjecting the fabric to heat and pressure so as to cause the film-forming material to seal the interstices in the fabric enables non-inflammable fabrics to be made which are supple, and in relation to their weight very strong, especially when hightenacity continuous-filament yarns are employed.
  • high-tenacity regenerated cellulose continuous-filament yarns are employed with plasticized polyvinyl chloride.
  • the method described may be applied with some advantage to continuous-filament yarns of materials other than regenerated cellulose and cellulose acetate, e.g.
  • yarns of natural silk of nylon-66 and other polyamides such as nylon-6 and nylon-610, of polyethylene terephthalate, of polyacrylonitrile, of copolymers of acrylonitrile with vinyl chloride or vinylidene chloride, and yarns of glass fibre.
  • the method described is of advantage also when the yarn is a stable fibre yarn made, for instance, of any of the fibre-forming materials referred to above or of animal fibres such as wool.
  • the method described can be used in making waterproof, substantially non-inflammable fabrics for various purposes other than for truck covers.
  • the method may be used in making fabrics for fireresistant clothing and conveyor belting fabrics, and driving belts, including spindle-driving tapes.
  • an additional coating of the film-forming material can be applied to one or both sides of the fabric. This can be done, for instance, after weaving and before the hot pressing operation, the gelling of the composition of the further coating then being effected during the pressing operation. Additional coatings of film-forming material can also be calendered on to the fabric after pressing, or preformed sheets of the film-forming material can be bonded to one or both sides of the fabric. Two or more layers of the fabric woven from the coated yarn can also be bonded together, e.g. by additional layers of the film-forming material, and additional layers of that material may also be provided on one or both sides of the laminate.
  • the fabric should have the degree of resistance to penetration by water that is imparted to the fabric when the interstices between the yarns are sealed by the film-forming material.
  • the hot-pressing step may be omitted and/or the fabric construction may be more open.
  • the number of picks and/or of warp ends per inch may be reduced to such an extent that any hot-pressing operation does not result in the interstices being filled.
  • the fabric may be plain-woven, or special constructions adapted to ride as the film-forming material.
  • Very useful sheet materials can also be made from cellulose acetate yarns with the film-forming material, especially gelled plasticized polyvinyl chloride. When high strength is required have been obtained from cellulose acetate yarn in which i the acetyl value is between 51 and 54%.
  • the coated yarn may be woven to form a leno fabric.
  • the fabric may be formed from the coated yarn by knitting, e.g. by warp knitting or circular knitting, or by netting.
  • the weight of the coating providedround each yarn may also be decreased, but this weight should in general not be less than about 25% of the weight of the yarn, and is preferably at least 50%. It may, of course, be much greater, e.g. between 50 and of the yarn weight.
  • fire-resistant, waterproof fabrics can be made by bonding together the coated yarns in parallel alignment without the use of a weft, or with weft yarns very widely spaced apart.
  • the bonding can be effected bypassing the warp of coated yarns through a hot calender or by pressing the warp while hot in a press of the kind used in making rubber belting.
  • the fabric should preferably be cooled before removal from the press, and the operation may be carried out by raising the warp of coated yarns to a temperature slightly above that required to effect a satisfactory bond under the pressure available, and introducing the hot length of warp into the press, which is kept cool.
  • Laminates can be made by bonding together a plurality of layers of weftless fabric made as described. By assembling the fabric layers so that the,
  • tubular laminates by winding two or more layers of the weftless fabric or of the warp of coated yarns round a mandrel and effecting the bonding on the mandrel.
  • Tubular laminates so formed can, if desired, be slit to form a sheet, and when the yarns in successive layers run at an angle to one another, the line along which the tube is slit may or may not be parallel to one set of yarns.
  • Very heavy sheets can be made by flattening the tubular laminate and bonding all layers together, instead of slitting the tube.
  • a further method of making fabrics according to the invention is by bonding together a random assembly of relatively short lengths of the coated yarn.
  • the yarn may, for example, be coated as described above, and, after gelling the coating, the yarn may be cut up into the desired-short lengths, which may range, for instance, from half an inch to several inches.
  • the bonding together of the lengths of yarn may be effected in a press or by a hot calendering operation, in which, if desired, the coated yarns may be supported between two layers of a fabric to which they do not adhere, these fabric layers being subsequently stripped from the bonded fabric.
  • Very openwork fabrics having a pleasing, irregular design can be obtained by the methods described. Such fabrics, where the structure is very open, seem likely to be useful as camouflage materials. They may also be used for decorative purposes, for instance, when exposed beneath a sheet of transparent material such as a glass table top, or bonded to two sheets of transparent or translucent thermoplastic material in making lampshades and the like.
  • Example 2 The yarn to be coated was as specified in Example 1.
  • the film-forming material was a dispersion of ,the following composition:
  • a fabric was woven in a plain weave, but using two picks and two ends in place of one, and there being 30 ends and picks per inch, and both warp and weft consisting of the coated yarn.
  • the fabric weighed 19.5 ozs./sq. yd., the weight of the uncoated yarn being 9.5 ozs./sq. yd.
  • the fabric obtained was supple and of good tenacity and tear-resistance in both directions. Its waterabsorption was low, and although water was able to pass between the interstices of the fabric, immersion of the fabric in water did not result in as substantial a reduction in the tenacity as occurred when a fabric of the regenerated cellulose coated with the same mixture after weaving was subjected to the same test.
  • Example 3 The process was carried out as in Example 2, but using as the textile material a continuous-filament cellulose acetate yarn of total denier 1,200, filament denier 2.5, and twist 1.5 turns per inch.
  • the fabric obtained in this example can be subjected to a hot pressing operation, e.g. at a temperature of C., to seal the interstices, if a substantially waterproof fabric is desired.
  • Example 4 The process was carried out as in Example 3, except that the yarn was of 1,600 total denier, 1.6 filament denier, and 2.5 turns per inch. The filament tenacity was 4 grns. per denier. The fabric was of higher strength than that of Example 3.
  • Example 5 The coated yarn was as described in Example 2. A warp of this yarn was drawn through a hot calender with adjacent warp yarns in contact, and in this way the yarns were bonded together to form a weftless fabric.
  • the fabric was waterproof, fire-resistant, supple, of high tenacity in a direction parallel to the run of the yarn, and of good abrasion resistance. Strips of the fabric were suitable for use as driving-tapes for textile apparatus.
  • Example 6 The coated yarn was as described in Example 3. This yarn was cut into one-inch lengths. The cut yarn was fed into a calender in such a way as to produce a random arrangement of overlapping yarn lengths. During passage through the calender, the yarn lengths were bonded into an openwork fabric of irregular pattern. The fabric was of excellent fire-resistance, of low water-absorption and of considerable strength both longitudinally and laterally.
  • Example 7 The process was carried out as described in Example 5, except that the yarn was a cellulose acetate yarn as specified in Example 4, and the dispersion with which the yarn was coated had the following composition:
  • polyvinyl chloride 50 parts of polyvinyl chloride; 20 parts of di-(3,5,5-trimethyl-n-hexyl)-phthalate; 10 parts of di-(methylcyclohexyl) phthalate.
  • the cellulose acetate of Examples 3, 4, 6 and 7 was of acetyl value between 52 and 54%.
  • Figure 1 is a part sectional view in perspective of a weftless fabric made according to the invention by bonding together in parallel alignment yarns of cellulosic material each having a heavy continuous coating of plasticized polyvinyl chloride.
  • Figure 2 shows in sectional elevation a laminate made by bonding together two weftless fabrics of the kind shown in Figure 1, in such a way that the yarns in the one are perpendicular to the yarns in the other.
  • Figure 3 shows a fabric made by bonding together randomly arranged short lengths of cellulosic yarn having a heavy continuous coating of plasticized polyvinyl chloride.

Description

June 7, 1960 H. EWING ETAL FABRIC WOVEN FROM C(JATED YARNS Filed may 12, 195 4 PLASTICIZED POLYVINYL CHLORIDE CELLULOSIC YARN FIG.
m w H C L m V m w H m m m x CELLULOSIC YARN CELLULOSIC YARN PLASTICIZED POLYVINYL CHLORIDE FIG. 2
CELLULOSIC YARN COATED WITH PLASTICIZED POLYVINYL CHLORIDE FIG. 3.
United States Patent F FABRIC WOVEN FROM COATED YARN Henry Ewing and Alexander Henderson Gentle, Spondon, near Derby, England, assignors to British Celanese Limited, a corporation of Great Britain Filed May 12, 1954, Ser. No. 429,323
Claims priority, application Great Britain May 15, 1953 1 Claim. (CI. 28-80) This invention relates to fabrics and other textile materials, and especially to the production of fabrics of good fire-resistance.
The fabrics of the invention are formed from yarn having a relatively heavy coherent overall coating (preferably from 80 to 150% of the uncoated yarn weight) of a rubber-like, water-resistant, non-inflammable filmforming material, preferably comprising a chlorine-containing polymer, especially gelled plasticized polyvinyl chloride. By rubber-like is meant having at ordinary temperature a recoverable extension of at least 30%. Coated yarns of the kind specified are thought to be novel in themselves, and the invention includes such yarns. Preferably the yarn is a multi-filament yarn of heavy denier. It may, for instance, contain 500 to 4,000, e.g. 1,000 to 3,000, filaments of denier between about 0.5 and about 4, e.g. 1 to 2.5.
One of the objects of the invention is to provide a waterproof, substantially non-inflammable, fiexible sheet material combining high strength with relatively low weight per unit area. We considered that such a material might be obtained by coating a fabric woven from high-tenacity, continuous-filament yarns with a non-inflammable, water-resistant, film-forming material. (By high-tenacity is meant of tenacity at least 3 gms. per denier.) High-tenacity, continuous-filament yarns, however, do not readily adhere to such film-forming materials. This lack of adhesive properties was a source of considerable difficulty. It seemed desirable to use for the material of the fabric a material of low or negligible infiammability. Various condensation polymers which melt when heated, and especially nylon-6-6, do not readily propagate flame, but it was found particularly difficult to provide a fabric of such material with a firmly adherent coating of water-resistant, non-inflammable, filmforming material. High-tenacity regenerated cellulosic material presented somewhat less difficulty in respect of adhesion, but when coating was effected by any of the conventional fabric coating methods it was found necessary to apply a very heavy coating to obtain the desired fire resistance, and this resulted in a relatively stiff and heavy fabric. It was finally found that the desired object could be achieved by coating a high-tenacity, regenerated cellulose, continuous-filament yam with a dispersion of polyvinyl chloride in tricresyl phosphate, heating the yarn to gel the plasticized polyvinyl chloride (Le. to form it into a coherent non-sticky layer), weaving a fabric from the coated yarn and subjecting the fabric to heat and pressure so as to seal the interstices in the fabric.
Example 1 describes making a waterproof, substantially non-inflammable sheet in this way.
Example I The textile material was a yarn of regenerated cellulose Patented June 7, 1960 length. The filament strength of the regenerated cellulose was approximately 7 gms. per denier.
The film-forming material was a so-called P.V.C. paste, consisting of polyvinyl chloride dispersed in substantially the same weight of tricresyl phosphate.
The yarns were drawn in the form of a parallel sheet over a circumferentially-grooved furnishing roll, freely rotatable in a bath of the polyvinyl chloride paste, each yarn being accommodated in one groove in the roll. A doctor blade extending across the roll controlled the amount of paste taken up in the grooves of the roll. The yarns passed beneath this blade and thence partly round the roll. After leaving the roll they passed above an infra-red heater, which applied sufiicient heat to the travelling yarn to gel the coating of plasticized polyvinyl chloride. The yarn was then taken up under substantially constant tension. (The yarn required to form the warp of the fabric was taken up on a warp beam, and that required for the weft on individual bobbins.)
From the coated yarn a fabric was woven in a plain weave, but using two picks and two ends in place of one, and there being 30 ends and picks per inch, and both warp and weft consisting of the coated yarn. The fabric weighed 19.3 ozs./sq. yd., the weight of the uncoated yarn being 9.5 ozs./sq. yd.
The fabric was pressed for five minutes at a temperature of C.
In this way a supple, waterproof, fire-resistant material was made which was particularly suitable for use as the material for railway truck covers. The most suitable material previously found for such covers was a flax fabric having a heavy coating of a linseed oil-bauxite composition on both sides. The properties of a typical sample of railway truck cover material made of coated fiax fabric are compared in the table below with the properties of a material made for the same purpose according to the present invention. fabric is referred to as material A, and the material obtained by the process of the example is referred to as material B.
Property M atfria Mugrlnl It is preferred to use regenerated cellulose yarn obtained by the complete saponification of cellulose acetate yarn that has been stretched to many times its original length (i.e. 8 to 15 times) in a suitable stretch-assisting agent, e.g. moist steam or hot water, or that has been so stretched during a wet spinning operation. Yarn obtained in this way may have a tenacity within the range 3-7 gms. per denier, according to the degree to which the cellulose acetate yarn was stretched and the shrinkage effected in saponification or in an additional shrinking operation. The structure of regenerated cellulose yarn obtained in this way appears to be different from that of other kinds of high-tenacity regenerated cellulose yarn, e.g. high-tenacity yarn obtained by the cuprammonium or viscose processes. Nevertheless, high-tenacity yarn of regenerated cellulose made by such processes may also be treated in the same way as the saponified cellulose acetate yarn referred to.
In the table, the coated flax As the film-forming material for coating the yarn, it is preferred to use polyvinyl chloride plasticized with tricresyl phosphate. Other fire-resistant plasticizers for polyvinyl chloride can be used instead of or in addition to tricresyl phosphate. Such plasticizers include other liquid aromatic phosphoric acid esters, e.g. trixylenyl phosphates. Less fire-resistant plasticizers, e.g. dibutyl phthalate, di-Z-ethyl hexyl phthalate and other esters of dicarbonylic acids, especially phthalic acid, may also be used, but at some sacrifice of fire-resistance in the product. The nature and amount of the plasticizer should be suiticient to impart to the polymer forming the basis of the film-forming material some degree of rubber-like elasticity. Instead of polyvinyl chloride, other polymers containing a relatively high proportion of chlorine and capable of exhibiting the desired rubber-like elasticity (if necessary when compounded with a suitable plasticizer) can be employed. Examples of such polymers are copolymers of vinyl chloride with a minor proportion (5-15 of the total of the copolymer weight) of vinyl acetate, copolymers of vinyl chloride with vinylidene chloride, and chlorinated polythenes. Chlorine-containing polymers derived from dienes, e.g. polychloroprene, chlorinated rubber and rubber hydrochloride are less suitable.
In coating the yarn with the film-forming material, it is greatly preferred to employ that material in the form of a paste or dispersion with the plasticizer, and to form the coating into a substantially homogeneous, continuous layer round each yarn by a so-called gelling process, comprising heating the coated yarn. By this method a relatively heavy coating of the film-forming material can be obtained without the necessity of making two or more successive applications of film-forming material, and without the use of any volatile liquid. The weight of the coating may range from about 40 to about 150% based on the weight of the yarn. We have found that amounts between about 80 and 150% of that weight, e.g. from 95-110% thereof, give satisfactory results in most cases. It will be appreciated that in the fabric, unless (as described below) an additional coating has been applied after weaving, the weight ratio of coating to fabric will be the same as that of coating to yarn.
For the hot-pressing operation, the best results have been obtained by pressing the fabric for several minutes between the heated plates of a press. Heat and pressure can, however, be applied by other methods, e.g. by a calendering operation.
The method of weaving a fabric from yarn coated with a plasticized, rubber-like, water-resistant, non-inflammable, film-forming material, and subjecting the fabric to heat and pressure so as to cause the film-forming material to seal the interstices in the fabric, enables non-inflammable fabrics to be made which are supple, and in relation to their weight very strong, especially when hightenacity continuous-filament yarns are employed. As indicated above, specially advantageous results are obtained when high-tenacity regenerated cellulose continuous-filament yarns are employed with plasticized polyvinyl chloride. The method described may be applied with some advantage to continuous-filament yarns of materials other than regenerated cellulose and cellulose acetate, e.g. yarns of natural silk, of nylon-66 and other polyamides such as nylon-6 and nylon-610, of polyethylene terephthalate, of polyacrylonitrile, of copolymers of acrylonitrile with vinyl chloride or vinylidene chloride, and yarns of glass fibre. The method described is of advantage also when the yarn is a stable fibre yarn made, for instance, of any of the fibre-forming materials referred to above or of animal fibres such as wool.
The method described can be used in making waterproof, substantially non-inflammable fabrics for various purposes other than for truck covers. Thus, for example, the method may be used in making fabrics for fireresistant clothing and conveyor belting fabrics, and driving belts, including spindle-driving tapes.
If desired, an additional coating of the film-forming material can be applied to one or both sides of the fabric. This can be done, for instance, after weaving and before the hot pressing operation, the gelling of the composition of the further coating then being effected during the pressing operation. Additional coatings of film-forming material can also be calendered on to the fabric after pressing, or preformed sheets of the film-forming material can be bonded to one or both sides of the fabric. Two or more layers of the fabric woven from the coated yarn can also be bonded together, e.g. by additional layers of the film-forming material, and additional layers of that material may also be provided on one or both sides of the laminate.
For some purposes it is not essential that the fabric should have the degree of resistance to penetration by water that is imparted to the fabric when the interstices between the yarns are sealed by the film-forming material. In making fabrics in which the interstices are not so sealed, the hot-pressing step may be omitted and/or the fabric construction may be more open. For example, the number of picks and/or of warp ends per inch may be reduced to such an extent that any hot-pressing operation does not result in the interstices being filled. The fabric may be plain-woven, or special constructions adapted to ride as the film-forming material. Very useful sheet materials can also be made from cellulose acetate yarns with the film-forming material, especially gelled plasticized polyvinyl chloride. When high strength is required have been obtained from cellulose acetate yarn in which i the acetyl value is between 51 and 54%.
High specific adhesion between the film-forming material and the yarn does not appear to be essential when give large spaces between the threads may be adopted. Thus, for example, the coated yarn may be woven to form a leno fabric. Alternatively, the fabric may be formed from the coated yarn by knitting, e.g. by warp knitting or circular knitting, or by netting. To avoid sealing the interstices, the weight of the coating providedround each yarn may also be decreased, but this weight should in general not be less than about 25% of the weight of the yarn, and is preferably at least 50%. It may, of course, be much greater, e.g. between 50 and of the yarn weight. By forming fabrics from the coated yarns (e.g. yarns of high-tenacity regenerated cellulose coated with polyvinyl chloride plasticized with a phosphate plasticizer) without sealing thcinterstices between the yarns, we have obtained fabrics of excellent fire-resistance, of low water-absorption, but not resistant to penetration by water under pressure, of good flexibility and suppleness, and of high tear-strength.
For some purposes, for instance for driving-belts and tapes, high lateral strength is unnecessary. For such purposes fire-resistant, waterproof fabrics can be made by bonding together the coated yarns in parallel alignment without the use of a weft, or with weft yarns very widely spaced apart. The bonding can be effected bypassing the warp of coated yarns through a hot calender or by pressing the warp while hot in a press of the kind used in making rubber belting. The fabric should preferably be cooled before removal from the press, and the operation may be carried out by raising the warp of coated yarns to a temperature slightly above that required to effect a satisfactory bond under the pressure available, and introducing the hot length of warp into the press, which is kept cool. Laminates can be made by bonding together a plurality of layers of weftless fabric made as described. By assembling the fabric layers so that the,
threads in one layer run at an angle to those in the next layer, laminates of good lateral tenacity and tear-strength can be obtained. It is possible to make tubular laminates by winding two or more layers of the weftless fabric or of the warp of coated yarns round a mandrel and effecting the bonding on the mandrel. Tubular laminates so formed can, if desired, be slit to form a sheet, and when the yarns in successive layers run at an angle to one another, the line along which the tube is slit may or may not be parallel to one set of yarns. Very heavy sheets can be made by flattening the tubular laminate and bonding all layers together, instead of slitting the tube.
A further method of making fabrics according to the invention is by bonding together a random assembly of relatively short lengths of the coated yarn. The yarn may, for example, be coated as described above, and, after gelling the coating, the yarn may be cut up into the desired-short lengths, which may range, for instance, from half an inch to several inches. The bonding together of the lengths of yarn may be effected in a press or by a hot calendering operation, in which, if desired, the coated yarns may be supported between two layers of a fabric to which they do not adhere, these fabric layers being subsequently stripped from the bonded fabric. Very openwork fabrics having a pleasing, irregular design can be obtained by the methods described. Such fabrics, where the structure is very open, seem likely to be useful as camouflage materials. They may also be used for decorative purposes, for instance, when exposed beneath a sheet of transparent material such as a glass table top, or bonded to two sheets of transparent or translucent thermoplastic material in making lampshades and the like.
The following examples, in which all the parts are by weight, further illustrate the invention.
Example 2 The yarn to be coated was as specified in Example 1. The film-forming material was a dispersion of ,the following composition:
50 parts of polyvinyl chloride;
20 parts of a mixture of phthalates of secondary alcohols containing 7 to 9 carbon atoms, obtained by hydration of an olefine cut;
20 parts of tricresyl phosphate;
10 parts of di-(methylcyclohexyl) phthalate.
The application of the film-forming material and the subsequent gelling of the coating were effected as described in Example 1.
From the coated yarn a fabric was woven in a plain weave, but using two picks and two ends in place of one, and there being 30 ends and picks per inch, and both warp and weft consisting of the coated yarn. The fabric weighed 19.5 ozs./sq. yd., the weight of the uncoated yarn being 9.5 ozs./sq. yd.
The fabric obtained was supple and of good tenacity and tear-resistance in both directions. Its waterabsorption was low, and although water was able to pass between the interstices of the fabric, immersion of the fabric in water did not result in as substantial a reduction in the tenacity as occurred when a fabric of the regenerated cellulose coated with the same mixture after weaving was subjected to the same test.
Example 3 The process was carried out as in Example 2, but using as the textile material a continuous-filament cellulose acetate yarn of total denier 1,200, filament denier 2.5, and twist 1.5 turns per inch.
It will be understood that the fabric obtained in this example can be subjected to a hot pressing operation, e.g. at a temperature of C., to seal the interstices, if a substantially waterproof fabric is desired.-
Example 4 The process was carried out as in Example 3, except that the yarn was of 1,600 total denier, 1.6 filament denier, and 2.5 turns per inch. The filament tenacity was 4 grns. per denier. The fabric was of higher strength than that of Example 3.
Example 5 The coated yarn was as described in Example 2. A warp of this yarn was drawn through a hot calender with adjacent warp yarns in contact, and in this way the yarns were bonded together to form a weftless fabric. The fabric was waterproof, fire-resistant, supple, of high tenacity in a direction parallel to the run of the yarn, and of good abrasion resistance. Strips of the fabric were suitable for use as driving-tapes for textile apparatus.
Example 6 The coated yarn was as described in Example 3. This yarn was cut into one-inch lengths. The cut yarn was fed into a calender in such a way as to produce a random arrangement of overlapping yarn lengths. During passage through the calender, the yarn lengths were bonded into an openwork fabric of irregular pattern. The fabric was of excellent fire-resistance, of low water-absorption and of considerable strength both longitudinally and laterally.
Example 7 The process was carried out as described in Example 5, except that the yarn was a cellulose acetate yarn as specified in Example 4, and the dispersion with which the yarn was coated had the following composition:
50 parts of polyvinyl chloride; 20 parts of di-(3,5,5-trimethyl-n-hexyl)-phthalate; 10 parts of di-(methylcyclohexyl) phthalate.
Although it is preferred in making a weftless fabric to coat the yarns as a separate operation before bonding them together, we have found that quite good results are also obtainable by effecting coating and bonding substantially simultaneously, for example by feeding the coating composition together with the yarns into a hot calender.
The cellulose acetate of Examples 3, 4, 6 and 7 was of acetyl value between 52 and 54%.
The accompanying diagrammatic drawings illustrate by way of example fabrics made according to the invention.
In the drawings:
Figure 1 is a part sectional view in perspective of a weftless fabric made according to the invention by bonding together in parallel alignment yarns of cellulosic material each having a heavy continuous coating of plasticized polyvinyl chloride.
Figure 2 shows in sectional elevation a laminate made by bonding together two weftless fabrics of the kind shown in Figure 1, in such a way that the yarns in the one are perpendicular to the yarns in the other.
Figure 3 shows a fabric made by bonding together randomly arranged short lengths of cellulosic yarn having a heavy continuous coating of plasticized polyvinyl chloride.
Having described our invention, what we desire to secure by Letters Patent is:
Flexible sheet material of good fire and water-resistance and high strength-weight ratio, said material comprising a woven fabric of coated yarn, each end of said References Cited in the file of this patent UNITED STATES PATENTS 1,673,797 Brown June 19, 1928 8 Neville et a1 July 9, 1940 D'Orio Nov. 29, 1949 Whalen Sept. 19, 1950. Philipps Sept. 4, 1951 Howald et a1. Oct. 16, 1951 Foster Dec. 2, 1952 Rodman Nov. 29, 1955 Schoenberger July 24, 1956 Southwell Nov. 6, 1956
US429323A 1953-05-15 1954-05-12 Fabric woven from coated yarns Expired - Lifetime US2939200A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2939200X 1953-05-15

Publications (1)

Publication Number Publication Date
US2939200A true US2939200A (en) 1960-06-07

Family

ID=10918199

Family Applications (1)

Application Number Title Priority Date Filing Date
US429323A Expired - Lifetime US2939200A (en) 1953-05-15 1954-05-12 Fabric woven from coated yarns

Country Status (2)

Country Link
US (1) US2939200A (en)
GB (1) GB784318A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072512A (en) * 1958-11-27 1963-01-08 Narsom Tissage De Jute De La L Stretchable reinforced sheet material
US3090102A (en) * 1960-12-29 1963-05-21 Owens Corning Fiberglass Corp Process for the manufacture of coated fabric
US3185198A (en) * 1963-09-23 1965-05-25 Eugene D Bryan Fire fighting devices
US3210446A (en) * 1961-12-29 1965-10-05 Sekisui Adoheya Kogyo Kabushik Method of molding a thermoplastic foamed article having a core of thermoplastic coated yarns
US3235712A (en) * 1962-01-29 1966-02-15 Singer Co Prefabricated flexible heating structure
US3511747A (en) * 1963-03-01 1970-05-12 British Nylon Spinners Ltd Bonded textile materials
US3523856A (en) * 1966-10-06 1970-08-11 Griffolyn Company Warning sign
US3623937A (en) * 1968-03-26 1971-11-30 Johnson & Johnson Screen laminate
US3652374A (en) * 1969-03-07 1972-03-28 Kimberly Clark Co Nonblocking nonwoven scrim materials
US3661692A (en) * 1967-11-24 1972-05-09 Deering Milliken Res Corp Coated fabrics
US3695326A (en) * 1970-04-16 1972-10-03 Burlington Industries Inc Tire fabric
US3893488A (en) * 1971-11-10 1975-07-08 Johns Manville Corrosion resistant gel coating lining for composite plastic pipe
USB378760I5 (en) * 1971-01-18 1976-03-09
US6506697B1 (en) 1999-08-05 2003-01-14 Merida Meridian, Inc. Tightly woven paper textile products
US8209785B2 (en) 2010-02-09 2012-07-03 International Textile Group, Inc. Flame resistant fabric made from a fiber blend
US8793814B1 (en) 2010-02-09 2014-08-05 International Textile Group, Inc. Flame resistant fabric made from a fiber blend
US8932965B1 (en) 2008-07-30 2015-01-13 International Textile Group, Inc. Camouflage pattern with extended infrared reflectance separation
US10433593B1 (en) 2009-08-21 2019-10-08 Elevate Textiles, Inc. Flame resistant fabric and garment
US20190350399A1 (en) * 2010-12-03 2019-11-21 3G Mermet Corporation Near Infrared Reflecting Composition and Coverings for Architectural Openings Incorporating Same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943079A (en) * 1974-03-15 1976-03-09 Monsanto Company Discontinuous cellulose fiber treated with plastic polymer and lubricant
ZA835979B (en) * 1982-08-20 1985-12-24 Dunlop Ltd Conveyor belting
GB2183543A (en) * 1985-11-17 1987-06-10 Murray James Mcleod Laminated fabric

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1673797A (en) * 1925-08-11 1928-06-19 Bakelite Corp Process of making impregnated fabrics
US2207156A (en) * 1937-06-09 1940-07-09 Devoe & Raynolds Co Inc Artificial bristle and method of making same
US2489867A (en) * 1946-06-13 1949-11-29 Belmont Radio Corp Method for making electrical coils
US2522656A (en) * 1944-09-21 1950-09-19 Bostitch Inc Method of producing sticks or refills containing fasteners
US2566960A (en) * 1948-10-12 1951-09-04 Owens Corning Fiberglass Corp Mineral fiber mat and process of making same
US2571717A (en) * 1946-02-16 1951-10-16 Libbey Owens Ford Glass Co Shaft for fishing rods
US2619705A (en) * 1952-03-22 1952-12-02 Us Rubber Co Tear-resistant fabric
US2725309A (en) * 1951-06-18 1955-11-29 Du Pont Coated non-woven fabric and method of making
US2755535A (en) * 1953-03-05 1956-07-24 Ind Rayon Corp Coated flexible fabric
US2769222A (en) * 1950-04-10 1956-11-06 Southwell Mary Elizabeth Fabric and method of making same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1673797A (en) * 1925-08-11 1928-06-19 Bakelite Corp Process of making impregnated fabrics
US2207156A (en) * 1937-06-09 1940-07-09 Devoe & Raynolds Co Inc Artificial bristle and method of making same
US2522656A (en) * 1944-09-21 1950-09-19 Bostitch Inc Method of producing sticks or refills containing fasteners
US2571717A (en) * 1946-02-16 1951-10-16 Libbey Owens Ford Glass Co Shaft for fishing rods
US2489867A (en) * 1946-06-13 1949-11-29 Belmont Radio Corp Method for making electrical coils
US2566960A (en) * 1948-10-12 1951-09-04 Owens Corning Fiberglass Corp Mineral fiber mat and process of making same
US2769222A (en) * 1950-04-10 1956-11-06 Southwell Mary Elizabeth Fabric and method of making same
US2725309A (en) * 1951-06-18 1955-11-29 Du Pont Coated non-woven fabric and method of making
US2619705A (en) * 1952-03-22 1952-12-02 Us Rubber Co Tear-resistant fabric
US2755535A (en) * 1953-03-05 1956-07-24 Ind Rayon Corp Coated flexible fabric

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072512A (en) * 1958-11-27 1963-01-08 Narsom Tissage De Jute De La L Stretchable reinforced sheet material
US3090102A (en) * 1960-12-29 1963-05-21 Owens Corning Fiberglass Corp Process for the manufacture of coated fabric
US3210446A (en) * 1961-12-29 1965-10-05 Sekisui Adoheya Kogyo Kabushik Method of molding a thermoplastic foamed article having a core of thermoplastic coated yarns
US3235712A (en) * 1962-01-29 1966-02-15 Singer Co Prefabricated flexible heating structure
US3511747A (en) * 1963-03-01 1970-05-12 British Nylon Spinners Ltd Bonded textile materials
US3185198A (en) * 1963-09-23 1965-05-25 Eugene D Bryan Fire fighting devices
US3523856A (en) * 1966-10-06 1970-08-11 Griffolyn Company Warning sign
US3661692A (en) * 1967-11-24 1972-05-09 Deering Milliken Res Corp Coated fabrics
US3623937A (en) * 1968-03-26 1971-11-30 Johnson & Johnson Screen laminate
US3652374A (en) * 1969-03-07 1972-03-28 Kimberly Clark Co Nonblocking nonwoven scrim materials
US3695326A (en) * 1970-04-16 1972-10-03 Burlington Industries Inc Tire fabric
USB378760I5 (en) * 1971-01-18 1976-03-09
US4001477A (en) * 1971-01-18 1977-01-04 The Carborundum Company Flame resistant cloth
US3893488A (en) * 1971-11-10 1975-07-08 Johns Manville Corrosion resistant gel coating lining for composite plastic pipe
US6506697B1 (en) 1999-08-05 2003-01-14 Merida Meridian, Inc. Tightly woven paper textile products
US8932965B1 (en) 2008-07-30 2015-01-13 International Textile Group, Inc. Camouflage pattern with extended infrared reflectance separation
US10288385B2 (en) 2008-07-30 2019-05-14 International Textile Group, Inc. Camouflage pattern with extended infrared reflectance separation
US10433593B1 (en) 2009-08-21 2019-10-08 Elevate Textiles, Inc. Flame resistant fabric and garment
US8209785B2 (en) 2010-02-09 2012-07-03 International Textile Group, Inc. Flame resistant fabric made from a fiber blend
US8528120B2 (en) 2010-02-09 2013-09-10 International Textile Group, Inc. Flame resistant fabric made from a fiber blend
US8793814B1 (en) 2010-02-09 2014-08-05 International Textile Group, Inc. Flame resistant fabric made from a fiber blend
US20190350399A1 (en) * 2010-12-03 2019-11-21 3G Mermet Corporation Near Infrared Reflecting Composition and Coverings for Architectural Openings Incorporating Same

Also Published As

Publication number Publication date
GB784318A (en)

Similar Documents

Publication Publication Date Title
US2939200A (en) Fabric woven from coated yarns
US2306781A (en) Product containing siliceous fibers and method of making the same
US4258097A (en) Non-woven low modulus fiber fabrics
US2262861A (en) Composite article
US4390585A (en) Durable flexible membrane and method of making same
US2418904A (en) Production of reinforced composite structures
US3620892A (en) Dimensionally stable articles and method of making same
US2485725A (en) Coated elastic fabric
US2949394A (en) Sheet material
US3582444A (en) Self-extinguishing and static charge resistant pile fabric
JP2007512447A (en) Composite yarn comprising a filament yarn and a foamed polymer-containing matrix
US2593553A (en) Apparatus for producing coated fabrics
US2956917A (en) Article of manufacture and process of making same
US2823156A (en) Vinyl coated knit fabric
GB817309A (en) Plastic-coated multiple-ply fabric
US2417453A (en) Process of producing a textile product
US3988519A (en) Laminates of a polymeric film and a nonwoven fabric
US3846205A (en) Method for producing laminated materials of fibers
US3301740A (en) Air pervious composite fabric
US2614954A (en) Composite fabrics bonded together with polyvinyl chloride
US2769300A (en) Composite textile yarn
DE3115786A1 (en) Self-extinguishing textile sheet material and manufacture thereof
US2643684A (en) Reed for textile purposes and method of making same
GB1593048A (en) Yarn products
US2732002A (en) Bonding yarns to polyvinyl chlorides in