US2905615A - Preoxidizing feed to fuels coker - Google Patents

Preoxidizing feed to fuels coker Download PDF

Info

Publication number
US2905615A
US2905615A US656508A US65650857A US2905615A US 2905615 A US2905615 A US 2905615A US 656508 A US656508 A US 656508A US 65650857 A US65650857 A US 65650857A US 2905615 A US2905615 A US 2905615A
Authority
US
United States
Prior art keywords
coking
zone
coke
charge stock
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US656508A
Inventor
Jr William Floyd Arey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US656508A priority Critical patent/US2905615A/en
Application granted granted Critical
Publication of US2905615A publication Critical patent/US2905615A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • C10B55/02Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials
    • C10B55/04Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials with moving solid materials
    • C10B55/08Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials with moving solid materials in dispersed form
    • C10B55/10Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials with moving solid materials in dispersed form according to the "fluidised bed" technique

Definitions

  • the present invention relates to an improved method of increasing the yields of valuableproducts'including high grade coke in the fluid coking for fuels; More particularly it relates to a method of accomplishing the latter by subjecting the charge stock to a preliminary controlled oxidation treatment.
  • the fluid coking process itself is no part of this invention but will be described for completeness.
  • the fluid coking process unit consists basically of a reaction vessel or coker and a heater or burner vessel.
  • the heavy oil to be processed is injected into the reaction vessel containing fluidized particles, e.g., a dense, turbulent, fluidized bed or a transfer line.
  • a staged reactor can be employed' Uniform temperature exists in the coking bed. Uniform mixing in the bed results in virtually isothermal conditions and effects instantaneous distribution of the feed stock.
  • the feed stock In the reaction zone the feed stock is partially vaporized and partially cracked. Efiluent vapors are removed from the coking vessel and sent to a fractionator for the recovery of gas and light distillates thereform. Any heavy bottoms is usually returned to the coking vessel.
  • the coke produced in the process remains in the bed coated on the solid particles. Stripping steam is injected into the stripper to remove oil from the coke particles prior to the passage of the coke to the burner.
  • the heat for carrying out the endothermic coking reaction is generated in the burner or heater vessel, usually separate.
  • a stream of all or a portion of the coke is thus transferred from the reactor to the burner vessel, e.g., a fluid bed or transfer line burner, employing a standpipe and riser system; air being supplied to the riser for conveying the solids to the burner.
  • Suflicient coke or added carbonaceous matter is burned in the burning vessel to bring the solids therein up to a temperature suflicient to maintain the system in heat balance.
  • the burner solids are maintained at a higher temperature than the solids in the reactor.
  • Coke equivalent to about based on the feed, is burned for this purpose. This may amount to approximately 15% to 30% of the coke made in the process.
  • the net coke production which represents the coke make less the coke burned, is withdrawn and the remaining portion recycled to the reactor to supply heat thereto.
  • Heavy hydrocarbon oil feeds suitable for the coking process include heavy crudes, atmospheric and vacuum bottoms from crude, pitch, asphalt, other heavy hydrocarbon petroleum residua or mixtures thereof.
  • feeds can have an initial boiling point of about 700 F., or higher, an A.P.I. gravity of about 0 to 20, and a Conradson' carbon'residuecontent of about 2 to 40 wt. percent. (As to Conradson carbon residue see A.S.T.M. Test D189'41.)
  • solids having a particle size ranging between and 1090' microns in diameter with a preferred particle size range between and 400 microns.
  • Preferably not more than 5% has a particle size below about 75 microns, since small particles tend to aggolmerate or are swept out of the system with the gases.
  • coke is the preferred particulate solid
  • other inert particulate solids such asv spent catalyst, pumice, sand, kieselguhr, Carborundum, and alumina can be employed.
  • This'invention provides an improved specific method of increasing the yields of the more valuable products.
  • the method comprises contacting a heavy hydrocarbon oil with an oxygen containing gas at a temperature below one at which the oil cracks, i.e., one in the range o-flOO to 700 F. in an extraneous oxidation zone.
  • the oil is thus oxidized to a minimum combined oxygen content of 2.5 wt. percent.
  • the oxidized oil free of extraneous oxygen containing gas is then fed to a fluid coker for fuels which is operated in the conventional manner.
  • the products, including oxygenated ones, are" taken overhead from the coker and worked up according to standard procedures.
  • the additional fluid coke product is withdrawn from the process also in the conventional manner, eg from the burner. Further details on this operation are supplied below.
  • the oil is treated as stated previously with an oxygen containing gas. Because of cost considerations air is preferred. Pressure and oxygen concentration can be varied also to produce a smooth operation.
  • the oxidation treatment is carried out while the oil is in the liquid phase, preferably in a packed tower, in a reactor extraneous to the coking reactor after the oil has been preheated in order to obtain the desired temperature. Excess gas is vented before the oxidized oil is sent further downstream. The use of the extraneous reactor with the venting of the oxygen containing gas results in the sending of the oxidized oil to the fluid coker free of extraneous oxygen containing gas. In this manner product degradation and dilution are avoided. Coking in the pretreating oxidizing. step is avoided by staying below cracking temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Coke Industry (AREA)

Description

United States Patent 2,905,515 PREOXIDIZING FEED To FUELS CGKER No Drawing. Application May 2, 1257 Serial No. 656,508
3 Claims. (Cl. 208-7) The present invention relates to an improved method of increasing the yields of valuableproducts'including high grade coke in the fluid coking for fuels; More particularly it relates to a method of accomplishing the latter by subjecting the charge stock to a preliminary controlled oxidation treatment. i
There has recently been developed an improved process known as the fluid coking process for the production of fluid coke and the thermal conversion of heavy hydrocarbon oils to lighter fractions, e.g.,'see U.S. Patents 2,735,349 and 2,735,806.
The fluid coking process itself is no part of this invention but will be described for completeness. The fluid coking process unit consists basically of a reaction vessel or coker and a heater or burner vessel. In a typical operation the heavy oil to be processed is injected into the reaction vessel containing fluidized particles, e.g., a dense, turbulent, fluidized bed or a transfer line. A staged reactor can be employed' Uniform temperature exists in the coking bed. Uniform mixing in the bed results in virtually isothermal conditions and effects instantaneous distribution of the feed stock. In the reaction zone the feed stock is partially vaporized and partially cracked. Efiluent vapors are removed from the coking vessel and sent to a fractionator for the recovery of gas and light distillates thereform. Any heavy bottoms is usually returned to the coking vessel. The coke produced in the process remains in the bed coated on the solid particles. Stripping steam is injected into the stripper to remove oil from the coke particles prior to the passage of the coke to the burner.
The heat for carrying out the endothermic coking reaction is generated in the burner or heater vessel, usually separate. A stream of all or a portion of the coke is thus transferred from the reactor to the burner vessel, e.g., a fluid bed or transfer line burner, employing a standpipe and riser system; air being supplied to the riser for conveying the solids to the burner. Suflicient coke or added carbonaceous matter is burned in the burning vessel to bring the solids therein up to a temperature suflicient to maintain the system in heat balance. The burner solids are maintained at a higher temperature than the solids in the reactor. Coke, equivalent to about based on the feed, is burned for this purpose. This may amount to approximately 15% to 30% of the coke made in the process. The net coke production, which represents the coke make less the coke burned, is withdrawn and the remaining portion recycled to the reactor to supply heat thereto.
Heavy hydrocarbon oil feeds suitable for the coking process include heavy crudes, atmospheric and vacuum bottoms from crude, pitch, asphalt, other heavy hydrocarbon petroleum residua or mixtures thereof. Typically such feeds can have an initial boiling point of about 700 F., or higher, an A.P.I. gravity of about 0 to 20, and a Conradson' carbon'residuecontent of about 2 to 40 wt. percent. (As to Conradson carbon residue see A.S.T.M. Test D189'41.)
It is preferred to operate with solids having a particle size ranging between and 1090' microns in diameter with a preferred particle size range between and 400 microns. Preferably not more than 5% has a particle size below about 75 microns, since small particles tend to aggolmerate or are swept out of the system with the gases. While coke is the preferred particulate solid, other inert particulate solids such asv spent catalyst, pumice, sand, kieselguhr, Carborundum, and alumina can be employed.
The attractiveness of a fluid coking for fuels process is effected by extraneous economic considerations, e.g., the price of heavy oils and fuel oils and gasoline inventories. It is therefore desirable to be able to 'vary the yields from the process so as to get increased produc-, tion of valuable products such as olefins, oxygenated compounds such as alcohols and phenols and particularly fluid coke. The latter is a high grade product which has high potential utility for premium outlets for petroleurn coke, e.g., foundry sand and electrodes used in aluminum production. l
This'invention provides an improved specific method of increasing the yields of the more valuable products. The method comprises contacting a heavy hydrocarbon oil with an oxygen containing gas at a temperature below one at which the oil cracks, i.e., one in the range o-flOO to 700 F. in an extraneous oxidation zone. The oil is thus oxidized to a minimum combined oxygen content of 2.5 wt. percent. The oxidized oil free of extraneous oxygen containing gas is then fed to a fluid coker for fuels which is operated in the conventional manner. The products, including oxygenated ones, are" taken overhead from the coker and worked up according to standard procedures. The additional fluid coke product is withdrawn from the process also in the conventional manner, eg from the burner. Further details on this operation are supplied below.
The oil is treated as stated previously with an oxygen containing gas. Because of cost considerations air is preferred. Pressure and oxygen concentration can be varied also to produce a smooth operation.
The oxidation treatment is carried out while the oil is in the liquid phase, preferably in a packed tower, in a reactor extraneous to the coking reactor after the oil has been preheated in order to obtain the desired temperature. Excess gas is vented before the oxidized oil is sent further downstream. The use of the extraneous reactor with the venting of the oxygen containing gas results in the sending of the oxidized oil to the fluid coker free of extraneous oxygen containing gas. In this manner product degradation and dilution are avoided. Coking in the pretreating oxidizing. step is avoided by staying below cracking temperatures.
The following example demonstrates the results that can be obtained by the process of this invention.
EXAMPLE The 4 vol. percent bottoms from the vacuum distillation of a South Louisiana residuum Was segregated into two fractions. One a control was fed to the fluid coker. The second was preoxidized for 6 hours with air at 600 F. to a combined oxygen content of 4.5 wt. percent. The preoxidized sample was fed to the fluid coker oper- 3 ating at the same conditions as the control. The results follow:
South Louisiana residuum Fem Control Preoxidized Coking conditions:
Temperature, F 955 955 Pressure, p.s.l.g-. 10 10 Feed Rate, w./hr.lw 0.3 0.3
Wt. percent steam di1uent.... 11 11 Products:
03 Gas, wt. percent on feed-.- 6. 8. 0 Ethylene, wt. percent on feed"--- 0. 8 0.9
Propylene, wt. percent on feed--- 1.1 1. 4 .Butanes, wt. percent on feed"... 0. 4 0. 5 Butenes, wt. percent on feed. 0. 6 0.9
0 0 R, wt. percent on feed 11. 8 11.7 05-430 F., vol; percent on feed 15. 5 15. 9 AH gravity-..- 55. 1 55.1
' Aniline point. 82 75 480 F..1,015.F., pe cen feed. 46.2 38.5 430 F.-1,015 F., vol. percent on feed---. 49. 5 42. 4 API gravity- 22. 4 21. 6
. 1,015 F.+bottom, wt. percent on feed-... 21. 4 9. 5 1,015 F.+bottom, v01. percent on feed 21. 3 9. 5 API gravity- 10. 7 8. 2
- Con. carbon,.wt. percent 15.5 17.8 Vol. percent conversion to 1,015 78. 9 90. 5 Coke, wt. percent on feed 13. 7 30. 9 Suliur content, wt. percent on coke- 1. 9 0.9 Nickel, wt. percent on coke 014 O07 -Vanadium, wt. percent on coke 0016 0008 These results demonstrate that coke formation was increased by more than 100%. The coke product prepared according to this process had the undesirable contaminants sulfur, nickel and vanadium decreased at least 50%. These adversely affect the quality of coke used in making electrodes. Great yield per pass of olefins were also obtained.
Some of the advantages of this invention had been adverted to previously. Other advantages. include simplicity of operation and greater flexibility in the fluid coking operation.
The conditions usually encountered in a fluid cokcr for fuels are also listed below for completeness.
Conditions in fluid coker reactor It is to be understood that this invention is not limited to the specific examples which have been ofiered merely as illustrations and that modifications may be made Without departing from the spirit of the invention.
What is claimed is:
1. In a process for'coking a heavy hydrocarbon oil charge stock by contacting the charge stock at a coking temperature with fluidized coke particles in a coking zone at a temperature in the range of 850 to 1200 F. wherein the oil is converted to product vapors and carbonaceous solids are continuously deposited on the coke particles; removing product vapors from the coking zone and sending a portion of the coke particles from the coking zone to a heating zone to increase the temperature of the coke particles and returning a portion of the heated coke particles from the heating zone to the coking zone, the improvement which comprises contacting the charge stock in the liquid phase with an oxygen containing gas at a temperature below its cracking temperature and one in the range of to 700 F. in an extraneous oxidation zone to oxidize the charge stock to a minimum combined oxygen content of 2.5 wt. percent and then feeding the oxidized charge stock free of extraneous oxygen containing gas to the coking zone whereby increased yields of valuable products are produced.
2. The process of claim 1 in which the oxygen containing gas is air.
3. A process according to claim 1 wherein the oil charge stock is contacted with air for about 6 hours at a temperature of about 600 F. to preoxidize the oil charge to a combined oxygen content of about 4.5 weight percent before the oil is passed to said coking zone substantially free of added air.
References Cited in the file of this patent UNITED STATES PATENTS 2,178,329 Story Oct. 31, 1939 2,336,057 Bell Dec. 7, 1943 2,587,703 Deanesly Mar. 4, 1952 2,781,299 De Rosset Feb. 12, 1957 2,789,082 Barr et a1 Apr. 16, 1957

Claims (1)

1. IN A PROCESS FOR COKING A HEAVY HYDROCARBON OIL CHARGE STOCK BY CONTACTING THE CHARGE STOCK AT A COKING TEMPERTURE WITH FLUIDIZED COKE PARTICULES IN A COKING ZONE AT A TEMPERATURE IN A RANGE OF 850* TO 1200* F. WHEREIN THE OIL IS CONVERTED TO PRODUCT VAPORS AND CARBONACEOUSA SOLIDS ARE CONTINUOUSLY DEPOSIT ON THE COKE PARTICLES; REMOVING PRODUCT VAPORS FROM THE COKING ZONE AND SENDING A PORTION OF THE COKE PARTICLES FROM THE COKING ZONE TO A HEATING ZONE TO INCREASE THE TEMPERATURE OF THE COKE PARTICLES AND RETURNING A PORTION OF THE HEATED COKE PARTICLES FROM THE HEATING ZONE TO THE COKING ZONE, THE IMPROVEMENT WHICH COMPRISES CONTACTING THE CHARGE STOCK IN THE LIQUID PHASE WITH AN OXYGEN CONTAINING GAS AT A TEMPERATURE BELOW ITS CRACKING TEMPERATURE AND ONE IN THE RANGE OF 100* TO 700* F. IN AN EXTRANCEOUS OXIDATION ZONE TO OXIDIZE THE CHARGE STOCK TO A MINIMUM COMBINED OXYGEN CONTENT OF 2.5 WT PERCENT AND THEN FEEDING THE OXIDIZED CHARGE STOCK FREE OF EXTRANEOUS OXYGEN CONTAINING GAS TO THE COKING ZONE WHEREBY INCREASED YIELDS OF VALUABLE PRODUCTS ARE PRODUCED.
US656508A 1957-05-02 1957-05-02 Preoxidizing feed to fuels coker Expired - Lifetime US2905615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US656508A US2905615A (en) 1957-05-02 1957-05-02 Preoxidizing feed to fuels coker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US656508A US2905615A (en) 1957-05-02 1957-05-02 Preoxidizing feed to fuels coker

Publications (1)

Publication Number Publication Date
US2905615A true US2905615A (en) 1959-09-22

Family

ID=24633326

Family Applications (1)

Application Number Title Priority Date Filing Date
US656508A Expired - Lifetime US2905615A (en) 1957-05-02 1957-05-02 Preoxidizing feed to fuels coker

Country Status (1)

Country Link
US (1) US2905615A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959535A (en) * 1958-01-10 1960-11-08 Exxon Research Engineering Co Fluid coking recycle operation
US3112181A (en) * 1958-05-08 1963-11-26 Shell Oil Co Production of graphite from petroleum
US3960704A (en) * 1974-08-27 1976-06-01 Continental Oil Company Manufacture of isotropic delayed petroleum coke
US4530757A (en) * 1984-03-29 1985-07-23 Mobil Oil Corporation Process for upgrading heavy crude oils
US5128026A (en) * 1991-05-13 1992-07-07 Conoco Inc. Production of uniform premium coke by oxygenation of a portion of the coke feedstock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2178329A (en) * 1937-01-30 1939-10-31 Texas Co Manufacture of low boiling hydrocarbon oils
US2336057A (en) * 1940-10-28 1943-12-07 Kenyon F Lee Method of converting oil
US2587703A (en) * 1948-02-18 1952-03-04 Universal Oil Prod Co Cracking heavy oils in presence of oxygen
US2781299A (en) * 1954-07-19 1957-02-12 Universal Oil Prod Co Hydrocarbon conversion process
US2789082A (en) * 1954-09-29 1957-04-16 Exxon Research Engineering Co Dual bed process for coking and catalytic cracking of hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2178329A (en) * 1937-01-30 1939-10-31 Texas Co Manufacture of low boiling hydrocarbon oils
US2336057A (en) * 1940-10-28 1943-12-07 Kenyon F Lee Method of converting oil
US2587703A (en) * 1948-02-18 1952-03-04 Universal Oil Prod Co Cracking heavy oils in presence of oxygen
US2781299A (en) * 1954-07-19 1957-02-12 Universal Oil Prod Co Hydrocarbon conversion process
US2789082A (en) * 1954-09-29 1957-04-16 Exxon Research Engineering Co Dual bed process for coking and catalytic cracking of hydrocarbons

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959535A (en) * 1958-01-10 1960-11-08 Exxon Research Engineering Co Fluid coking recycle operation
US3112181A (en) * 1958-05-08 1963-11-26 Shell Oil Co Production of graphite from petroleum
US3960704A (en) * 1974-08-27 1976-06-01 Continental Oil Company Manufacture of isotropic delayed petroleum coke
US4530757A (en) * 1984-03-29 1985-07-23 Mobil Oil Corporation Process for upgrading heavy crude oils
US5128026A (en) * 1991-05-13 1992-07-07 Conoco Inc. Production of uniform premium coke by oxygenation of a portion of the coke feedstock

Similar Documents

Publication Publication Date Title
US2543884A (en) Process for cracking and coking heavy hydryocarbons
US4331533A (en) Method and apparatus for cracking residual oils
US2340974A (en) Refining process
US2768127A (en) Improved residual oil conversion process for the production of chemicals
US4302324A (en) Delayed coking process
US2735804A (en) Stack
US3759822A (en) Coking a feedstock comprising a pyrolysis tar and a heavy cracked oil
US2663675A (en) Conversion of hydrocarbon oils
US3326796A (en) Production of electrode grade petroleum coke
US3193486A (en) Process for recovering catalyst particles in residual oils obtained in the conversion of hydrocarbon oils
US4477334A (en) Thermal cracking of heavy hydrocarbon oils
US2905615A (en) Preoxidizing feed to fuels coker
US4487686A (en) Process of thermally cracking heavy hydrocarbon oils
US3238116A (en) Coke binder oil
US2300151A (en) Art of treating hydrocarbons
US2899380A (en) Charge oil
US2521757A (en) Conversion of heavy hydrocarbon materials
US2853434A (en) Two stage coking of residua feeds in unitary reactor
US2737474A (en) Catalytic conversion of residual oils
GB724117A (en) Improvements in or relating to the cracking of heavy hydrocarbon residues
US2734021A (en) Preparation of catalytic feed stocks
NL8602062A (en) PROCESS FOR PREPARING ADDITIONAL QUALITY KOOKS FROM PYROLYSETER.
US2789085A (en) Preparation and desulfurization of petroleum coke
JPS6324033B2 (en)
US2899376A (en) Liquid phase - boo