US2893864A - Titanium base alloys - Google Patents

Titanium base alloys Download PDF

Info

Publication number
US2893864A
US2893864A US738955A US73895558A US2893864A US 2893864 A US2893864 A US 2893864A US 738955 A US738955 A US 738955A US 73895558 A US73895558 A US 73895558A US 2893864 A US2893864 A US 2893864A
Authority
US
United States
Prior art keywords
titanium
aluminum
impurities
alloys
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US738955A
Inventor
Harris Geoffrey Thomas
Child Henry Cave
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2893864A publication Critical patent/US2893864A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • alpha-titanium alloys are more likely to be more creep resistant due to their hexagonal closepacked structure than the body centre cubic structure beta alloys
  • additions such as aluminum, tin, zirconium, oxygen and nitrogen are known to stabilize the alpha form of titanium
  • such simple alloys are difiicult to manipulate as they are stable alpha in the forging range.
  • the best creep resistance can, so far as we are aware, only be imparted to titanium alloys, as with other alloy systems, when suitable precipitation hardening phases are present.
  • titanium alloys contain all three of:
  • beta-forming elements which do not form intermetallic compounds but which make the alloy duplex (i.e. alpha and beta phases) in the forging range, which is usually about 700 to about 1100 C, and
  • alpha-strengthening or stabilizing agents are aluminum, tin, zirconium, oxygen and nitrogen.
  • beta-forming element which does not form an intermetallic compound is molybdenum, but this may be replaced in whole or in part by one or more of the elements vanadium, niobium and tantalum.
  • any of the known elements which form precipitation hardening compounds with titanium may be used.
  • EXT amples of suitable elements are silicon, chromium, manganese, boron, and beryllium. Iron can be tolerated so long as one of the above elements is present.
  • oxygen and nitrogen are shown as esseii tial because they are invariably present as impurities, oxygen being usually present between 0.1% to 0.2% and nitrogen about 0.1%. If oxygen-free or nitrogen-free alloys could be prepared they would be regarded as being within the scope of the invention so long as aluminum with or without tin and/ or zirconium were present within its or their respective ranges.
  • Beta-formers One or more of:
  • alloys according to the invention are:
  • the heat treatment used for the above tests was cooling from 900 C., ageing for 24 bouts at 500 Q, and air cooling.
  • T. 289 and T. 293 can be compared with the following examples according to the invention: T. 156, T. 107 and T. 295.
  • Example T. 290 can be compared with Examples T. 292 and T. 291 which are according to the invention. It will readily be observed that incorporation of a precipitation hardening addition or additions with or without additional alpha-strengthener(s) and/or beta-former(s) gives rise to markedly improved properties.
  • Alloys according to the invention may also contain carbon up to 2%, with a preferred upper limit of 1% and a preferred lower limit of 0.1%. It has been found that the room temperature tensile strength of the alloys is improved by the addition of carbon in the above range or preferred range. Any of the examples hereinbefore set forth can therefore contain, in addition to oxygen and/ or nitrogen, carbon within the above-stated range or preferred range and serve to improve the room temperature tensile strength of the alloys disclosed.
  • the effect of adding 0.2% carbon to thealloy according to Example T. 51 aforesaid is to improve the tensile properties thereof as follows: ultimate tensile stress 99.2 tons per square inch, elongation 9.9%, and reduction of area 16% We claim:
  • a creep resistant titanium alloy consisting of at least one alpha-strengthening element selected from the group consisting of about 4-6% aluminum and about 2% tin, at least one of the beta-forming elements selected from the group consisting of about 4% molybdenum and about 2% vanadium, a precipitation hardening element selected from the group consisting of about 0.1 to 0.5% silicon, and about 0.2 to 2% manganese, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 4% aluminum,- about 4% molybdenum, one or more of the precipitation hardening elements selected from the group consisting of about 0.1 to 0.5% silicon, and about 0.2 to 0.8% manganese, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 4% molybdenum, about 0.5 to 2% manganese, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 4% aluminum, about 4% molybdenum, about 2% tin, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 6% aluminum, about 2% tin, about 0.5% silicon, about 2% vanadium, and the balance titanium and impurities.
  • Creep resistant titanium alloys consisting essentially of 2-10% aluminum, 18% molybdenum, and 0.1- 2% silicon, balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 5% zirconium, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, about 0.1% boron, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 6% aluminum, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 6% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 6% aluminum, about 5% zirconium, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
  • a creep resistant titanium alloy consisting essentially of about 8% aluminum, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurifies.
  • a creep resistant titanium alloy consisting essentially of about 8% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.

Description

United States Patent TITANIUM BASE ALIiOYS Geofirey Thomas Harris, Sheflield, and Henry Cave Child, Rotherham, England No Drawing. Application June 2, 1958 Serial No. 738,955
Claims priority, application Great Britain February 4, 1958 19 Claims. (Cl. 75-1755) This invention relates to titanium base alloys, and is a continuation-in-part of our application Serial No. 548,235, filed November 21, 1955. The alloys concerned are alpha-titanium (hexagonal close-packed structure) an dhave good creep resistance at 400-500 C. and good forgeability.
It is known that alpha-titanium alloys are more likely to be more creep resistant due to their hexagonal closepacked structure than the body centre cubic structure beta alloys, While additions such as aluminum, tin, zirconium, oxygen and nitrogen are known to stabilize the alpha form of titanium, such simple alloys are difiicult to manipulate as they are stable alpha in the forging range. Also, the best creep resistance can, so far as we are aware, only be imparted to titanium alloys, as with other alloy systems, when suitable precipitation hardening phases are present.
According to this invention, titanium alloys contain all three of:
(a) One or more elements for the strengthening of solid solution of alpha-titanium,
(b) One or more beta-forming elements which do not form intermetallic compounds but which make the alloy duplex (i.e. alpha and beta phases) in the forging range, which is usually about 700 to about 1100 C, and
(0) One or more elements which form precipitation hardening compounds with titanium.
As stated above, examples of alpha-strengthening or stabilizing agents are aluminum, tin, zirconium, oxygen and nitrogen.
, 2,893,864 Patented July 7, 1959 The most readily available beta-forming element which does not form an intermetallic compound is molybdenum, but this may be replaced in whole or in part by one or more of the elements vanadium, niobium and tantalum.-
Any of the known elements which form precipitation hardening compounds with titanium may be used. EXT amples of suitable elements are silicon, chromium, manganese, boron, and beryllium. Iron can be tolerated so long as one of the above elements is present.
The following are suitable ranges for the three essential simultaneous additions to titanium for improved or optimum creep strength and ease of fabrication:
(a) Alpha-strengtheners.0ne or more of:
In this range, oxygen and nitrogen are shown as esseii tial because they are invariably present as impurities, oxygen being usually present between 0.1% to 0.2% and nitrogen about 0.1%. If oxygen-free or nitrogen-free alloys could be prepared they would be regarded as being within the scope of the invention so long as aluminum with or without tin and/ or zirconium were present within its or their respective ranges.
(b) Beta-formers.-One or more of:
Examples of alloys according to the invention are:
Composition in weight percent. Balance T1 and impurities Example No.
Al Sn Zr Mo V Nb Ta Si Cr Mn B Fe Be 2 4 4 0. 5 4 4 0. 1 0. 2 0. 2 4 4 0. 2 0. 4 0. 4 4 4 0.3 0. 6 0. 6 4 4 0. 4 0.8 0.8 4 2 4 0. 5 4 2 4 0. 5 1 4 2 4 2 4 2 4 0. 5 1 4 2 4 2 4 3 4 0. 5 4 2 5 4 0. 5 4 8 4 0. 5 2 10 4 0. 5 4 2 4 0. 5 0. l 4 2 4 0. 5 0. 4 2 4 0. 5 0. 5 4 2 4 0. 5 O. 25 4 2 4 0. 1 4 2 4 0. 5 0. 5 4 2 4 0. 1 4 2 4 0. 3 4 2 4 0. 4 4 2 4 0. 5 4 2 4 0. 6 4 2 4 0. 4 2 4 l 4 2 4 2 6 2 2 0. 5 6 4 0. 5
air
Composition in weight percent. Balance T1 and impurities Example No.
awn mm m F oauu m n w m m m e m mm m d T Md .m g M 0 e t "m h fl wt S .0 fih n m &02 6 m m o T m 1111 .m m u m am w m 3.. m. e u 0 m m n m m mam .m e P 0 e e n m 5.3 O O o m aw mh n I. Q n m W 3. n he 6W7 n P.m m In s w e a m w t s m 100 b V r. e n .UT 1 e u u n d m g P m w. o n B n u 0 m f O C %M 2 08 n m 8 m W W mo w mm e m cm t a m .m 0 0 0 0 0 F 001 mm m M m t mm m4 g. a 0 a e1 1 n mum m m m .1" B u n n e H S w .I m 0. m0 n n n u N b S e H p o m W we 0 n n n m m m m 1 m we m woman maamnwm mnmnmmaa mm m m am m m M m z 1 am? gm m m m .mfi .I mwm w MIR u m m MT) I" a m 3 1.00 w o n n m 0.... u n u m v m me 54. 5385 7472998 Pl 3 m m. n 14683Rw 5& -o 5024 0 E 55555 5%5555555555555555555 T 11 ullmw lulmmm llllmlmfioammwml w nbP nw rum 0000 01.000000000000000000000 tt mm .l mm M n n .16 u n n n m w E .m Wm mtm LLLI w u n u n n n w e n s.... 3 3 H .1 9 mm 1.21 n u u u n H mm w m mmmunmwma wwnummnmwwwmnmmammmm 1 m 0 .368 b m mm m e& m 0% M W m 1 N m m m wma m m u v: 5 f v m H m m m m w s mmnm uwunmu muonnso T m o m m m u m m e w w w 0000 00000 0 0 LL0 1 LL m m m. u n p Iv m 44 44 4 211822445 R M mm 1 M. m m m m m 0 t 5 u a n u u m m. mu m c nnmmmm mmmmmmm u n N m m mmmm r 15 n u u u m m m m 0 0 0000 00000 00 n N m z m m u 1 o m m m m m m m 2.2. e u 2 28142262222222222222222 m g T1 9 9172 6 n n S .m m pm m c 1wmmmnmm m e a Rm 0 m mmw 00 00 0000 0 M m n s s. .w m m mm 6 e C 0 m P m m g M10 1 m m S :m M W cm e S e .1 h o m a m n mu m m u S m r. m e a 4 U 1 ion a e W x r t s k i m m E .m m 1 1 T T TT 1 BT T T .m m H mm TTFRFRTTRRR Tm d.m P
The heat treatment used for the above tests was cooling from 900 C., ageing for 24 bouts at 500 Q, and air cooling.
cording to the invention which have 4% A1, 2% Sn and 4% Mo together with precipitation hardening additions with or without additional alpha-strengthener(s) and/or beta-former(s) Examples T. 289 and T. 293 can be compared with the following examples according to the invention: T. 156, T. 107 and T. 295. Example T. 290 can be compared with Examples T. 292 and T. 291 which are according to the invention. It will readily be observed that incorporation of a precipitation hardening addition or additions with or without additional alpha-strengthener(s) and/or beta-former(s) gives rise to markedly improved properties.
Alloys according to the invention may also contain carbon up to 2%, with a preferred upper limit of 1% and a preferred lower limit of 0.1%. It has been found that the room temperature tensile strength of the alloys is improved by the addition of carbon in the above range or preferred range. Any of the examples hereinbefore set forth can therefore contain, in addition to oxygen and/ or nitrogen, carbon within the above-stated range or preferred range and serve to improve the room temperature tensile strength of the alloys disclosed. For example, the effect of adding 0.2% carbon to thealloy according to Example T. 51 aforesaid is to improve the tensile properties thereof as follows: ultimate tensile stress 99.2 tons per square inch, elongation 9.9%, and reduction of area 16% We claim:
1. A creep resistant titanium alloy consisting of at least one alpha-strengthening element selected from the group consisting of about 4-6% aluminum and about 2% tin, at least one of the beta-forming elements selected from the group consisting of about 4% molybdenum and about 2% vanadium, a precipitation hardening element selected from the group consisting of about 0.1 to 0.5% silicon, and about 0.2 to 2% manganese, and the balance titanium and impurities.
2. A creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
3. A creep resistant titanium alloy consisting essentially of about 4% aluminum,- about 4% molybdenum, one or more of the precipitation hardening elements selected from the group consisting of about 0.1 to 0.5% silicon, and about 0.2 to 0.8% manganese, and the balance titanium and impurities.
4. A creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 4% molybdenum, about 0.5 to 2% manganese, and the balance titanium and impurities.
5. A creep resistant titanium alloy consisting essentially of about 4% aluminum, about 4% molybdenum, about 2% tin, and the balance titanium and impurities.
6. A creep resistant titanium alloy consisting essentially of about 6% aluminum, about 2% tin, about 0.5% silicon, about 2% vanadium, and the balance titanium and impurities.
7. Creep resistant titanium alloys consisting essentially of 2-10% aluminum, 18% molybdenum, and 0.1- 2% silicon, balance titanium and impurities.
8. Alloys according to claim 7, containing in addition at least one of the alpha-strengthening elements selected from the group consisting of Percent Tin Up to 8 Zirconium Up to 10 9. Alloys according to claim 7, containing in addi tion at least one of the beta-forming elements selected from the group consisting of Percent Vanadium Up to 10 Niobium Up to 10 Tantalum Up to 10 10. Alloys according to claim 7, containing in addition at least one precipitation hardening element selected from the group consisting of Percent Manganese Up to 2 Boron Up to 0.5 Beryllium Up to 0.5
Percent Oxygen 0.02-0.3 Nitrogen 0.02-0.2 Carbon 0.1- 1
and the balance titanium.
13. A creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 5% zirconium, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
14. A creep resistant titanium alloy consisting essentially of about 4% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, about 0.1% boron, and the balance titanium and impurities.
15. A creep resistant titanium alloy consisting essentially of about 6% aluminum, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities. I
16. A creep resistant titanium alloy consisting essentially of about 6% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
17. A creep resistant titanium alloy consisting essentially of about 6% aluminum, about 5% zirconium, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
18. A creep resistant titanium alloy consisting essentially of about 8% aluminum, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurifies.
19. A creep resistant titanium alloy consisting essentially of about 8% aluminum, about 2% tin, about 4% molybdenum, about 0.5% silicon, and the balance titanium and impurities.
References Cited in the file of this patent UNITED STATES PATENTS 2,810,643 Methe Oct. 22, 1957

Claims (1)

  1. 7. CREEP RESISTANT TITANIUM ALLOYS CONSISTING ESSENTIAL= LY OF 2-10% ALUMINUM, 1-8% MOLYBDENUM, AND 0.1= 2% SILICON, BALANCE TITANIUM AND IMPURITIES.
US738955A 1958-02-04 1958-06-02 Titanium base alloys Expired - Lifetime US2893864A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2893864X 1958-02-04

Publications (1)

Publication Number Publication Date
US2893864A true US2893864A (en) 1959-07-07

Family

ID=10917322

Family Applications (1)

Application Number Title Priority Date Filing Date
US738955A Expired - Lifetime US2893864A (en) 1958-02-04 1958-06-02 Titanium base alloys

Country Status (1)

Country Link
US (1) US2893864A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938789A (en) * 1959-05-18 1960-05-31 Kennecott Copper Corp Titanium-molybdenum alloys with compound formers
US3061427A (en) * 1960-04-28 1962-10-30 Titanium Metals Corp Alloy of titanium
US3069259A (en) * 1959-11-10 1962-12-18 Margolin Harold Titanium base alloy
US3113227A (en) * 1960-03-21 1963-12-03 Crucible Steel Co America Titanium alloy articles resistant to hydrogen absorption for dynamoelectric machines
US3118828A (en) * 1957-07-17 1964-01-21 Ici Ltd Electrode structure with titanium alloy base
US3268329A (en) * 1963-08-29 1966-08-23 Titanium Metals Corp Titanium base alloy
US3343951A (en) * 1963-10-17 1967-09-26 Titanium Metals Corp Titanium base alloy
US3370946A (en) * 1965-09-21 1968-02-27 Reactive Metals Inc Titanium alloy
US3378368A (en) * 1965-01-04 1968-04-16 Imp Metal Ind Kynoch Ltd Titanium-base alloys
US3411901A (en) * 1964-02-15 1968-11-19 Defense Germany Alloy
DE1289992B (en) * 1964-09-18 1969-02-27 Imp Metal Ind Kynoch Ltd Use of titanium alloys for high-strength, corrosion-resistant objects that are exposed to atmospheres contaminated with fluorine
US3457068A (en) * 1965-04-19 1969-07-22 Titanium Metals Corp Titanium-base alloys
US3510295A (en) * 1965-05-10 1970-05-05 Titanium Metals Corp Titanium base alloy
US3619184A (en) * 1968-03-14 1971-11-09 Reactive Metals Inc Balanced titanium alloy
US3833363A (en) * 1972-04-05 1974-09-03 Rmi Co Titanium-base alloy and method of improving creep properties
US3986868A (en) * 1969-09-02 1976-10-19 Lockheed Missiles Space Titanium base alloy
US4067734A (en) * 1973-03-02 1978-01-10 The Boeing Company Titanium alloys
US4229216A (en) * 1979-02-22 1980-10-21 Rockwell International Corporation Titanium base alloy
US4830823A (en) * 1987-01-28 1989-05-16 Ohara Co., Ltd. Dental titanium alloy castings
US4889170A (en) * 1985-06-27 1989-12-26 Mitsubishi Kinzoku Kabushiki Kaisha High strength Ti alloy material having improved workability and process for producing the same
US4943412A (en) * 1989-05-01 1990-07-24 Timet High strength alpha-beta titanium-base alloy
US6001495A (en) * 1997-08-04 1999-12-14 Oregon Metallurgical Corporation High modulus, low-cost, weldable, castable titanium alloy and articles thereof
US20050202271A1 (en) * 2004-03-12 2005-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium alloy having excellent high-temperature oxidation and corrosion resistance
US20070131314A1 (en) * 2004-06-02 2007-06-14 Atsuhiko Kuroda Titanium alloys and method for manufacturing titanium alloy materials
EP1842933A1 (en) * 2006-04-04 2007-10-10 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
US20070257213A1 (en) * 2006-04-20 2007-11-08 Powerchip Semiconductor Corp. Logistic station and detection device
US20080181809A1 (en) * 2004-07-30 2008-07-31 Public Stock Company "Vsmpo-Avisma Corporation Titanium-Based Alloy
US20090181794A1 (en) * 2008-01-16 2009-07-16 Advanced International Multitech Co., Ltd. Titanium-aluminium alloy applied to golf club head
US20110268602A1 (en) * 2010-04-30 2011-11-03 Questek Innovations Llc Titanium alloys
US20120052318A1 (en) * 2010-08-31 2012-03-01 Cap Daniel P Structure having nanophase titanium node and nanophase aluminum struts
US20120107132A1 (en) * 2012-01-12 2012-05-03 Titanium Metals Corporation Titanium alloy with improved properties
JP2014058740A (en) * 2012-07-19 2014-04-03 Rti Internat Metals Inc Titanium alloy having good oxidation resistance and high strength at high temperature
US20140185977A1 (en) * 2003-06-24 2014-07-03 Aktiebolaget Skf Alloy For A Bearing Component
US20150080150A1 (en) * 2013-09-16 2015-03-19 O-Ta Precision Industry Co., Ltd. Golf club head and low density alloy thereof
US9314678B2 (en) 2012-11-08 2016-04-19 Karsten Manufacturing Corporation Golf club head
US20160201165A1 (en) * 2015-01-12 2016-07-14 Ati Properties, Inc. Titanium alloy
RU2614228C1 (en) * 2016-03-01 2017-03-23 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Titanium-based cast alloy
US9732408B2 (en) 2011-04-29 2017-08-15 Aktiebolaget Skf Heat-treatment of an alloy for a bearing component
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US20170306450A1 (en) * 2016-04-25 2017-10-26 Arconic Inc. Bcc materials of titanium, aluminum, niobium, vanadium, and molybdenum, and products made therefrom
RU2634557C2 (en) * 2016-03-17 2017-10-31 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Titanium-based casting alloy
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
RU2657892C2 (en) * 2014-02-13 2018-06-18 Титаниум Металс Корпорейшн High strength titanium alloy with alpha-beta structure
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
RU2675673C2 (en) * 2017-05-12 2018-12-21 Хермит Эдванст Технолоджиз ГмбХ Titanium-based alloy
RU2681030C2 (en) * 2017-05-12 2019-03-01 Хермит Эдванст Технолоджиз ГмбХ Titanium-based alloy
RU2690257C1 (en) * 2018-11-28 2019-05-31 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Titanium-based alloy
RU2691690C2 (en) * 2017-05-12 2019-06-17 Хермит Эдванст Технолоджиз ГмбХ Titanium alloy and the method of manufacturing the casing for products that experience cyclic loads
RU2691787C2 (en) * 2017-05-12 2019-06-18 Хермит Эдванст Технолоджиз ГмбХ Titanium-based alloy
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
RU2706916C2 (en) * 2017-05-12 2019-11-21 Хермит Эдванст Технолоджиз ГмбХ Blank for manufacturing elastic elements of a titanium-based alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
RU2710703C1 (en) * 2019-07-19 2020-01-09 Евгений Владимирович Облонский Titanium-based armor alloy
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
RU2774671C2 (en) * 2018-05-07 2022-06-21 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи High-strength titanium alloys
US11421303B2 (en) 2017-10-23 2022-08-23 Howmet Aerospace Inc. Titanium alloy products and methods of making the same
US20220389542A1 (en) * 2021-06-03 2022-12-08 Fusheng Precision Co., Ltd. Golf club head alloy and method for producing golf club head
US11708630B2 (en) 2018-09-25 2023-07-25 Titanium Metals Corporation Titanium alloy with moderate strength and high ductility
US11780003B2 (en) 2010-04-30 2023-10-10 Questek Innovations Llc Titanium alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810643A (en) * 1953-08-13 1957-10-22 Allegheny Ludlum Steel Titanium base alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810643A (en) * 1953-08-13 1957-10-22 Allegheny Ludlum Steel Titanium base alloys

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118828A (en) * 1957-07-17 1964-01-21 Ici Ltd Electrode structure with titanium alloy base
US2938789A (en) * 1959-05-18 1960-05-31 Kennecott Copper Corp Titanium-molybdenum alloys with compound formers
US3069259A (en) * 1959-11-10 1962-12-18 Margolin Harold Titanium base alloy
US3113227A (en) * 1960-03-21 1963-12-03 Crucible Steel Co America Titanium alloy articles resistant to hydrogen absorption for dynamoelectric machines
US3061427A (en) * 1960-04-28 1962-10-30 Titanium Metals Corp Alloy of titanium
US3268329A (en) * 1963-08-29 1966-08-23 Titanium Metals Corp Titanium base alloy
US3343951A (en) * 1963-10-17 1967-09-26 Titanium Metals Corp Titanium base alloy
US3411901A (en) * 1964-02-15 1968-11-19 Defense Germany Alloy
DE1289992B (en) * 1964-09-18 1969-02-27 Imp Metal Ind Kynoch Ltd Use of titanium alloys for high-strength, corrosion-resistant objects that are exposed to atmospheres contaminated with fluorine
US3378368A (en) * 1965-01-04 1968-04-16 Imp Metal Ind Kynoch Ltd Titanium-base alloys
US3457068A (en) * 1965-04-19 1969-07-22 Titanium Metals Corp Titanium-base alloys
US3510295A (en) * 1965-05-10 1970-05-05 Titanium Metals Corp Titanium base alloy
US3370946A (en) * 1965-09-21 1968-02-27 Reactive Metals Inc Titanium alloy
US3619184A (en) * 1968-03-14 1971-11-09 Reactive Metals Inc Balanced titanium alloy
US3986868A (en) * 1969-09-02 1976-10-19 Lockheed Missiles Space Titanium base alloy
US3833363A (en) * 1972-04-05 1974-09-03 Rmi Co Titanium-base alloy and method of improving creep properties
USRE29946E (en) * 1972-04-05 1979-03-27 Rmi Company Titanium-base alloy and method of improving creep properties
US4067734A (en) * 1973-03-02 1978-01-10 The Boeing Company Titanium alloys
US4229216A (en) * 1979-02-22 1980-10-21 Rockwell International Corporation Titanium base alloy
US4889170A (en) * 1985-06-27 1989-12-26 Mitsubishi Kinzoku Kabushiki Kaisha High strength Ti alloy material having improved workability and process for producing the same
US4830823A (en) * 1987-01-28 1989-05-16 Ohara Co., Ltd. Dental titanium alloy castings
US4943412A (en) * 1989-05-01 1990-07-24 Timet High strength alpha-beta titanium-base alloy
US6001495A (en) * 1997-08-04 1999-12-14 Oregon Metallurgical Corporation High modulus, low-cost, weldable, castable titanium alloy and articles thereof
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US20140185977A1 (en) * 2003-06-24 2014-07-03 Aktiebolaget Skf Alloy For A Bearing Component
US20050202271A1 (en) * 2004-03-12 2005-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium alloy having excellent high-temperature oxidation and corrosion resistance
US7166367B2 (en) * 2004-03-12 2007-01-23 Kobe Steel, Ltd. Titanium alloy having excellent high-temperature oxidation and corrosion resistance
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US20070131314A1 (en) * 2004-06-02 2007-06-14 Atsuhiko Kuroda Titanium alloys and method for manufacturing titanium alloy materials
US20080181809A1 (en) * 2004-07-30 2008-07-31 Public Stock Company "Vsmpo-Avisma Corporation Titanium-Based Alloy
EP1842933A1 (en) * 2006-04-04 2007-10-10 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
US8512486B2 (en) 2006-04-04 2013-08-20 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
US20070257213A1 (en) * 2006-04-20 2007-11-08 Powerchip Semiconductor Corp. Logistic station and detection device
US20090181794A1 (en) * 2008-01-16 2009-07-16 Advanced International Multitech Co., Ltd. Titanium-aluminium alloy applied to golf club head
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10471503B2 (en) 2010-04-30 2019-11-12 Questek Innovations Llc Titanium alloys
US11780003B2 (en) 2010-04-30 2023-10-10 Questek Innovations Llc Titanium alloys
US20110268602A1 (en) * 2010-04-30 2011-11-03 Questek Innovations Llc Titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US8784998B2 (en) * 2010-08-31 2014-07-22 Aerojet Rocketdyne Of De, Inc. Structure having nanophase titanium node and nanophase aluminum struts
US20120052318A1 (en) * 2010-08-31 2012-03-01 Cap Daniel P Structure having nanophase titanium node and nanophase aluminum struts
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US9732408B2 (en) 2011-04-29 2017-08-15 Aktiebolaget Skf Heat-treatment of an alloy for a bearing component
CN104169449A (en) * 2012-01-12 2014-11-26 钛金属公司 Titanium alloy with improved properties
RU2627312C2 (en) * 2012-01-12 2017-08-07 Титаниум Металз Корпорейшн Titanium alloy with improved properties
US10119178B2 (en) * 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
WO2013106788A1 (en) * 2012-01-12 2013-07-18 Titanium Metals Corporation Titanium alloy with improved properties
US20120107132A1 (en) * 2012-01-12 2012-05-03 Titanium Metals Corporation Titanium alloy with improved properties
CN110144496A (en) * 2012-01-12 2019-08-20 钛金属公司 Titanium alloy with improved performance
CN110144496B (en) * 2012-01-12 2022-09-23 钛金属公司 Titanium alloy with improved properties
US20190169712A1 (en) * 2012-01-12 2019-06-06 Titanium Metals Corporation Titanium alloy with improved properties
US20190169713A1 (en) * 2012-01-12 2019-06-06 Titanium Metals Corporation Titanium alloy with improved properties
RU2688972C2 (en) * 2012-01-12 2019-05-23 Титаниум Металз Корпорейшн Titanium alloy with improved properties
EP2802676A4 (en) * 2012-01-12 2015-09-30 Titanium Metals Corp Titanium alloy with improved properties
CN103572094B (en) * 2012-07-19 2018-06-05 Rti国际金属公司 There is good oxidation resistance and the titanium alloy of high intensity at high temperature
JP2014058740A (en) * 2012-07-19 2014-04-03 Rti Internat Metals Inc Titanium alloy having good oxidation resistance and high strength at high temperature
CN108486409A (en) * 2012-07-19 2018-09-04 Rti国际金属公司 Titanium alloy with good oxidation resistance and high intensity at high temperature
US20150192031A1 (en) * 2012-07-19 2015-07-09 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
US9957836B2 (en) * 2012-07-19 2018-05-01 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
US9314678B2 (en) 2012-11-08 2016-04-19 Karsten Manufacturing Corporation Golf club head
US10105578B2 (en) 2012-11-08 2018-10-23 Karsten Manufacturing Corporation Golf club heads with protective layer and methods of manufacturing the golf club heads
US9757626B2 (en) 2012-11-08 2017-09-12 Karsten Manufacturing Corporation Golf club heads with protective layer and methods of manufacturing the golf club heads
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US20150080150A1 (en) * 2013-09-16 2015-03-19 O-Ta Precision Industry Co., Ltd. Golf club head and low density alloy thereof
US9750990B2 (en) * 2013-09-16 2017-09-05 O-Ta Precision Industry Co., Ltd. Golf club head and low density alloy thereof
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10066282B2 (en) * 2014-02-13 2018-09-04 Titanium Metals Corporation High-strength alpha-beta titanium alloy
RU2657892C2 (en) * 2014-02-13 2018-06-18 Титаниум Металс Корпорейшн High strength titanium alloy with alpha-beta structure
RU2725395C1 (en) * 2014-02-13 2020-07-02 Титаниум Металс Корпорейшн High-strength titanium alloy with alpha-beta structure
US20160201165A1 (en) * 2015-01-12 2016-07-14 Ati Properties, Inc. Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10094003B2 (en) * 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
RU2614228C1 (en) * 2016-03-01 2017-03-23 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Titanium-based cast alloy
RU2634557C2 (en) * 2016-03-17 2017-10-31 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Titanium-based casting alloy
CN109257932A (en) * 2016-04-25 2019-01-22 奥科宁克有限公司 Titanium, aluminium, niobium, the BCC material of vanadium and molybdenum and the product that is made from it
US20170306450A1 (en) * 2016-04-25 2017-10-26 Arconic Inc. Bcc materials of titanium, aluminum, niobium, vanadium, and molybdenum, and products made therefrom
RU2675673C2 (en) * 2017-05-12 2018-12-21 Хермит Эдванст Технолоджиз ГмбХ Titanium-based alloy
RU2706916C2 (en) * 2017-05-12 2019-11-21 Хермит Эдванст Технолоджиз ГмбХ Blank for manufacturing elastic elements of a titanium-based alloy
RU2691690C2 (en) * 2017-05-12 2019-06-17 Хермит Эдванст Технолоджиз ГмбХ Titanium alloy and the method of manufacturing the casing for products that experience cyclic loads
RU2691787C2 (en) * 2017-05-12 2019-06-18 Хермит Эдванст Технолоджиз ГмбХ Titanium-based alloy
RU2681030C2 (en) * 2017-05-12 2019-03-01 Хермит Эдванст Технолоджиз ГмбХ Titanium-based alloy
US11421303B2 (en) 2017-10-23 2022-08-23 Howmet Aerospace Inc. Titanium alloy products and methods of making the same
US11384413B2 (en) 2018-04-04 2022-07-12 Ati Properties Llc High temperature titanium alloys
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
RU2774671C2 (en) * 2018-05-07 2022-06-21 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи High-strength titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
US11920231B2 (en) 2018-08-28 2024-03-05 Ati Properties Llc Creep resistant titanium alloys
US11708630B2 (en) 2018-09-25 2023-07-25 Titanium Metals Corporation Titanium alloy with moderate strength and high ductility
RU2690257C1 (en) * 2018-11-28 2019-05-31 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Titanium-based alloy
RU2710703C1 (en) * 2019-07-19 2020-01-09 Евгений Владимирович Облонский Titanium-based armor alloy
US20220389542A1 (en) * 2021-06-03 2022-12-08 Fusheng Precision Co., Ltd. Golf club head alloy and method for producing golf club head
CN115505785A (en) * 2021-06-03 2022-12-23 复盛应用科技股份有限公司 Golf club head alloy and manufacturing method of golf club head

Similar Documents

Publication Publication Date Title
US2893864A (en) Titanium base alloys
US2754203A (en) Thermally stable beta alloys of titanium
US7910052B2 (en) Near β-type titanium alloy
US3203794A (en) Titanium-high aluminum alloys
US6786985B2 (en) Alpha-beta Ti-Ai-V-Mo-Fe alloy
US3615378A (en) Metastable beta titanium-base alloy
US4229216A (en) Titanium base alloy
US2880087A (en) Titanium-aluminum alloys
JPS63157831A (en) Heat-resisting aluminum alloy
US10837085B2 (en) Beta titanium alloy sheet for elevated temperature applications
JPH04202729A (en) Ti alloy excellent in heat resistance
US2669513A (en) Titanium base alloys containing aluminum and tin
US2892706A (en) Titanium base alloys
GB2023651A (en) Iron-nickel-chromium age-hardenable alloys
US5108700A (en) Castable nickel aluminide alloys for structural applications
US2892705A (en) Stable, high strength, alpha titanium base alloys
US4944914A (en) Titanium base alloy for superplastic forming
US4722828A (en) High-temperature fabricable nickel-iron aluminides
US3666453A (en) Titanium-base alloys
US2777768A (en) Alpha titanium alloys
US2880089A (en) Titanium base alloys
JPS61147834A (en) Corrosion-resistant high-strength ni alloy
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US3791821A (en) Tantalum base alloys