US2877716A - Treatment of metal surfaces in frictional contact to increase the friction therebetween - Google Patents

Treatment of metal surfaces in frictional contact to increase the friction therebetween Download PDF

Info

Publication number
US2877716A
US2877716A US602711A US60271156A US2877716A US 2877716 A US2877716 A US 2877716A US 602711 A US602711 A US 602711A US 60271156 A US60271156 A US 60271156A US 2877716 A US2877716 A US 2877716A
Authority
US
United States
Prior art keywords
zeolite
dry
gel
rail
frictional contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US602711A
Inventor
John W Ryznar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
National Aluminate Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aluminate Corp filed Critical National Aluminate Corp
Priority to US602711A priority Critical patent/US2877716A/en
Application granted granted Critical
Publication of US2877716A publication Critical patent/US2877716A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B5/00Rails; Guard rails; Distance-keeping means for them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C15/00Maintaining or augmenting the starting or braking power by auxiliary devices and measures; Preventing wheel slippage; Controlling distribution of tractive effort between driving wheels
    • B61C15/08Preventing wheel slippage
    • B61C15/085Preventing wheel slippage by dispersion of a fluid, e.g. containing chemicals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers

Definitions

  • This invention relates to a new and improved adhesion treatment of metal surfaces and more particularly to a method and composition for increasing the coefficient of friction between metal surfaces capable of motion one with respect to the other.
  • the invention is especially concerned with the provision of chemical means for preventing wheel slippage between locomotive wheels and rails.
  • the invention contemplates the improvement of frictional contact be tween metal surfaces which are susceptible of slippage one with respect to the other, as, for example, the slip page which occurs between a shaft and a sheave, gear or pinion frictionally mounted on said shaft.
  • rail slip is said to result from a tough invisible oil film on the wear band of the rail. Traffic and heat destroy this film and high adhesion results.
  • a water film forms across the wear band where it may contact oil deposits on the edge of a rail with the result that a film of oil creeps through and replaces the water film.
  • the oil deposits on the rail sides acts as reservoirs for the formation of new oil films and water acts as the transporting agent.
  • the oil deposits on the rail come from journal box oil leakage by way of the outside face and outer portion of the tread of the car wheels. There are other sources of contamination such as road crossings, rail lubricators, and the like.
  • an object of this invention to provide a new and improved method for enhancing the frictional contact between two metalsurfaces capable of motion one with respect to the other.
  • Another object of this invention is to provide a method for raising the coefficient of friction between railway car wheels and rails.
  • Still another object is to raise the coefiicient of .friction between railway car wheels and rails having an oil film thereon.
  • a further object is to provide a method of decreasing slippage between railway wheels and rails.
  • Another object is to provide a chemical treatment .to prevent locomotive slippage on dry, wet, or oily rails.
  • Still a further object is to enable railroad locomotives to utilize more of their tractive forces on wet oily rails than has heretofore been considered possible.
  • An additional object of the invention is to produce a railway rail containing an adherent coating of a mate rial which substantially prevents slippage between the rail and a locomotive or railway car wheel.
  • Still a further object is to provide a method of substantially preventing slippage between the bearing surfaces of a railway rail and a locomotive or a railway car wheel by applying to the rail and/or wheel aliquid coating material which evaporates leaving a thin film or coating of a slip inhibiting substance.
  • the coefiicient of friction between contacting metal surfaces capable of motion one with respect to the other. can be increased by applying to at least one of the contacting surfaces a thin film of synthetic alumina-silicate zeolite gels and sols, either washed free of salts or as prepared.
  • the invention in its preferred embodiment is particularly applicable to improving the coefiicient of friction between railway tracks and railway engine and car wheels by applying to at least one of the contacting surfaces thereof a film of zeolite.
  • FIG. 1 shows a perspective view of a section of a railway rail containing a coating consisting essentially of a zeolite film applied to the bearing surface thereof.
  • Fig. 2 is a perspective view of a flanged wheel used on rail-type transportation vehicles such as railroad engines and cars.
  • the rail 1 has a bearing surface 2 to which a continuous coating 3 of zeolite is applied.
  • the coating of zeolite may also extend over the surface 4 which comes into contact with the wheel flange of the wheels of railway engines and railway cars; although for the most part it is more desirable to' leave the surface 4 uncoated to minimize wear of the wheelfianges.
  • the wheel 5 having a flange 6 contains a continuous coating 7 consisting essentially of zeolite applied to the load bearing surface thereof. While it is usually more desirable to leave the surface 8 of the wheel flange un coated for the foregoing reason, a coating of zeolite may alsobe applied to this surface of the flange which comes into contact with the rail.
  • synthetic alumina-silicate zeolite can be prepared in the form of aqueous gels or sols.
  • an aqueous gel or sol of zeolite is applied either to the steel rail or to the contact surface of a locomotive wheel or railway car wheel or to both the rail and the wheel.
  • the zeolite sol or gel is applied to a moving metal surface such as an engine drive wheel it is desirable that the product by dry 'or semi-dry by the time the wheel contacts the rail.
  • the application of the sol or gel is advantageously effected by a method involving blowing with air or other gas which assists in the evaporation of the volatile liquid.
  • the zeolite in gel form is ap plied by applicators suited for the application of gellike or paste materials such as a rotating wheel to make contact with said metal surface and a body of the 'gel.
  • Zeolites contain combined water, sodium oxide (Na G), alumina (A1 and silica -(SiO in various ratios. Usually the Na O:Al O molecular ratio is about 1:1, but the alumina-silica ratio may vary considerablyranging from about 1:2 to as high as 1:15.
  • the sols and gels of zeolites may be prepared by mixing together in various proportions solutions of sodium silicate, such as diluted commercial water glass solutions, sodium aluminate solutions and a strong acid such as sulfuric acid. By varying the ratios of the solutions, the pH and the Al O :SiO ratio can be controlled.
  • One method for making zeolite gels is described in considerable detail in U. S. Patent No. 1,906,202 issued April 25, 1933 to William A. Bruce.
  • Solution A was made by diluting 36.8 parts of commercial water glass solution with 314 parts of EXAMPLE I
  • the Al O :SiO ratio was 1:8.
  • a steel rail was used as the base surface upon which the test was run.
  • a U-shaped member made of heavy strap steel was formed having two perpendicular pieces attached to the tips of the U.
  • a diameter hole was bored in the center of the base of the U.
  • a 1%" diameter steel ball having a Brinell hardness of 500 was welded to a. threaded steelv rod.
  • the threadedsteel rod was placed in'the hole formed in the U-shaped steel member and fastened with a nut so that the steel ball was within the cradle of the U.
  • the perpendicular arms were fitted with small steel boxes capable of holding lead shot or other weighted material.
  • the U-shaped member was of the rail.
  • wires were attached at a point slightly above the rail surface. Fixed to the other ends of the wire was a short piece of string that passed over a fixed pulley, the top of which was approximately coplanar with the surface of the rail. At the opposite end of the string was a suspended container which could be filled with weights.
  • the boxes were filled with lead shot in an amount which, when included with the weight of the cradle and fixtures, exerted a pressure at point of contact on the rail of 73,900 pounds per square inch.
  • the weight of the U-shaped member and ball was 3,065 grams, which, for the purposes of experiment, may be considered as the operative downward pressure.
  • the suspended container was filled gradually with lead shot until the steel ball just started to slide. This amount of weight is considered as the force necessary to overcome the friction existing between the ball and the rail. Using these two factors, the coefiicient of friction may readily be solved from the following simple equation:
  • Coefiicient of friction g where P equals 3,065 grams and F is the weight necessary to move the 3,065 grams.
  • Ultrawet D. S. a wetting agent comprising allryl benzene sodium sulfonate.
  • the average force for a film of a solution of Ultrawet D. S. per se was: 600 with a wet film, and 550 with a dry film.
  • zeolites may be used in various physical forms, including aqueous gels and sols. Better results are achieved with gels.
  • the zeolites are dry, fine particle size solids and are suspended in a volatile, nonlubricating liquid in an amount suificient to produce a paste-like product.
  • suitable nonlubricating liquids other than water, are methanol, ethanol, isopropanol, ethylene glycol, carbon tetrachloride, benzene, toluene, xylene, dimethyl ether, naphtha and kerosene.
  • nonlubricating is meant that the liquid should have no substantial lubricating effect. It is possible, of course, for a liquid to have a slight lubricating effect which is more than counteracted by the adhesion-producing properties of the zeolite particles.
  • liquids preferably employed are sufficiently volatile at the temperatures used to permit the formation of a semidry to dry coating which contains only minor portions or no residual carrier liquid.
  • anti-slip coating is a dry film made from the zeolite gels.
  • the invention has been illustrated with respect to improving the frictional contact between wheels and rails, it is contemplated that it can be applied generally to improving the frictional contact between two metal surfaces capable of motion one with respect to the other.
  • the improvement of frictional contact involves contacting parts which are normally in motion (or dynamic) during the period when optimum frictional contact is desired.
  • the invention is also applicable to improving the frictional contact between a metal shaft and a sheave, gear or pinion frictionally mounted thereon.
  • the zeolite is applied as a thin coating to the shaft and the frictionally mounted member is forced on the shaft so that the zeolite is between said member and the shaft.
  • the invention may be applied to form a layer, coating or film between bolts and lock-nuts, and also between other parts which are normally desired to remain static. in both dynamic and static applications the optimum effect is obtained when the zeolite is present on the metal surfaces in a semi-dry to dry state.
  • the method of improving the frictional contact between two metal surfaces capable of motion, one with respect to the other which comprises applying to at least one of said surfaces a coating of a zeolite having an A1 O :SiO ratio between 1:2 and 1:15 in a substantially nonlubricating carrier liquid.
  • a method of improving the frictional contact be tween the rails and the wheels of a railroad engine which comprises applying to the bearing surfaces of at least one of said rails and said wheels prior to contact of said hearing surfaces a coating of an aqueous zeolite gel having an Al O zsiO ratio between 122 and 1:15.
  • a method of improving the frictional contact between the rails and the wheels of a railroad engine which comprises applying to and allowing to dry on the bearing surfaces of at least one of said rails and said wheels prior to contact of said bearing surfaces a coating of an aqueous zeolite gel having an Al O :SiO ratio between 1:2 and 1: 15.
  • a structure having two metal surfaces capable of motion, one with respect to the other, and adapted to engage each other by frictional contact, at least one of said surfaces having a coating of a zeolite having an A1 O :SiO ratio of between 1:2 and 1:15.
  • a structure having two metal surfaces capable of motion, one with respect to the other, and engaging each other by frictional contact, at least one of said surfaces having a coating resulting from allowing to dry thereupon a film of an aqueous zeolite gel having an Al O :SiO ratio of between 1:2 and 1:15.
  • a railroad rail the bearing surface of which is coated with a film of a zeolite having an Al O :SiO ratio between 1:2 and 1:15.
  • a railroad rail the bearing surface of which is coated with a film of zeolite resulting from allowing to dry thereon an aqueous zeolite gel having an Al O :SiO ratio between 1:2 and 1:15.
  • a flanged, railway vehicle wheel the bearing surface of which is coated with a film of a zeolite having an Al O :SiO ratio between 1:2 and 1: 15
  • a flanged, railway vehicle wheel the bearing surface of which is coated with a film of zeolite resulting from allowing to dry thereon an aqueous zeolite gel having an Al O :SiO ratio between 1:2 and 1:15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

March 11, 1959 J. w. RYZNAR 2,877,716 7 TREATMEN F METAL SURFACES IN FRICTIONAL CONTACT T0 REASE THE FRICTION THEREBETWEEN Filed Aug."8, 1956 m m m m YZNAR United "tates Patent TREATMENT OF METAL SURFACES 1N FRIC- TIONAL CONTACT TO INCREASE FRIC- TION THEREBETWEEN 12 Claims. (Cl. 104-1) This invention relates to a new and improved adhesion treatment of metal surfaces and more particularly to a method and composition for increasing the coefficient of friction between metal surfaces capable of motion one with respect to the other. The invention is especially concerned with the provision of chemical means for preventing wheel slippage between locomotive wheels and rails. However, in its broader aspects the invention contemplates the improvement of frictional contact be tween metal surfaces which are susceptible of slippage one with respect to the other, as, for example, the slip page which occurs between a shaft and a sheave, gear or pinion frictionally mounted on said shaft.
The past several decades have produced railway locomotives possessing great power and weight, thus enabling long, heavily-laden trains to be pulled by single engines. With the advent of the extremely heavy locomotive it was felt that driving wheel slip would be eliminated. It was soon discovered, however, that the increased static weight carried on the driving wheels did not solve the problem to any great extent. Track sanding techniques were developed but this only partially alleviated the condition. Wheel slippage has proven to be an erratic condition which has not in all cases been satisfactorily explained. I
In one explanation of the problem, rail slip is said to result from a tough invisible oil film on the wear band of the rail. Traffic and heat destroy this film and high adhesion results. When a light rain occurs or when the rails reach the dew point, as the result of the relatively high humidity, a water film forms across the wear band where it may contact oil deposits on the edge of a rail with the result that a film of oil creeps through and replaces the water film. The oil deposits on the rail sides acts as reservoirs for the formation of new oil films and water acts as the transporting agent. The oil deposits on the rail come from journal box oil leakage by way of the outside face and outer portion of the tread of the car wheels. There are other sources of contamination such as road crossings, rail lubricators, and the like.
The importance of solving the problem is strikingly illustrated when it is realized that only 15% of the engines weight can be utilized as tractive force when the rails are greasy and moist, and 30% when the rails are clean, dry and sanded. Even a small improvement in these figures, as expressed in the terms of increased coeificient of friction, would enable railway locomotives to operate more etliciently and economically as well as providing improved braking for railway locomotives and rolling stock.
Another instance where it is desirable to improve the frictional contact between two metal surfaces capable of motion one with respect to the other is where a gear or pinion is frictionally mounted on a shaft. Obviously, if. slippage occurs between the gear or pinion and the shaft the efficiency of the particular operation in question is reduced or the device may even become inoperable.
friction between said surfaces.
It is, therefore, an object of this invention to provide a new and improved method for enhancing the frictional contact between two metalsurfaces capable of motion one with respect to the other.
Another object of this invention is to provide a method for raising the coefficient of friction between railway car wheels and rails.
Still another object is to raise the coefiicient of .friction between railway car wheels and rails having an oil film thereon.
A further object is to provide a method of decreasing slippage between railway wheels and rails.
Another object is to provide a chemical treatment .to prevent locomotive slippage on dry, wet, or oily rails.
Still a further object is to enable railroad locomotives to utilize more of their tractive forces on wet oily rails than has heretofore been considered possible.
An additional object of the invention is to produce a railway rail containing an adherent coating of a mate rial which substantially prevents slippage between the rail and a locomotive or railway car wheel.
Still a further object is to provide a method of substantially preventing slippage between the bearing surfaces of a railway rail and a locomotive or a railway car wheel by applying to the rail and/or wheel aliquid coating material which evaporates leaving a thin film or coating of a slip inhibiting substance. 1 1
In accordance with the invention -it has been found that the coefiicient of friction between contacting metal surfaces capable of motion one with respect to the other. can be increased by applying to at least one of the contacting surfaces a thin film of synthetic alumina-silicate zeolite gels and sols, either washed free of salts or as prepared. The invention in its preferred embodiment is particularly applicable to improving the coefiicient of friction between railway tracks and railway engine and car wheels by applying to at least one of the contacting surfaces thereof a film of zeolite. a
In the drawing Fig. 1 shows a perspective view of a section of a railway rail containing a coating consisting essentially of a zeolite film applied to the bearing surface thereof.
Fig. 2 is a perspective view of a flanged wheel used on rail-type transportation vehicles such as railroad engines and cars.
As shown in the drawing, the rail 1 has a bearing surface 2 to which a continuous coating 3 of zeolite is applied. The coating of zeolite may also extend over the surface 4 which comes into contact with the wheel flange of the wheels of railway engines and railway cars; although for the most part it is more desirable to' leave the surface 4 uncoated to minimize wear of the wheelfianges.
The wheel 5 having a flange 6 contains a continuous coating 7 consisting essentially of zeolite applied to the load bearing surface thereof. While it is usually more desirable to leave the surface 8 of the wheel flange un coated for the foregoing reason, a coating of zeolite may alsobe applied to this surface of the flange which comes into contact with the rail.
An important feature of the present invention resides in the fact that synthetic alumina-silicate zeolite can be prepared in the form of aqueous gels or sols. When the gel or sol is applied to the bearing surface of a metal coming into frictional contact with another metal, as is,
the case with rails and wheels. of railroad engines and cars, the evaporation of the water, or other liquid carrier medium, leaves a thin, highly adherent, substantially continuous film or coating which imparts to the metal surfaces pronounced improvements in the coeflicient of, In the simplest method" of practicing the invention, therefore, an aqueous gel or sol of zeolite is applied either to the steel rail or to the contact surface of a locomotive wheel or railway car wheel or to both the rail and the wheel.
If the zeolite sol or gel is applied to a moving metal surface such as an engine drive wheel it is desirable that the product by dry 'or semi-dry by the time the wheel contacts the rail. To this end the application of the sol or gel is advantageously effected by a method involving blowing with air or other gas which assists in the evaporation of the volatile liquid. The zeolite in gel form is ap plied by applicators suited for the application of gellike or paste materials such as a rotating wheel to make contact with said metal surface and a body of the 'gel.
Zeolites contain combined water, sodium oxide (Na G), alumina (A1 and silica -(SiO in various ratios. Usually the Na O:Al O molecular ratio is about 1:1, but the alumina-silica ratio may vary considerablyranging from about 1:2 to as high as 1:15. The sols and gels of zeolites may be prepared by mixing together in various proportions solutions of sodium silicate, such as diluted commercial water glass solutions, sodium aluminate solutions and a strong acid such as sulfuric acid. By varying the ratios of the solutions, the pH and the Al O :SiO ratio can be controlled. One method for making zeolite gels is described in considerable detail in U. S. Patent No. 1,906,202 issued April 25, 1933 to William A. Bruce.
The following examples are supplied as illustrations of methods for preparing sols and gels in various ratios and l at various pHs. All parts are by weight unless otherwise designated.
Three solutions designated A, B and C were prepared as follows. Solution A was made by diluting 36.8 parts of commercial water glass solution with 314 parts of EXAMPLE I A mixture of cc. of solution A and 9.4 cc. of solution B, to which was added 3.2 cc. of solution C, gave a sol which quickly gelled and had a pH of 10.7. The Al O :SiO ratio was 1:8.
EXAMPLE H A mixture of 35 cc. of solution A and 9.4 cc. of solution B, to which was added 10 cc. of solution C, gave a solution which gelled after five days and had a pH of 3. The Al 0 :SiO ratio was 1:8.
EXAMPLE III A mixture of 18.2 cc. of solution A and 10 cc. of solution B gave a quickly gelling sol which had a pH of about 11. The Al O :SiO was 1:4.
Evaluation of increase in friction between surfaces In order to evaluate various zeolite solutions and gels as agents for improving the coeflicient of friction between metal surfaces in frictional contact and capable of motion relative to one another, the following test apparatus was employed.
A steel rail was used as the base surface upon which the test was run. A U-shaped member made of heavy strap steel was formed having two perpendicular pieces attached to the tips of the U. A diameter hole was bored in the center of the base of the U. A 1%" diameter steel ball having a Brinell hardness of 500 was welded to a. threaded steelv rod. The threadedsteel rod was placed in'the hole formed in the U-shaped steel member and fastened with a nut so that the steel ball was within the cradle of the U. The perpendicular arms were fitted with small steel boxes capable of holding lead shot or other weighted material. The U-shaped member was of the rail.
placed on the rail so the steel ball rested on the surface To either side of the inverted U, wires were attached at a point slightly above the rail surface. Fixed to the other ends of the wire was a short piece of string that passed over a fixed pulley, the top of which was approximately coplanar with the surface of the rail. At the opposite end of the string was a suspended container which could be filled with weights.
' In operation, the boxes were filled with lead shot in an amount which, when included with the weight of the cradle and fixtures, exerted a pressure at point of contact on the rail of 73,900 pounds per square inch. The weight of the U-shaped member and ball was 3,065 grams, which, for the purposes of experiment, may be considered as the operative downward pressure. The suspended container was filled gradually with lead shot until the steel ball just started to slide. This amount of weight is considered as the force necessary to overcome the friction existing between the ball and the rail. Using these two factors, the coefiicient of friction may readily be solved from the following simple equation:
Coefiicient of friction=g where P equals 3,065 grams and F is the weight necessary to move the 3,065 grams.
During the course of testing various materials, it was necessary to make several modifications of the test apparatus. After using the rail for numerous experiments it was ground fiat to remove surface abrasion and to facilitate cleaning operations. This was later substituted by a '4 inch long piece of polished heat treated steel which was rigidly held in a small wooden frame. The steel piece was 1" wide and A" thick. It had a tensile strength of 164,200 pounds per square inch, a yield point of 159,- 200 pounds per square inch, a percent elongation of 17.3% and a decarburization to a depth of 0.008". An analysis of this steel showed it to contain the following:
Percent by weight Carbon .31 Manganese .58 Phosphorus .016 Sulfur .016 Silicon .29 Chromium 1.000 Molybdenum .22
In using each of these surfaces the blank tests did not vary within experimental error and hence the test method was concluded to be standardized throughout.
At the start of each series of tests the rail and ball were cleaned with scouring powder, rinsed with distilled water and dried with cellulose tissues. Periodic inspections were made of the contacting surfaces and when scratches occurred the ball and rail were polished with emery paper to renew the surface finish.
To simplify the experimental results, the forces necessary to overcome the friction of the steel ball on the rail were recorded in grams. Three types of blank tests were run, the first being conducted with clean dry surfaces. Under these conditions an average of 1835 grams was necessary to move the ball. When a visible film of journal box -oil was applied to the rail. the average was 620 grams. When water was applied to the oil film the average was found to be 720 grams.
.After a number of tests it was determined that tests on the oiled rail alone were sufficient for purposes of comparison. All of the tests hereinafter described were conducted with a film of journal box oil at all times initially apparent on the rail. The designation wet in the following table indicates that the zeolite film was applied to the oiled metal surface and the test conducted before the film dried, whereas dry indicates that the film was allowed to dry prior to beginning the test.
.dry films are shown in Table I.
The results of tests using various gels and sols of zeolites prepared according to the general procedure of the foregoing examples in various thicknesses of wet and The evaluations of the various zeolite films were conducted with the modified apparatus on the 4 inch piece of polished, heat treated steel, described supra.
TABLE I Test Film Wet or How Percent Ave. No. AlgOuSlO pH Thlck- Dry Ap- Solids Force,
ness plied gins.
1:8 Med-.- Dry-.- Gel..- 5- 1,960 1:8 3 Med... Dry... Gel-.. 4 1,010 1:8 3 Med--. Dry... Sel 4 825 1:8 11 Thick- Wet... 801.-.. 5 1,100 1:8 11 Med.-. Dry..- Sol---. 5 880 1:8 10 Thick- Wet..- Gel..- 5- 1,900 1:8 10 Med--- Dry.-- Gel.-- 1,770 1:8 10.7 Thick- Wet-.. Gel--. 5- 2.300 1:8 10.7 Med... Dry.-- Gel.-. 5- 2,100 1:8 10.7 Thin. Dry... Gel.-- 5- 1,150 1:8 8 Thin.. Dry... Gel-.- 4-5 1,000 1:8 6 Thin.. Dry... Gel--. 4-5 1,300 1:8 4 Thick. Dry... Gel.-- 1-5 1,900 1:2 11 Thick- Wet... Gel..- 5 1,800 1:2 11 Med... Dry... Gel..- 5 1,750 1:4 11 Thick- Wet--- Gel--- 5 2,250 1:4 11 Med.-. Dry... Gel..- 5 2,450 1:6 11 Thick. Wet... Gel... 5 1,900 1:6 11 Med.-. Dry... Gel... 5 1,900 1:10 11 Thick- Wet..- Gel.-. 5 1,800 1:10 11 Thin.. Dry..- Gel--. 5 900 1:12 11 Thick- Wet..- Gel.-- 5 2,100 1:12 11 Med--- Dry--- Gel--- 5 1,700 1:14 11 Thick- Wet--- Gel-.- 5 1,800 1:14 11 Med-.- Dry--. Gel-.- 5 1,700
Contains 0.2% Ultrawet D. S., a wetting agent comprising allryl benzene sodium sulfonate. In an independent test on the same apparatus the average force for a film of a solution of Ultrawet D. S. per se was: 600 with a wet film, and 550 with a dry film.
It will be seen from the foregoing discussion that the zeolites may be used in various physical forms, including aqueous gels and sols. Better results are achieved with gels.
In other embodiments the zeolites are dry, fine particle size solids and are suspended in a volatile, nonlubricating liquid in an amount suificient to produce a paste-like product. Examples of suitable nonlubricating liquids, other than water, are methanol, ethanol, isopropanol, ethylene glycol, carbon tetrachloride, benzene, toluene, xylene, dimethyl ether, naphtha and kerosene. By nonlubricating" is meant that the liquid should have no substantial lubricating effect. It is possible, of course, for a liquid to have a slight lubricating effect which is more than counteracted by the adhesion-producing properties of the zeolite particles. In practice of the invention the liquids preferably employed are sufficiently volatile at the temperatures used to permit the formation of a semidry to dry coating which contains only minor portions or no residual carrier liquid. In the preferred embodiment the anti-slip coating is a dry film made from the zeolite gels.
While the invention has been illustrated with respect to improving the frictional contact between wheels and rails, it is contemplated that it can be applied generally to improving the frictional contact between two metal surfaces capable of motion one with respect to the other. In the case of locomotive wheels and rails, the improvement of frictional contact involves contacting parts which are normally in motion (or dynamic) during the period when optimum frictional contact is desired. However, the invention is also applicable to improving the frictional contact between a metal shaft and a sheave, gear or pinion frictionally mounted thereon. In this case, the zeolite is applied as a thin coating to the shaft and the frictionally mounted member is forced on the shaft so that the zeolite is between said member and the shaft. Similarly, the invention may be applied to form a layer, coating or film between bolts and lock-nuts, and also between other parts which are normally desired to remain static. in both dynamic and static applications the optimum effect is obtained when the zeolite is present on the metal surfaces in a semi-dry to dry state.
The invention is hereby claimed as follows:
1. The method of improving the frictional contact between two metal surfaces capable of motion, one with respect to the other, which comprises applying to at least one of said surfaces a coating of a zeolite having an Al O :Si0 ratio between 1:2 and 1:15.
2. The method of improving the frictional contact between two metal surfaces capable of motion, one with respect to the other, which comprises applying to at least one of said surfaces a coating of a zeolite having an A1 O :SiO ratio between 1:2 and 1:15 in a substantially nonlubricating carrier liquid.
3. The method of improving the frictional contact between two metal surfaces capable of motion, one with respect to the other, which comprises applying to at least one of said surfaces a coating of an aqueous zeolite gel, said zeolite having an Al O :SiO ratio between 1:2 and 1:15.
4. The method of improving the frictional contact between the rails and the wheels of a railroad engine which comprises applying to the bearing surfaces of at least one of said wheels and said rails a coating of zeolite having an Al O :SiO ratio between l:2 and 1:15.
5. A method of improving the frictional contact be tween the rails and the wheels of a railroad engine which comprises applying to the bearing surfaces of at least one of said rails and said wheels prior to contact of said hearing surfaces a coating of an aqueous zeolite gel having an Al O zsiO ratio between 122 and 1:15.
6. A method of improving the frictional contact between the rails and the wheels of a railroad engine which comprises applying to and allowing to dry on the bearing surfaces of at least one of said rails and said wheels prior to contact of said bearing surfaces a coating of an aqueous zeolite gel having an Al O :SiO ratio between 1:2 and 1: 15.
7. A structure having two metal surfaces capable of motion, one with respect to the other, and adapted to engage each other by frictional contact, at least one of said surfaces having a coating of a zeolite having an A1 O :SiO ratio of between 1:2 and 1:15.
8. A structure having two metal surfaces capable of motion, one with respect to the other, and engaging each other by frictional contact, at least one of said surfaces having a coating resulting from allowing to dry thereupon a film of an aqueous zeolite gel having an Al O :SiO ratio of between 1:2 and 1:15.
9. A railroad rail, the bearing surface of which is coated with a film of a zeolite having an Al O :SiO ratio between 1:2 and 1:15.
10. A railroad rail, the bearing surface of which is coated with a film of zeolite resulting from allowing to dry thereon an aqueous zeolite gel having an Al O :SiO ratio between 1:2 and 1:15.
11. A flanged, railway vehicle wheel, the bearing surface of which is coated with a film of a zeolite having an Al O :SiO ratio between 1:2 and 1: 15
12. A flanged, railway vehicle wheel, the bearing surface of which is coated with a film of zeolite resulting from allowing to dry thereon an aqueous zeolite gel having an Al O :SiO ratio between 1:2 and 1:15.
References Cited in the file of this patent UNITED STATES PATENTS 2,787,965 Luvisi Apr. 9, 1957 2,787,966 Lyons Apr. 9, 1957 2,787,967 Nohejl Apr. 9, 1957 2,787,968 Luvisi Apr. 9,1957

Claims (1)

  1. 9. A RAILROAD RAIL, THE BEARING SURFACE OF WHICH IS COATED WITH A FILM OF A ZEOLIT HAVING AN AI2O3:SI32 RATIO BETWEEN 1:2 AND 1:15.
US602711A 1956-08-08 1956-08-08 Treatment of metal surfaces in frictional contact to increase the friction therebetween Expired - Lifetime US2877716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US602711A US2877716A (en) 1956-08-08 1956-08-08 Treatment of metal surfaces in frictional contact to increase the friction therebetween

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US602711A US2877716A (en) 1956-08-08 1956-08-08 Treatment of metal surfaces in frictional contact to increase the friction therebetween

Publications (1)

Publication Number Publication Date
US2877716A true US2877716A (en) 1959-03-17

Family

ID=24412488

Family Applications (1)

Application Number Title Priority Date Filing Date
US602711A Expired - Lifetime US2877716A (en) 1956-08-08 1956-08-08 Treatment of metal surfaces in frictional contact to increase the friction therebetween

Country Status (1)

Country Link
US (1) US2877716A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016845A (en) * 1959-07-27 1962-01-16 Jerome H Lemelson Toy and track assembly
US3120818A (en) * 1955-01-26 1964-02-11 Nalco Chemical Co Treating metal surfaces to increase the coefficient of friction
FR2178558A5 (en) * 1972-12-27 1973-11-09 Uedasa Chuzosho Cy Ltd Friction coating pads - for application by high speed train wheels
US3850691A (en) * 1973-04-26 1974-11-26 Gen Motors Corp Process for cleaning railway rail and improving the traction
US4023503A (en) * 1974-10-03 1977-05-17 Tekniska Rontgencentralen Ab Conveying installation
FR2413982A1 (en) * 1978-01-10 1979-08-03 Asea Ab RAIL VEHICLES EQUIPPED WITH WHEELS WITH FRICTION MATERIAL IN THE ROLLING SURFACE
US4431227A (en) * 1982-03-24 1984-02-14 Howell William B Railway friction wheel
US6352294B1 (en) * 1996-12-17 2002-03-05 Tomoe Electric Manufacturing Co., Ltd. Wheel for a track travel moving body, moving body provided with same, rail and travelling equipment using rail
US20070004543A1 (en) * 2003-02-28 2007-01-04 Yousuke Ishida Belt-type continuous stepless speed changer
US20070107993A1 (en) * 2003-12-09 2007-05-17 Miller Robin M Guide rail for an elevator system
US20080135345A1 (en) * 2006-12-07 2008-06-12 Hans Kocher Elevator installation, a guide rail of an elevator installation, brake equipment of an elevator installation and a method for guiding, holding and braking an elevator installation
US20150136532A1 (en) * 2012-07-16 2015-05-21 Otis Elevator Company Two-part sheet metal elevator guiderail
WO2018157226A1 (en) * 2017-03-01 2018-09-07 L.B. Foster Rail Technologies, Corp. Adhesion enhancement compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787965A (en) * 1955-05-02 1957-04-09 Nat Aluminate Corp Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
US2787967A (en) * 1955-05-06 1957-04-09 Nat Aluminate Corp Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
US2787966A (en) * 1955-05-02 1957-04-09 Nat Aluminate Corp Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
US2787968A (en) * 1955-09-08 1957-04-09 Nat Aluminate Corp Method of improving frictional contact between metal surfaces normally in rolling contact and resultant structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787965A (en) * 1955-05-02 1957-04-09 Nat Aluminate Corp Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
US2787966A (en) * 1955-05-02 1957-04-09 Nat Aluminate Corp Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
US2787967A (en) * 1955-05-06 1957-04-09 Nat Aluminate Corp Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
US2787968A (en) * 1955-09-08 1957-04-09 Nat Aluminate Corp Method of improving frictional contact between metal surfaces normally in rolling contact and resultant structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120818A (en) * 1955-01-26 1964-02-11 Nalco Chemical Co Treating metal surfaces to increase the coefficient of friction
US3016845A (en) * 1959-07-27 1962-01-16 Jerome H Lemelson Toy and track assembly
FR2178558A5 (en) * 1972-12-27 1973-11-09 Uedasa Chuzosho Cy Ltd Friction coating pads - for application by high speed train wheels
US3850691A (en) * 1973-04-26 1974-11-26 Gen Motors Corp Process for cleaning railway rail and improving the traction
US4023503A (en) * 1974-10-03 1977-05-17 Tekniska Rontgencentralen Ab Conveying installation
US4310191A (en) * 1978-01-10 1982-01-12 Asea Aktiebolag Wheels having hard particles distributed in metallic tread
FR2413982A1 (en) * 1978-01-10 1979-08-03 Asea Ab RAIL VEHICLES EQUIPPED WITH WHEELS WITH FRICTION MATERIAL IN THE ROLLING SURFACE
US4431227A (en) * 1982-03-24 1984-02-14 Howell William B Railway friction wheel
US6352294B1 (en) * 1996-12-17 2002-03-05 Tomoe Electric Manufacturing Co., Ltd. Wheel for a track travel moving body, moving body provided with same, rail and travelling equipment using rail
US20100099522A1 (en) * 2003-02-28 2010-04-22 Yamaha Hatsudoki Kabushiki Kaisha Belt-type continuous stepless speed changer
US20070004543A1 (en) * 2003-02-28 2007-01-04 Yousuke Ishida Belt-type continuous stepless speed changer
US8696499B2 (en) * 2003-02-28 2014-04-15 Yamaha Hatsudoki Kabushiki Kaisha Belt-type continuous stepless speed changer
US7648435B2 (en) * 2003-02-28 2010-01-19 Yamaha Hatsudoki Kabushiki Kaisha Belt-type continuously variable transmission
US20100099524A1 (en) * 2003-02-28 2010-04-22 Yamaha Hatsudoki Kabushiki Kaisha Belt-type continuous stepless speed changer
US20070107993A1 (en) * 2003-12-09 2007-05-17 Miller Robin M Guide rail for an elevator system
US8020671B2 (en) * 2006-12-07 2011-09-20 Inventio Ag Elevator installation, a guide rail of an elevator installation, brake equipment of an elevator installation and a method for guiding, holding and braking an elevator installation
CN101195456B (en) * 2006-12-07 2012-08-29 因温特奥股份公司 Braking device and guide rail for an elevator with wedge-shaped braking surface
US20080135345A1 (en) * 2006-12-07 2008-06-12 Hans Kocher Elevator installation, a guide rail of an elevator installation, brake equipment of an elevator installation and a method for guiding, holding and braking an elevator installation
US20150136532A1 (en) * 2012-07-16 2015-05-21 Otis Elevator Company Two-part sheet metal elevator guiderail
WO2018157226A1 (en) * 2017-03-01 2018-09-07 L.B. Foster Rail Technologies, Corp. Adhesion enhancement compositions

Similar Documents

Publication Publication Date Title
US2877716A (en) Treatment of metal surfaces in frictional contact to increase the friction therebetween
US2787968A (en) Method of improving frictional contact between metal surfaces normally in rolling contact and resultant structure
JP4996810B2 (en) Friction control composition
Eadie et al. The role of high positive friction (HPF) modifier in the control of short pitch corrugations and related phenomena
US6759372B2 (en) Friction control composition with enhanced retentivity
US2819681A (en) Treatment of metal surfaces to increase the coefficient of friction
US2787967A (en) Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
JPH0368694A (en) Method for reducing friction between railroad car and railroad line by using colloidal dispersion system for forming metal over base
US5919295A (en) Locomotive adhesion enhancing material mixtures
US2824526A (en) Water insoluble
US2787966A (en) Method of improving the coefficient of friction between contacting metal surfaces and article produced thereby
Beagley The rheological properties of solid rail contaminants and their effect on wheel/rail adhesion
US3915870A (en) Mold release composition containing tungsten disulfide
US2890970A (en) Method of treating rails to prevent oil films
US3120818A (en) Treating metal surfaces to increase the coefficient of friction
US3968302A (en) Mold release composition containing tungsten disulfide
US3547663A (en) Silica organo sol friction treatment composition and method of application
RU2057257C1 (en) Method for formation of coating on friction surfaces
Galas Friction modification within wheel-rail contact
RU2755089C1 (en) Noise suppressing lubricant composition for contacting steel surfaces
DE1041071B (en) Method for improving the coefficient of friction between two metal surfaces, in particular between the wheels of a rail vehicle and the rails
Radford Wheel/rail vertical forces in high-speed railway operation
Garg et al. Noise emissions of transit trains at curvature due to track lubrication
Spurr Some measurements of rail-tyre adhesion
RU2119940C1 (en) Lubricating composition