US2876989A - Turbine nozzle construction - Google Patents

Turbine nozzle construction Download PDF

Info

Publication number
US2876989A
US2876989A US530688A US53068855A US2876989A US 2876989 A US2876989 A US 2876989A US 530688 A US530688 A US 530688A US 53068855 A US53068855 A US 53068855A US 2876989 A US2876989 A US 2876989A
Authority
US
United States
Prior art keywords
nozzle
turbine
construction
port
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US530688A
Inventor
Clarence J Bergsma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Curtiss Wright Corp
Original Assignee
Curtiss Wright Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curtiss Wright Corp filed Critical Curtiss Wright Corp
Priority to US530688A priority Critical patent/US2876989A/en
Application granted granted Critical
Publication of US2876989A publication Critical patent/US2876989A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/047Nozzle boxes

Definitions

  • This invention relates to turbines and is particularly directed to a turbine having an annular inlet nozzle construction having a plurality of circumferentially-spaced inlet ports.
  • U. S. Patent No. 2,607,189 to A. Chilton discloses a power plant having gas turbines of this construction, said turbines utilizing the exhaust gases from the cylinders of a piston-type internal combustion engine as the turbine motive fluid.
  • An object of the present invention comprises the provision of a novel turbine inlet port and nozzle construction in which stresses resulting from unequal thermal expansion and contraction of the various parts are minimized.
  • a further object of the invention comprises the provision of such an inlet port and nozzle construction in which the inlet port can expand and contract relative to the nozzle.
  • a still further object of the invention comprises the provision of a turbine annular nozzle construction having a plurality of circumferentially disposed segmental inlet ports with each inlet port being free to expand and contract relative to the adjacent inlet ports and relative to the annular nozzle.
  • Fig. 1 is an axial sectional view through a gas turbine embodying the invention
  • Fig. 2 is an enlarged view of a portion of Fig. 1;
  • Fig. 3 is a bottom end view of Fig. 1.
  • a gas turbine is illustrated as comprising a stator having an annular nozzle construction 12 for directing the turbine motive fluid against the blades 14 of a turbine rotor 16.
  • the rotor 16 is journaled in the stator 10 by suitable bearing means not shown.
  • the annular nozzle construction includes radially spaced inner and outer walls 18 and 20 across which circumferentially-spaced nozzle vanes 22 extend for properly directing the turbine motive fluid.
  • the gas turbine illustrated is designed for use as a component of a power plant such as disclosed in the aforementioned Chilton patent so that the turbine motive fluid is the exhaust gases from the cylinders of an internal combustion engine and the turbine rotor 16 is drivably connected to the crankshaft of said engine.
  • the turbine motive fluid is the exhaust gases from the cylinders of an internal combustion engine and the turbine rotor 16 is drivably connected to the crankshaft of said engine.
  • a cap 28 is supported over the turbine rotor disc by a plurality of radial arms 30 extending from a supporting ring 32.
  • the function of the cap 28 is to receive cooling air which is blown (by means not shown) through the turbine rotor between the root ends of the turbine blades, said cooling air discharging from the cap through a discharge end 34 into the exhaust hood 24.
  • a sleeve 36 is secured to the cooling cap support ring 32, said sleeve being disposed around the outer periphery of the rotor blades 14 to provide a ate small operating clearance therebetween.
  • the turbine rotor 16 and cooling cap 28 have been illustrated by dot and dash lines because their specific details form no part of the present invention.
  • the exhaust hood 24 has an annular flange 26, the cooling cap support ring 32 has an annular flange 38 and the radially outer wall 20 of the nozzle 12 has an annular flange 40, said flanges all extending radially outwardly and being clamped together by a split or two piece clamping ring 42 the ends of which are drawn together by bolts 44.
  • the detailed construction of said flanges and the clamping ring 42 is fully described in copending, application Serial No. 224,167 filed in the name of Francis J. Wiegand on May 2, 1951, now Patent No. 2,811,331.
  • the upper wall 46 of the ring 42 is conical and the lower wall 48 is flat so that when the halves of the ring 42 are drawn toward each other about the flanges 26, 38 and 40 said flanges are clamped together.
  • the turbine nozzle 12 is provided with a plurality of circumferentiallyspaced inlet ports.
  • a plurality (threeas shown) of individual port members 50 are secured to the nozzle 12 in end-to-end relation.
  • Each port member 50 comprises a circular segment having a channel-shaped cross-section with the channel curved in a circular arc and having radially spaced inner and outer walls 52 and 54 respectively.
  • Each port member 50 also has an intake pipe 55 through which exhaust gases are supplied to its port member 50 and thence through the nozzle 12 to the turbine rotor blades 14.
  • the radially inner nozzle wall 18 has an inturned flange 56 and the radially inner wall 52 of each port member has an inturned flange 58. Said flanges 56 and 58 are rigidly secured together by screws 60 which thread into segmental plates 62, there being one such plate for each port member 50.
  • the radially outer wall 54 of each port member has a flat outwardly extending flange 64 which is arranged to be clamped to the nozzle flange 40 under the clamp ring 42, said nozzle flange 40 also being flat.
  • each segmental port member has a circumferentially extension 66 which merely overlies the adjacent segmental port member end but is not rigidly secured thereto whereby the segmental port members are free to expand and contract circumferentially relative to each other.
  • the nozzle port members 50 can expand and contract relative to the nozzle 12 and relative to each other without imposing excessive stress on any of the parts.
  • the construction of the present invention simplifies the manufacturing techniques and provides for better quality control.
  • the one piece port member construction was welded to the nozzle. This limited the material of the port members to one which could be welded to the nozzle material.
  • the present invention obviously does not have this limitation and therefore the port members can be made of a better material
  • the present construction is also superior to the prior one piece welded" construction, from a service and maintenance standpoint, since now any defect in a particular port rnember only requires replacement of that member.
  • Turbine mechanism comprising a turbine inlet an nular nozzle structure having radially spaced inner and outer continuous annular walls; a plurality of individual port members for. said nozzle, said port members each having a circular segmental construction and being disposed in end-to-end relation to form an annular arrangement at the inlet side of said nozzle, the adjacent ends of said inlet port members having circumferential clearance therebetween so as to permit relative circumferential expansion and contraction of said members and each of said port members having radially spaced inner and outer walls disposed adjacent to the corresponding nozzle walls; means securingone of said nozzle Walls and the corresponding inlet port walls together; and means frictionally clamping the other of said nozzle and port member walls together, at least one wall of each such pair of clamped walls being flat so as to permit relative radial expansion and contraction therebetween.
  • Turbine mechanism comprising a turbine inlet annular nozzle structure having radially spaced inner and outer continuous annular walls; a plurality of individual port members for said nozzle, said port members each having a circular segmental construction and being disposed in end-to-end relation to form an annular arrangement at the inlet side of said nozzle, the adjacent ends of saidinlet port members having circumferential clearance therebetween so as to permit relative circumferential expansion and contraction of said members and each of said port members having radially spaced inner and outer Walls disposed adjacent to the corresponding nozzle Walls; means securing one of said nozzle Walls and the corresponding inlet port walls together; the other of said nozzle walls and each of the other of said port member walls having a radially extending flange with said port member flanges each having a flat side adjacent to a flat side of said nozzle flange; and annular ring means of channel-shaped cross-section overlying the remote sides of said flanges for trictionally clamping their adjacent flat sides together so as
  • Turbine mechanism comprising a turbine inlet annular nozzle structure having radially-spaced inner and outer continuous annular Walls; a plurality of individual inlet port members for said nozzle, said port members having a circular segmental construction and being disposed in end-to-end relation to form an annular arrangement at the inlet end of said nozzle, each of said inlet port members having radially-spaced inner and outer walls disposed adjacent to the corresponding nozzle walls, means for securing one of said nozzle walls to the adjacent port member walls; the other of said nozzle Walls and each of the other of said port member walls having a radially extending flange with said port member flanges each having a flat side disposed adjacent to a flat side of said nozzle flange; and ring means of channel-shaped crosssection having a substantially annular channel with diverging channel sides directed radially inwardly and bridging said flanges; said ring means including means for moving its diverging channel sides radially inwardly toward and about said flange
  • Turbine mechanism as recited in claim 3 in which the adjacent ends of said inlet port members have circumferential clearance therebetween so as to permit relative circumferential expansion and contraction of said members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

March 10, 1959 c. J. BERGSMA 2,87 ,989
TURBINE NOZZLE CONSTRUCTION Filed Aug. 26, 1955 2 Sheets-Sheet 1 INVENTOR. ENEE L1. EREEMA F ZQ V AM ATTUNEY March 1959 c. J. BERGSMA 2,876,989
TURBINE NOZZLE CONSTRUCTION 2 Sheets-Sheet 2 Filed Aug. 26, 1955 'JNVENTOR. CLARENCE A QEREEMA i TU N TURBINE NOZZLE CONSTRUCTION Clarence J. Bergsma, Paramus, N. L, assignor to Curtiss- Wright Corporation, a corporation of Delaware Application August 26, 1955, Serial No. 530,688
4 Claims. (Cl. 253-78) This invention relates to turbines and is particularly directed to a turbine having an annular inlet nozzle construction having a plurality of circumferentially-spaced inlet ports. U. S. Patent No. 2,607,189 to A. Chilton discloses a power plant having gas turbines of this construction, said turbines utilizing the exhaust gases from the cylinders of a piston-type internal combustion engine as the turbine motive fluid.
An object of the present invention comprises the provision of a novel turbine inlet port and nozzle construction in which stresses resulting from unequal thermal expansion and contraction of the various parts are minimized. A further object of the invention comprises the provision of such an inlet port and nozzle construction in which the inlet port can expand and contract relative to the nozzle. A still further object of the invention comprises the provision of a turbine annular nozzle construction having a plurality of circumferentially disposed segmental inlet ports with each inlet port being free to expand and contract relative to the adjacent inlet ports and relative to the annular nozzle.
Other objects of the invention will become apparent upon reading the annexed detailed description in conneetion with the drawing in which:
Fig. 1 is an axial sectional view through a gas turbine embodying the invention;
Fig. 2 is an enlarged view of a portion of Fig. 1; and
Fig. 3 is a bottom end view of Fig. 1.
Referring to the drawing, a gas turbine is illustrated as comprising a stator having an annular nozzle construction 12 for directing the turbine motive fluid against the blades 14 of a turbine rotor 16. The rotor 16 is journaled in the stator 10 by suitable bearing means not shown. The annular nozzle construction includes radially spaced inner and outer walls 18 and 20 across which circumferentially-spaced nozzle vanes 22 extend for properly directing the turbine motive fluid.
The gas turbine illustrated is designed for use as a component of a power plant such as disclosed in the aforementioned Chilton patent so that the turbine motive fluid is the exhaust gases from the cylinders of an internal combustion engine and the turbine rotor 16 is drivably connected to the crankshaft of said engine. The invention is described in connection with this specific application but as will become apparent the invention is not limited thereto.
The exhaust gases discharge from the blades 14 of the turbine through a hood 24 having an exhaust duct 26 extending therefrom. In addition a cap 28 is supported over the turbine rotor disc by a plurality of radial arms 30 extending from a supporting ring 32. The function of the cap 28 is to receive cooling air which is blown (by means not shown) through the turbine rotor between the root ends of the turbine blades, said cooling air discharging from the cap through a discharge end 34 into the exhaust hood 24. A sleeve 36 is secured to the cooling cap support ring 32, said sleeve being disposed around the outer periphery of the rotor blades 14 to provide a ate small operating clearance therebetween. The turbine rotor 16 and cooling cap 28 have been illustrated by dot and dash lines because their specific details form no part of the present invention.
The exhaust hood 24 has an annular flange 26, the cooling cap support ring 32 has an annular flange 38 and the radially outer wall 20 of the nozzle 12 has an annular flange 40, said flanges all extending radially outwardly and being clamped together by a split or two piece clamping ring 42 the ends of which are drawn together by bolts 44. The detailed construction of said flanges and the clamping ring 42 is fully described in copending, application Serial No. 224,167 filed in the name of Francis J. Wiegand on May 2, 1951, now Patent No. 2,811,331. For the purpose of the present invention it is sufiicient to note that the upper wall 46 of the ring 42 is conical and the lower wall 48 is flat so that when the halves of the ring 42 are drawn toward each other about the flanges 26, 38 and 40 said flanges are clamped together. i
As in the aforementioned Chilton'patent the turbine nozzle 12 is provided with a plurality of circumferentiallyspaced inlet ports. In accordance with the present invention, however, in lieu of the one piece inlet port construction of the Chilton patent, a plurality (threeas shown) of individual port members 50 are secured to the nozzle 12 in end-to-end relation.
Each port member 50 comprises a circular segment having a channel-shaped cross-section with the channel curved in a circular arc and having radially spaced inner and outer walls 52 and 54 respectively. Each port member 50 also has an intake pipe 55 through which exhaust gases are supplied to its port member 50 and thence through the nozzle 12 to the turbine rotor blades 14.
For securing the port members 50 to the turbine nozzle 12, the radially inner nozzle wall 18 has an inturned flange 56 and the radially inner wall 52 of each port member has an inturned flange 58. Said flanges 56 and 58 are rigidly secured together by screws 60 which thread into segmental plates 62, there being one such plate for each port member 50. In addition, the radially outer wall 54 of each port member has a flat outwardly extending flange 64 which is arranged to be clamped to the nozzle flange 40 under the clamp ring 42, said nozzle flange 40 also being flat.
With this construction although the inner edge of the segmental port member 50 is rigidly secured to the nozzle 12 by the screws 60 the outer edge of said port member is secured to the nozzle by the clamping engagement of the flat flanges 40 and 64 by means of the clamping ring 42 whereby said port member outer wall 54 can move radially relative to the nozzle as a result of relative thermal expansion and contraction of the nozzle and port member.
One end of each segmental port member has a circumferentially extension 66 which merely overlies the adjacent segmental port member end but is not rigidly secured thereto whereby the segmental port members are free to expand and contract circumferentially relative to each other.
With the aforedescribed construction the nozzle port members 50 can expand and contract relative to the nozzle 12 and relative to each other without imposing excessive stress on any of the parts. In addition, compared to the prior one piece construction, the construction of the present invention simplifies the manufacturing techniques and provides for better quality control. In said prior one piece construction the one piece port member construction was welded to the nozzle. This limited the material of the port members to one which could be welded to the nozzle material. The present invention obviously does not have this limitation and therefore the port members can be made of a better material,
The present construction is also superior to the prior one piece welded" construction, from a service and maintenance standpoint, since now any defect in a particular port rnember only requires replacement of that member.
While Ihave described my invention'in detail in its present preferred embodiment, it will be obvious to those skilled in the art, after understanding my invention, that various changes and modifications may be made therein without departing from the spirit or scope thereof. I aim in the appended claims to cover all such modifications.
lclaim as my invention:
1. Turbine mechanism comprising a turbine inlet an nular nozzle structure having radially spaced inner and outer continuous annular walls; a plurality of individual port members for. said nozzle, said port members each having a circular segmental construction and being disposed in end-to-end relation to form an annular arrangement at the inlet side of said nozzle, the adjacent ends of said inlet port members having circumferential clearance therebetween so as to permit relative circumferential expansion and contraction of said members and each of said port members having radially spaced inner and outer walls disposed adjacent to the corresponding nozzle walls; means securingone of said nozzle Walls and the corresponding inlet port walls together; and means frictionally clamping the other of said nozzle and port member walls together, at least one wall of each such pair of clamped walls being flat so as to permit relative radial expansion and contraction therebetween.
2. Turbine mechanism comprising a turbine inlet annular nozzle structure having radially spaced inner and outer continuous annular walls; a plurality of individual port members for said nozzle, said port members each having a circular segmental construction and being disposed in end-to-end relation to form an annular arrangement at the inlet side of said nozzle, the adjacent ends of saidinlet port members having circumferential clearance therebetween so as to permit relative circumferential expansion and contraction of said members and each of said port members having radially spaced inner and outer Walls disposed adjacent to the corresponding nozzle Walls; means securing one of said nozzle Walls and the corresponding inlet port walls together; the other of said nozzle walls and each of the other of said port member walls having a radially extending flange with said port member flanges each having a flat side adjacent to a flat side of said nozzle flange; and annular ring means of channel-shaped cross-section overlying the remote sides of said flanges for trictionally clamping their adjacent flat sides together so as to permit relative radial expansion and contraction between said flanges.
3. Turbine mechanism comprising a turbine inlet annular nozzle structure having radially-spaced inner and outer continuous annular Walls; a plurality of individual inlet port members for said nozzle, said port members having a circular segmental construction and being disposed in end-to-end relation to form an annular arrangement at the inlet end of said nozzle, each of said inlet port members having radially-spaced inner and outer walls disposed adjacent to the corresponding nozzle walls, means for securing one of said nozzle walls to the adjacent port member walls; the other of said nozzle Walls and each of the other of said port member walls having a radially extending flange with said port member flanges each having a flat side disposed adjacent to a flat side of said nozzle flange; and ring means of channel-shaped crosssection having a substantially annular channel with diverging channel sides directed radially inwardly and bridging said flanges; said ring means including means for moving its diverging channel sides radially inwardly toward and about said flanges so that said channel sides overlie the remote sides of said flanges for clamping said adjacent flat flange sides together, one of said channel sides being flat so that the clamping engagement of said channel sides with said flanges does not interfere with relative radial expansion and contraction of said nozzle and port member flanges.
4. Turbine mechanism as recited in claim 3 in which the adjacent ends of said inlet port members have circumferential clearance therebetween so as to permit relative circumferential expansion and contraction of said members.
References Cited in the file of this patent UNITED STATES PATENTS 1,543,172 Losel June 23, 1925 2,253,628 Krapp Aug. 26, 1941 2,391,786 Kenney Dec. 25, 1945 2,494,328 Bloomberg Jan. 10, 1950 2,605,081 Alford July 29, 1952 2,695,131 Price Nov. 23, 1954 2,695,767 Land et a1. Nov. 30, 1954 2,713,990 Wosika July 26, 1955 FOREIGN PATENTS 679,530 Great Britain Sept. 17, 1952 880,773 France Apr. 5, 1943
US530688A 1955-08-26 1955-08-26 Turbine nozzle construction Expired - Lifetime US2876989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US530688A US2876989A (en) 1955-08-26 1955-08-26 Turbine nozzle construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US530688A US2876989A (en) 1955-08-26 1955-08-26 Turbine nozzle construction

Publications (1)

Publication Number Publication Date
US2876989A true US2876989A (en) 1959-03-10

Family

ID=24114583

Family Applications (1)

Application Number Title Priority Date Filing Date
US530688A Expired - Lifetime US2876989A (en) 1955-08-26 1955-08-26 Turbine nozzle construction

Country Status (1)

Country Link
US (1) US2876989A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1543172A (en) * 1923-08-04 1925-06-23 Losel Franz Elastic-fluid turbine
US2253628A (en) * 1939-10-21 1941-08-26 John T Krapp Coupling device
FR880773A (en) * 1940-12-13 1943-04-05 Bmw Flugmotorenbau Gmbh Outlet housing for exhaust gas turbines
US2391786A (en) * 1944-05-18 1945-12-25 Allis Chalmers Mfg Co Turbine nozzle structure
US2494328A (en) * 1946-03-22 1950-01-10 Gen Electric Axial flow elastic fluid turbine
US2605081A (en) * 1946-04-25 1952-07-29 Gen Electric Cooling means for gas turbine wheels
GB679530A (en) * 1947-05-23 1952-09-17 Edward Archibald Stalker Improvements in gas turbine blades
US2695131A (en) * 1950-12-02 1954-11-23 Besler Corp Supercharger
US2695767A (en) * 1951-03-23 1954-11-30 Elliott Co Turbocharger
US2713990A (en) * 1948-12-21 1955-07-26 Solar Aircraft Co Exhaust structure for gas turbine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1543172A (en) * 1923-08-04 1925-06-23 Losel Franz Elastic-fluid turbine
US2253628A (en) * 1939-10-21 1941-08-26 John T Krapp Coupling device
FR880773A (en) * 1940-12-13 1943-04-05 Bmw Flugmotorenbau Gmbh Outlet housing for exhaust gas turbines
US2391786A (en) * 1944-05-18 1945-12-25 Allis Chalmers Mfg Co Turbine nozzle structure
US2494328A (en) * 1946-03-22 1950-01-10 Gen Electric Axial flow elastic fluid turbine
US2605081A (en) * 1946-04-25 1952-07-29 Gen Electric Cooling means for gas turbine wheels
GB679530A (en) * 1947-05-23 1952-09-17 Edward Archibald Stalker Improvements in gas turbine blades
US2713990A (en) * 1948-12-21 1955-07-26 Solar Aircraft Co Exhaust structure for gas turbine
US2695131A (en) * 1950-12-02 1954-11-23 Besler Corp Supercharger
US2695767A (en) * 1951-03-23 1954-11-30 Elliott Co Turbocharger

Similar Documents

Publication Publication Date Title
US4016718A (en) Gas turbine engine having an improved transition duct support
US4369016A (en) Turbine intermediate case
US4697981A (en) Rotor thrust balancing
US3302926A (en) Segmented nozzle diaphragm for high temperature turbine
US4321007A (en) Outer case cooling for a turbine intermediate case
US2650753A (en) Turbomachine stator casing
US3314654A (en) Variable area turbine nozzle for axial flow gas turbine engines
US3860359A (en) Mounting system for gas turbine power unit
US2497041A (en) Nozzle ring for gas turbines
US2628067A (en) Gas turbine and like engine
US4008568A (en) Combustor support
US3010697A (en) Turbocharger
US2778192A (en) Combustor basket structure
JPH0672571B2 (en) Load transmission structure
US3300178A (en) Turbines
US3824031A (en) Turbine casing for a gas turbine engine
US3749512A (en) Inlet structure for turbo machine
US2296702A (en) Gas turbine
US2429936A (en) Turbine mounting
US2930662A (en) Supporting structure for a gas turbine bearing
US2711072A (en) Combustion chamber fairing
US2876989A (en) Turbine nozzle construction
US3262677A (en) Stator assembly
US2605081A (en) Cooling means for gas turbine wheels
US3544233A (en) Turbine nozzle chamber support arrangement