US2849769A - Centrifugal casting apparatus and process - Google Patents

Centrifugal casting apparatus and process Download PDF

Info

Publication number
US2849769A
US2849769A US427842A US42784254A US2849769A US 2849769 A US2849769 A US 2849769A US 427842 A US427842 A US 427842A US 42784254 A US42784254 A US 42784254A US 2849769 A US2849769 A US 2849769A
Authority
US
United States
Prior art keywords
flask
cradle
flasks
mandrel
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US427842A
Inventor
John A Lasater
Thomas A Deakins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herman Pneumatic Machine Co
Original Assignee
Herman Pneumatic Machine Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herman Pneumatic Machine Co filed Critical Herman Pneumatic Machine Co
Priority to US427842A priority Critical patent/US2849769A/en
Application granted granted Critical
Publication of US2849769A publication Critical patent/US2849769A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/023Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal

Definitions

  • molten metal such as iron
  • the flask may be introduced into the flask with the mold therein while the flask is rotated at high speed to centrifuge the molten metal and form a hollow article, such, for example, as a length of pipe.
  • the rotation of the flask is continued until the hollow article has solidified sufficiently to permit it to be removed from the flask whereupon the flask may be disposed in generally upright position and the hollow article removed downwardly therefrom.
  • a form of centrifugal casting apparatus of the type above referred to which has proved highly satisfactory in use and which is disclosed in United States Letters Patent No. 2,613,410 embodies four flasks arranged side by side in generally horizontal alignment.
  • mandrels are introduced into the flasks to compact or consolidate the finely divided mold forming material, the mandrels when in posirion in the flasks being supported at both ends and the mandrel supports at the respective ends of the mandrels being offset or moved transversely of the flasks while the flasks with the mold forming material therein rotate to consolidate the mold forming material.
  • the cradle is mounted for limited turning movement in the cradle support so that when the mandrels are introduced into the flasks the consolidating of the mold forming material in the flasks may be accomplished by the simple expedient of turning through a very small angle the cradle within the cradle support.
  • the axes of the flasks are substantially equidistant from the axis of turning of the cradle in the cradle support.
  • the core In introducing a core into a mold the core is disposed upon a core holder which moves into cooperative rela- Yr tionship with the end of the mold to position the core therein.
  • the core holder is rotatably mounted upon its supporting structure or core holder carrier so that'it may remain in supporting relationshipwith respect to the core during casting when the mold and core rotate together. Since the core holder and the flask are separately mounted their axes may not be in exact alignment. proper continued action of the core holder during the casting operation despite lack of exact coaxial relationship between the flasks and the core holder we preferably dispose resilient material between the core holderand' the core which yields slightly during the casting operation and compensates for any lack of proper alignment of the flask and core holder.
  • the core which has an opening therethrough receiving a portion of the core holder, not only surrounds that portion of the core holder but also surrounds the outlet end of the pouring spout which is disposed within the core holder.
  • the pouring spout is in eifect automatically disposed in its operative position when the core is introduced into the end of'the flask, obviating the separate manipulation of a pouring spout as heretofore.
  • the mounting of the pouring spout as above described has the further advantage that the molten material ladle which is to supply the molten material to be cast may be mounted in a fixed location so that the only motion of which it need partake is a tilting motion to discharge the molten material. If the molten material ladle is a bottom pour ladle it need not partake of any bodily motion. Heretofore the molten material ladle has been arranged for bodily movement toward and from the flask into which it pours its contents.
  • centrifugal casting apparatus we mount on a base a cradle having rotatably mounted therein an open-ended flask together with means for rotating the flask, the mounting of the cradle on the base being such that the cradle may be turned between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, and we provide a core holder carrier mounted on the base for turning movement in a generally vertical'plane between a position substantially coaxial with the flask adjacent an open end of the flask when the flask is disposed with its axis generally horizontal and a position with the axis of the core holder carrier generally upright.
  • the core holder carrier a core holder and means for moving the core holder into cooperative relationship with the flask when the core holder carrier is in the first mentioned position and the flask is disposed with its axis generally horizontal.
  • the core holder carrier has therein an opening positioned when the core holder carrier is disposed with its axis generally upright to permit passage therethrough of a mandrel for consolidating finely divided mold forming material in the flask to form a mold.
  • the mandrel is movable along a guide through said opening and into the flask when the flask is disposed with its axis generally horizontal.
  • Means are provided for relatively transversely moving or offsetting the mandrel and flask when the mandrel is within the flask.
  • Figure 1 is a plan view, partly in horizontal cross section, of centrifugal casting apparatus having two flasks and cooperating elements, the flask and cooperating elements near the bottom of the figure being adapted for the casting of single hub pipe and the flask and cooperating elements nearer the top of the figure being adapted for the casting of double hub pipe;
  • Figure 2 is an elevational view of the appaartus shown in Figure l and additionally showing diagrammatically a ladle for pouring molten material to be cast into the .centrifugal casting apparatus and further showing in chain lines positions of certain of the parts different from the positions of those parts shown in full lines;
  • Figure 3 is a vertical transverse cross-sectional view taken on the line III-III of Figure 2 but with the core holder carriers and core holders moved to the chain line position of Figure 2 (and hence not shown at all in Figure 3) and the mandrels partially advanced;
  • Figure 4 is an enlarged elevational view showing the means for closing an end of each of the flasks
  • Figure 5 is a view partly in elevation and partly in vertical longitudinal cross section on the line V-V of Figure 4;
  • Figure 6 is a fragmentary detail view to enlarged scale in comparison with the scale of Figures 1 and 2 showing the support for the forward end of a mandrel and the corresponding pouring spout as adapted for the forming of single hub pipe, the support forthe forward end of the mandrel being in operative mandrel-supporting position and the pouring spout being in inoperative position;
  • Figure 7 is a view similar to Figure 6 of the same elements of the apparatus but with' the pouring spout in operative position and the support for the forward end of the mandrel in inoperative position;
  • Figure 8 is a view similar to Figure 6 showing the support for the forward end of a mandrel provided with a hub cooperating with the mandrel for forming in the mold at the end thereof shown in the figure an enlarged portion for forming one of the hubs of double hub pipe and also showing the pouring spout and associated core holder as adapted for the forming of double hub pipe, the support for the forward end of the mandrel and the hub beingin operative position and the pouring spout and associated core holder being inoperative position; and
  • Figure 9 is a view similar to Figure 8 of the same elements of the apparatus but with the pouring spout and associated core holder in operative position and the support for the forward end of the mandrel and the hub in inoperative position.
  • the centrifugal casting apparatus is mounted upon a fixed base designated generally by reference numeral 2.
  • the fixed base 2 comprises opposed spaced apart elongated supporting portions 3 which are generally parallel and extend generally longitudinally of the apparatus.
  • the supporting portions 3 are suitably connected together by transverse members such as shown at 4 in Figures 1 and 2.
  • rotary cylinders 5 which may be of conventional construction having coaxial shafts 6 which are turned upon turning movement of the rotors of the rotary cylinders 5 in a manner known to those skilled in the art.
  • a cradle Support 7 Fastened to the opposed coaxial shafts 6 is a cradle Support 7 of generally U shape as shown in Figure 3, the cradle support 7 being carried by the shafts 6 adjacent the extremities of the legs of the U.
  • the cradle support 7 is adapted to be turned by operation of the rotary cylinders 5 between a position in which it is disposed in a generally vertical plane as shown in Figure 3 and a position in which it is disposed in a generally horizontal plane; in other words, the cradle support is adapted to be turned about the common axis of the rotary cylinders 5 through an angle of approximately 90. Suitable positioning means not shown in the drawings are provided for stopping and positioning the cradle support in each of its two positions.
  • a pivot pin 8 is mounted in the cradle support 7, having its ends extending through bores 9 in opposed upstanding rib portions 10 of the cradle support. Pivotally carried by the pivot pin 8 is a cradle 11.
  • the cradle 11 has spaced apart lugs 12 respectively provided with bores 13 through which the pivot pin 8 passes to pivotally mount the cradle 11 on the cradle support 7.
  • the cradle 11 is adapted to partake of limited turning movement about the axis of the pivot pin 8 for a purpose to be presently described. The turning movement of the cradle need be through only a few degrees but the limits of the turning movement should be accurately determinable.
  • the operative positions of the cradle 11 are determined by the engagement therewith of the pins 15a.
  • the axes of the two flasks rotatably mounted in the cradle which will presently be described preferably lie substantially in a common horizontal plane when the cradle support 7 is disposed in a generally vertical plane as shown in Figure 3.
  • the cradle 11 is turned in the counterclockwise direction about the axis of the pivot pin 8 viewing Figure 3 the axes of the flasks move out of such common horizontal plane for a purpose which will be described.
  • elongated articles such, for example, as lengths of pipe, and, by way of more specific example, lengths of cast iron soil pipe. It is to be understood, however, that elongated articles other than lengths of pipe may be centrifugally cast and materials other than iron may be employed. For example, other metals or non-metallic materials of suitable structural characteristics may be utilized.
  • the flasks may, for example, be mounted for rotation as shown in United States Letters Patent No. 2,449,900.
  • the two flasks 16 are mounted in the cradle 11 with their axes equidistant from the axis of the pivot pin 8. Such mounting of the flasks insures uniform compacting therein of finely divided mold forming material as will presently be described.
  • the axes of all of the flasks be equidistant from the axis of the pivot pin 8, although under certain conditions it may be possible to deviate somewhat from that arrangement.
  • Means are provided for rotating the flasks 16 at centrifugal speed so as to form therein centrifugally cast hollow elongated articles.
  • an electric motor 17 mounted upon the cradle 11 and carrying upon its shaft 18 a multiple V-belt pulley 19.
  • Similar pulleys 20 are mounted upon the respective flasks 16 and V-belts 21 are trained about the respective pulleys 19 and 20 as shown in Figure 3.
  • the pulleys 20 are preferably of equal diameter so that the two flasks 16 are turned at the same speed by the V-belts 21 when the motor 17 is operated.
  • the cradle support 7 is movable between a position in a substantially horizontal plane and a position in a substantially vertical plane and that means are provided for stopping movement of the cradle support when it reaches the respective positions mentioned.
  • the cradle support is in a generally vertical plane as shown in Figure 3 the axes of the flasks 16 are generally horizontal and, as also mentioned above, when the cradle 11 is in its extreme clockwise position viewing Figure 3 while the cradle support is in a generally vertical plane the axes of the flasks are in a common horizontal plane.
  • the cradle support 7 is in a generally horizontal plane the axes of the flasks are generally vertical.
  • the cradle support turns between a position in which the flasks 16 are generally horizontal as shown in full lines in Figure 2 and a position in which the left-hand ends of the flasks as shown in full lines in Figure 2 are disposed upwardly as shown in chain lines in that figure.
  • the opposed supporting portions 3 of the base 2 have parallel longitudinal tracks 22 shown in Figure 3.
  • the mandrel support 23 has rollers 24 rotatably mounted thereon cooperating with the tracks 22 as shown in Figures 1 and 3 to insure accurately guided movement of the mandrel support 23 longitudinally of the apparatus.
  • Rotatably mounted in the mandrel support 23 in a manner known to those skilled in the art are a plurality of mandrels 25 having their axes substantially parallel to each other, there being the same number of mandrels 25 as there are flasks rotatably mounted in the cradle 11 and the axes of the mandrels being arranged in the same pattern and with the same spacing as the axes of the flasks. Since there are two flasks in the apparatus shown in the drawings we have shown two mandrels. The axes of the two mandrels 25 are spaced apart the same distance as the axes of the flasks 16 are spaced apart.
  • the axes of the mandrels 25 lie in parallel relationship in a common horizontal plane and remain in that plane at all times.
  • the mandrels are mounted to be rotated by frictional engagement with the finely divided mold forming material used for forming molds in the flasks as Will presently be described.
  • the mandrels partake of only two motions, the rotative motion just mentioned and axial movement eflected by movement of the mandrel-support 23 along.
  • the mandrels are respectively. coaxial with the. flasks 16 when the. cradle support and cradle are in the position shown in Figures 1 and 3 and shown in full lines in Figure 2.
  • the mandrels are in coaxial relationship with the flasks and finely divided mold forming material. has been introduced into the flasks and the flasks are rotated the mandrels are introduced into the flasks by. advancing the mandrel support 23 from right to left viewing Figures 1 and 2.
  • The. mandrel support 23.. is advanced by a piston in a cylinder 2.6, the cylinder being fixedly mounted on the base and the piston rod 27 being connected with the mandrel support 23 at. 274.
  • any suitable means as known to those skilled in the art may be provided for stopping the movement. of. the mandrel support 23 to introduce the mandrels into the flasks.
  • Such means may be the cylinder head of the cylinder 26 or the means for supporting the forward. ends of the mandrels presently to be described.
  • the mandrel support 23 has at its opposite sides bosses 28 ( Figure 2) which when the mandrels reach operative position within the flasks underlie cooperating lugs' 29. carried by the base 2 to in effect clamp the mandrel support. 23 to the base to resist the tendency. to. lift the mandrel support from the rails or turn the mandrel support during compacting of the mold forming. material in the flasks as will presently be described.
  • the shaft 31 has the cndthereof opposite the end connectedtwiththe coupling 33. projectingfrom the cradle 11, and a spider34. is mountedon the shaft. for turning movement and also for axial movement relatively to the shaft, the spiderv having. a. central bore receiving the shaft and a bushing 35. lining. the central bore.
  • Fixed to the extremity of the shaft'so as. ineffect to. form an integral part thereof is a cam36 as. shown in Figure 5.
  • a complementary (36.11137 is. fixed to.the.spidcr 34.
  • a coil spring 3S has one. endtconnected .withthe. shaft 31 and the other nd connectedwith the. spider 34.as,shown in Figure 5. Fixcdly xnountedcn the. cradle.
  • the spider..3.4i has a hub. 41. having a. portion thereof at its peripherycut away to..forrn two shoulders 4?..and 43.
  • VifiWing Figure 4 the. spider 34, insofar. as its turning movement isconcerned, ismovableonly through an angle of 90 betweenthe position inwhich. itisshown inthat figure. and a position turned. 90f clockwise therefrom. in Figure 4. the spider is shown, in. its extreme counterclockwise positionwiththe shoulder- 42. against. the stop 39. When. the spider turns clockwise.90.. from that position the shoulder 43 engages the stop40. and terminates the turning movement, of, the spider.
  • The. spider has .opposed arms respectively.
  • the closure members 44 are rotatably carried by the. arms so that when they are applied. to the flasks and the flasks are rotated the. closure memr Wi lrot t wi e flasks.
  • Thecarn 36 carried by the shaft 31 has a projection R adapted to. cooperate with. a projection 46. carried by the. spider.
  • Thespring 3.8 urges the. projections 45 and 46 into contact with each other as shown in Figure 4 but resiliently permits the shaft 31 to be turned clockwise viewing Figure 4 relatively to the spider 34 after the shoulder 43 of the spider has engaged the stop 41).
  • the eifect of continued turning of the shaft 31 after. the shoulder 43 of the spider has engaged the stop 4'1 is to turn. the cam 36 relative to the cam 37 and thereby move the spider axially of the shaft 31- toward the left viewing.
  • Figures 1, 2 and 5 to apply the closure members 44 to the flasks.
  • closure members. 44. are shown in the drawings in their inoperativepositions.
  • the rotary cylinder 32 is operated to turn the shaft 31 in the clockwise direction viewing. Figure 4. Since the spring 38 tends at alltimes to maintain the projections. 45 and 46 in contact with each other as shown in Figure 4, the shaft 31 and the spider 34 turn together until the shoulder 43 engages the stop 40.
  • rotary cylinders 47 having coaxial shafts 48 which are turned upon turning movement of the rotors of the rotary cylinders 47.
  • a core holder carrier 49 Fastened to the opposed coaxial shafts 48 is a core holder carrier 49 of generally U shape as shown in Figure 1, the core holder carrier 49 being carried by the shafts 455 adjacent the extremities of the legs of the U.
  • the core holder carrier 49 is adapted to be turned by operation of the rotary cylinders 47 between a position in; which it is disposed in a generally vertical plane as indicated; by chain lines in Figure 2 and a position in which it is disposed in a generally horizontal plane as shown in Figurel; in other words, the core holdercarrier is adapted to be turned about the common axis of the rotary cylinders 47 through an angle of approximately
  • the opera,- tive position of the core holder carrier 49 is the generally horizontal position as shown in Figure 1 and in full lines in Figure 2.
  • the core holder carrier is stopped accurately in operating position by a boss or bosses 50 carried by; the base with which anintegral positioning bracket or integral positioning brackets, 51carried by the core holder carrier coacts or coact.
  • the core holder carrier comprises two parallel cylinders 52 whose axes are spaced apart a distance equal to the spacing between the axis of the flasks 16. When the core holder carrier 49 is in operative position the cylinders 52 are respectively coaxial with the flasks. Within each cylinder 52 is mounted for axial movement by fluid under pressure a core holder 53 adapted to hold a core 53a to be applied to the corresponding flask.
  • the core holder carrier 49 being of generally U shape as above described, has therein an opening or space designated 54 in Figure 1 through which the mandrels 25 may pass when the core holder carrier is in the generally upright position indicated by chain lines in Figure 2.
  • the core holder carrier When the mandrels 25 are performing their function in the flasks and moving between their respective positions the core holder carrier is disposed in its generally upright position. When the core holder carrier is in its generally upright position the core holders 53 are adapted to have cores 53a applied thereto. When the mandrels are withdrawn from the flasks the core holder carrier is moved to operative position as shown in Figure 2 and the core holders 53 each with a core 53a thereon are moved toward the left viewing Figures 1 and 2 to apply the cores within the right-hand ends of the flasks 16 viewing those figures in preparation for casting. At that time, of course, the closure plates 44 are in their inoperative positions as shown in the drawings.
  • FIG.- ures 6 and 7 show a mandrel support and a pouring spout employed when single hub pipe is being cast.
  • the hub is formed at the right-hand end of each flask viewing Figures '1 and 2, the spigot being formed at the left-hand end, which is the end shown in Figures 6 and 7.
  • Figures 6 and 7 show mechanism cooperating with one flask; it is to be understood that the mandrel support and pouring spout shown in Figures 6 and 7 are duplicated for each flask.
  • each mandrel 25 is designed to selectively accommodatae means for use when single hub pipe is being cast and means for use when double hub pipe is being cast, such means also being disclosed in copending application Serial No. 285,213, filed April 30, 1952, now abandoned.
  • the forward end of each mandrel 25 has a reduced portion 55 forming with the body of the mandrel a shoulder 56. Beyond the reduced portion 55 is a further reduced'portion 57. A sleeve is introduced over the portion 57 and the portion 55 so as to abut against the shoulder 56, the shape of the sleeve being determined by whether single hub pipe or double hub pipe is to be cast.
  • the sleeve is designated 58 and has an enlarged portion 59 whose extremity engages the shoulder 56 and which fits snugly about the portion 55 of the mandrel and a reduced portion 60 which fits snugly about the portion 57 of the mandrel.
  • the outer surfaces of the portions 59 and 60 are cylindrical, the outer surface of the portion 59 being of the same diameter throughout as the outer surface of the body of the mandrel 25.
  • the sleeve 58 is held in place on the mandrel by a cap 61 fitting snugly over the end of the portion 57 and maintained in place by a stud 62 threaded into the end of the mandrel and passing through a bore 63 in the head of the cap, a holding nut 64 being threaded onto the stud 62 and bearing against the end of the cap.
  • a sleeve 58 is used on each mandrel 25 when double hub pipe is being cast as will presently be explained.
  • each sleeve 58 is replaced by a sleeve 65 shown in Figure 6.
  • the sleeves 65 differ from the sleeves 58 in that each sleeve 65 has an annular outward projection 66 at the left-hand extremity of the larger portion of the sleeve viewing Figure 6, the projection 66 being for the purpose of forming in the mold a depression for casting of the spigot at the end of a length of single hub pipe opposite the end at which the hub or bell of the pipe is disposed.
  • portion of the sleeve 65 to the left of the projection 66, viewing Figure 6, which portion is designated 67, is of smaller external diameter than the portion 60 of the sleeve 58. This is to insure formation in the mold of an adequate dam beyond the depression in which the pipe spigot is formed so that the molten material of which the pipe is being cast will not flow out of the end of the mold.
  • the base 2 carries adjacent the left-hand ends of the flasks viewing Figures 1 and 2 parallel rods 68 on which is mounted for movement generally parallel to the axes of the flasks when in generally horizontal position a carriage 69.
  • the carriage 69 has downward projections 76 in each of which is mounted a bushing 71, the bushings riding in guided relationship upon the rods 68.
  • Carried by the base 2 substantially at the longitudinal center line thereof is a cylinder 72 arranged with its axis generally horizontal and generally parallel to the length of the apparatus in which operates a piston whose piston rod 73 is connected to the carriage 69.
  • a pair of adjustable stop screws 74 mounted on the base. Movement of the carriage 69 in the opposite direction is limited by the piston in the cylinder 72 reaching the end of its stroke.
  • the carriage 69 is of generally U shape in plan as shown in Figure l.
  • rotary cylinders 75 Mounted on the opposed portions of the carriage 69 as shown in Figure l in opposed spaced apart coaxial relationship are rotary cylinders 75 having coaxial shafts 76 which are turned upon turning movement of the rotors of the rotary cylinders '75.
  • Fastened to the opposed coaxial shafts 76 is a carrier 77.
  • the carrier 77 may be turned between two positions approximately 90 apart, suitable stop means (not shown) being provided for stopping the carrier in each of those positions.
  • the body of the carrier 77 is of generally hollow shape as shown in Figures 6, 7, 8 and 9.
  • the Wall f the carrier which is disposed toward the cradle 11 in the position in which the carrier is shown in Figures 6 and 8 has two circular openings 78 therein, such openings being respectively substantially coaxial with the flasks 16.
  • a bearing bracket 79 Applied to the carrier 77 at each of the openings 73 is a. bearing bracket 79.
  • Each bearing bracket 79 is fastened to the carrier 77 by any suitable fastening means not shown and which may, for example, be as disclosed in copending application Serial No. 285,213.
  • Disposed within each bearing bracket 79 is a bearing unit 80 of any suitable type. such, for example, as a Dodge bearing unit.
  • Each bearing unit 80 may be maintain-ed within its bearing bracket 79 by being pressed therein.
  • Each bearing unit 80 has a generally cylindrical opening therethrough as known to those skilled in the art for receiving a rotatable machine part.
  • each of the bearing units 80 a part whose form is determined by whether the pipe being cast is single hub pipe or double hub pipe.
  • That part is in the form of a flanged sleeve Sl shown in Figure 6 serving as pilot or mandrel support.
  • the flange of the pilot I1 is designated 82. and serves. as a guard to prevent mold forming material from getting into the bearingunit.
  • the bore of the pilot is dimensioned to snugly and. guidingly. receive the mandrel cap 61 as shown in Figure 6-.
  • the pilot supports the end of the mandrel while themandrel is performing its mold forming function.
  • the pilot 81 When double hub pipe is being cast the pilot 81 is. re laced by acornbination pilot and hub 33. as shown in Figure 8.
  • the combination pilot and hub 83 may be formed in one piece as shown or intwopieces: bolted. or otherwise fastened together.
  • the hub portion is designated 84 and projects axially from. the pilot portion as shown in Figure 8.
  • the hub 84 is adapted to be engaged by the forward portion of the mandrel when. the mandrel is introduced into the flask and to lie-within the flask to form an enlargement at the end of a mold of compacted mold forming material in the flask to form one of the hubs on the pipe being cast.
  • the nose of the hub 84 is tapered. as. shown at 85 and.
  • the rearward portion. of the hub 84 ishollowed and has passages 87 to P rmit mold forming material pushed. into the hub by the end,
  • the axial distance from the end of the mandrel. to the tapered shoulder between the portions 59 and 66): of the sleeve 58' is greater than the axial. distance between the extremity of the hub 84 and the mouth.- of the pilot... This is to. insure that the mandrel will be in guided relationship to the pilot when the portion 59 of the sleeve 58 enters the hub 84. whereby to avoid damage, to the hub. 4
  • the carrier 77 has two openings 83 disposed respectively with their centers approximately in the vertical longitudinal: planes, containing the axes of the flasks 16.
  • Each of the openings 88 is flanked on both sides by pads 89 for the application of a coreholder when double hub pipe is to be cast.
  • no core holder is used and the pads 89 are covered and protected by cover plates 90.
  • a core holder 91 is rotatably mounted on the carrier 77 at each of the openings 38.
  • Each of the core holders 91 has a mounting structure com,- prising two cylinders .92 which are spaced apartin; parallelrelationship asshownin Figure 1.
  • Each of the cylinders d2 has a closed end; 93 andan open endsurrounded by a flange 9,4 which is bolted to the corresponding pads 89 whereby toi asten the cylinder in place on the carrier 77.
  • Each of the cylinders 92 has therein a piston 95 having a very short stroke as shown in Figure l, a piston rod 96 being connected with each piston 95 and project ing out of'the open end of the cylinder and through an ear 97 projecting outwardly from a core holder mounting bracket 98 in which one of the core holding 91 is rotatably mounted in bearings 105. Nuts 99 are applied to the ends of the rods 96 as shown in Figure 1.
  • Fluid pressure connections lead from a source of fluid under pressure such as compressed air to the closed ends of the cylinders 92 so that the small space between the closed end of each cylinder 92 and the piston 95 therein is under resilient compression.
  • the purpose of thus mounting the core holders is to allow the core holders to yield slightly when cores carried thereby are introduccd into the ends of the flasks into contact with molds formed in the flasks to inhibit possible damage to the cores and/or molds such as might occur if the core holders were rigidly mounted on the carrier.
  • the pouring spouts are mounted on the carrier so that when double hub pipe is to be cast the core holders 91 and the cores flasks.
  • flask is in coaxial relationship with the flask it is brou ht 12 carried thereby are disposed about the outlet ends of the spouts.
  • Each core holder 91 is rotatably mounted within the corresponding core holder mounting bracket 98v so that when a core is held thereby in operative relation to a mold in the adjacent rotating flask the core. while being continually supported by the core holder is free toturn with the mold and flask.
  • the pouring spouts 10,0 do not turn but remain. in stationary position while discharging the molten material. to be cast into the rotating molds.
  • an annular mass of resilient material such as rubber or the like, upon. each. of the. core holders 91 so as to be interposed between the supporting or backing portion of the core holder and: the core to compensate for possible slight lack of coaxial relationship between the core and the mold during easting as above explained.
  • Such a mass. or" resilient-m l rial is shown at 101 in Figures 8 and 9.
  • a core applied to a core holder M; is shown at 1&2 in Figures 8 and 9., Suitable stop means (not shown) are provided for stopping the turning movement of the carrier 77 with.
  • each ladle 103 is mounted at a fixed location and does not have to be bodily shifted; to. ward and away from the corresponding flask.
  • a til1ti ng type ladle need partake only of tilting movement.v to discharge its contents.
  • a ladle of the bottom pour type need not partake of any movement.
  • the first step is to move the closure members 44 to operative position to close the lower ends of the flasks.
  • the flasks may be used to measure the quantity of finely divided mold forming material introduced as disclosed in United States Letters Patent No. 2,598,554.
  • the core holder carrier 49 is positioned with the core holders generally upright as shown in chain lines in Figure 2 so that the opening 54 is in the path of movement of the mandrels 25 as above explained.
  • the mandrels 25 are moved from right to left viewing Figures 1 and 2 to introduce the mandrels into the flasks through the openings in the finely divided mold forming material formed by the initial centrifuging of the mold forming material above described.
  • the carriage 69 with the carrier 77 oriented as shown in Figure 6 is advanced from left to right viewing Figures 1 and 2.
  • the mandrels and the pilots for the leading ends of the mandrels move into cooperative relationship as shown in Figure 6.
  • the cradle 11 When the mandrels are supported in coaxial relationship with the flasks with the leading end of each mandrel disposed in the corresponding pilot as shown in Figure 6, and while rotation of the flasks continues, the cradle 11 is turned through a small angle in the counterclockwise direction about the axis of the pivot pin 8 viewing Figure 3 by admitting fluid above the left-hand pistons 15 as above described, the extent of such movement of the cradle 11 being as has been stated determined by the rig t-hand pistons 15 reaching the upper ends of their strokes in the corresponding cylinders 14.
  • the flasks and mandrels are relatively offset whereby the mandrels consolidate and smooth the mold forming material in the flasks.
  • the mandrels are shaped as shown in the lower portion of Figure 1 to form at the right-hand end of each mold an enlargement for receiving a core and to form at the left-hand end of each mold a depression for forming a spigot when the molten material is cast.
  • the mandrel shape is not new.
  • the cradle ll is moved back to its original position as shown in Figure 3 by admitting fluid under pressure above the right-hand pistons 15.
  • the mandrels are withdrawn toward the right viewing Figures 1 and 2 to their inoperative position as shown in those figures and at the same time the carriage 69 is moved to the left.
  • the carrier 77 is turned from the orientation shown in Figure 6 to that shown in Figure 7 whereupon the carriage as is again moved to the right until it is stopped by the screws '74.
  • the core holder carrier 49 is moved from the upright position indicated in chain lines in Figure 2 to the operative position shown in full lines in Figures 1 and 2 whereupon the core holders 53 each with a core 53a thereon are moved toward the left to position the cores in cooperative relationship with the molds in the flasks.
  • the pouring spouts itltl having reached operative position with their outlet ends within the molds as shown in Figure 7, the ladles 1433 are caused to discharge their contents into the respective pouring spouts which deliver the molten material into the rotating molds.
  • the molten material thus delivered into the rotating molds is centrifuged therein to form lengths of single hub pipe.
  • the cycle of operations is the same when double hub pipe is bein formed except that when the mandrels are introduced into the flasks to consolidate and smooth the mold forming material therein to form the molds the hubs 84 shown in Figure 8 are employed to form at the left-hand end of each flask viewing Figures 1 and 2 as well as at the right-hand end a core receiving eulargemerit. Also, when double hub pipe is to be formed the introduction of the pouring spout into the end of each mold is accompanied by simultaneous introduction of the corresponding core holder 91 with a core 102 thereon as shown in Figure 9. When the cores 102 are introduced the resilient mounting of the core holders 91 carrying them inhibits damage to the cores of the molds when the cores seat in the molds. The seating of the cores in the molds is along complementary shoulders indicated at 104 in Figure 9.
  • Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder and mounting means mounting the core holder on the carriage for movement into and out of cooperative relationship with the mold upon movement of the carriage generally axially of the mold, the mounting means including cushioning means operatively interposed between the core holder and the carriage to permit slight relative movement between the core holder and the carriage when a core carried by the core holder comes into engagement with a portion of the mold whereby to minimize the likelihood of damage to the core or mold when applying a core to the mold.
  • Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder, mounting means mounting the core holder on the carriage for movement into and out of cooperative relationship with the mold upon movement of the carriage generally axially of the mold and for rotation about an axis generally coincident with the axis of rotation of the mold, the mounting means including cushioning means operatively interposed between the core holder and the carriage to permit slight relative movement between the core holder and the carriage when a core carried by the core holder comes into engagement with 'a portion of the mold and resilient means mounted upon the core holder disposed so as to be interposed between the core holder and a core when a core is applied to the core holder, said resilient means being adapted to yield to compensate for any slight lack of coincidence between the axis of rotation of the mold and the axis of rotation of the core holder to insure proper cooperative relationship between the core and the mold during rotation.
  • Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder mounted on the carriage so as to position a core held thereby to extend within the open end of the mold when the carriage is in position with the core holder in cooperative relationship with the mold and a pouring spout mounted on the carriage with its outlet extending within the core holder.
  • Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder rotatably mounted on the carriage so as to rotatably position a core held thereby to extend within the open end of the mold when the carriage is in position with the core holder in cooperative relationship with the mold and a pouring spout mounted in fixed position on '15 the carriage with its outlet extending within the rotatably mounted core holder.
  • Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, a mandrel and a guide for the mandrel along which the mandrel is movable into the flask when the cradle is in a predetermined position in the cradle support, the mandrel when within the flask being eifective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support.
  • Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle sup port, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, a mandrel, a guide for the mandrel along which the mandrel is movable into the flask when the cradle is in a predetermined position in the cradle support, the mandrel when within the flask being effective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support, means acting between the cradle and the cradle support for turning the cradle relatively to the cradle support and stop means for limiting the turning movement of the cradle relatively to the cradle support.
  • Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, a plurality of generally parallel open-ended flasks each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means carried by the cradle for rotating the flasks, a plurality of gen erally parallel mandrels, guide means for the mandrels along which the mandrels are movable into the respective flasks when the cradle is in a predetermined position in the cradle support, the mandrels when within the flasks being elfective during rotation of the flasks to consolidate finely divided mold forming material therein to form molds upon limited turning of the cradle in the cradle support.
  • Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement about an axis relatively to the cradlesupport, a plurality of generally parallel open-ended flasks having their respective axes substantially equidistant from the first mentioned axis each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means carried by the cradle for rotating the flasks, a plurality of generally parallel mandrels, guide means for the mandrels along which the mandrels are movable into the respective flasks when the cradle is in a predetermined position in the cradle support, the mandrels when within the flasks being substantially equally eifective during rotation of the flasks to consolidate finely divided mold forming material therein to form molds upon limited turning of the cradle in the cradle support.
  • Centrifugal casting apparatustom prising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, a base upon which the cradle support is mounted for turning movement between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, a mandrel and a guide for the mandrel along which the mandrel is movable into the flask tvhen the axis of the flask is generally horizontal and the cradle is in a predetermined position in the cradle support, the mandrel when within the flask being etfective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cra
  • Centrifugal casting apparatus comprising a base, a cradle support mounted on the base for turning movement about a generally horizontal axis, means for turning the cradle support about that axis, a cradle pivotally carried by the cradle support, a plurality of generally parallel openended flasks each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flasks, a plurality of generally parallel mandrels mounted for movement to enter the respective flasks when the cradle support is in a predetermined position relatively to the base and the cradle is in a predetermined position relatively to the cradle support and means for turning the cradle about its pivotal connection with the cradle support when the mandrels are within the flasks and the flasks with finely divided mold forming material therein are rotating to consolidate the finely divided mold forming material to form molds in the flasks.
  • Centrifugal casting apparatus comprising a base, a cradle, a plurality of generally parallel open-ended flasks rotatably mounted in the cradle, means for rotating the flasks, the cradle being mounted on the base for turning movement between a position in which the axes of the flasks are generally upright and a position in which the axes of the flasks are generally horizontal, a spider carrying a plurality of closure members, one for each flask, having an operative position with the closure members closing an end of each flask, and means moving the spider to dispose the closure members in inoperative position removed from the ends of the flasks and core -holders for holding cores in position at said ends of the flasks when the flasks are in position with their axes generally horizontal, the core holders being separate from the closure members.
  • Centrifugal casting apparatus comprising a cradle, a plurality of generally parallel open-ended flasks rotatably mounted in the cradle, means for rotating the flasks, a spider carrying a plurality of rotatable closure members, one for each flask, having an operative position with the closure members closing an end of each flask, and means turning the spider and also moving it away from the ends of the flasks to dispose the closure members in inoperative position axially removed from the ends of the flasks and offset from the flasks and core holders for holding cores in position at said ends of the flasks when the flasks are in position with their axes generally horizontal, the core holders being separate from the closure members.
  • Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, closure means carried by the cradle for movement between operative position closing the open end of the flask and inoperative position removed from the open end of the flask, a mandrel and a guide for the mandrel along which the mandrel is movable into the flask when the cradle is in a predetermined position in the cradle support and the closure means is in inoperative position, the mandrel when Within the flask being effective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support.
  • Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, a plurality of generally parallel open-ended flasks each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means carried by the cradle for rotating the flasks, closure means carried by the cradle for movement between operative position closing the open ends of the flasks and inoperative position removed from the open ends of the flasks, a plurality of generally parallel mandrels and guide means for the mandrels along which the mandrels are movable into the respective flasks when the cradle is in a predetermined position in the cradle support and the closure means is in inoperative position, the mandrels when within the flasks being effective during rotation of the flasks to consolidate finely divided mold forming material therein to form molds upon limited turning of the
  • Centrifugal casting apparatus comprising a cradle, an open-ended flask rotatably mounted in the cradle, means for rotating the flask, a shaft rotatably mounted in the cradle about an axis generally parallel with the axis of the flask, means for rotating the shaft, a closure member for the open end of the flask carried by the shaft and movable from a position transversely offset from the flask to a position in alignment with the flask upon turning of the shaft, means for stopping movement of the closure member when it reaches said position in alignment with the flask and connections between the closure member and the shaft effective upon continued turning of the shaft after the closure member has reached said position in alignment with the flask to move the closure member generally axially of the flask into position closing the open end thereof.
  • Centrifugal casting apparatus comprising a cradle, an open-ended flask rotatably mounted in the cradle, means for rotating the flask, a shaft rotatably mounted in the cradle about an axis generally parallel with the axis of the flask, means for rotating the shaft, a closure member for the open end of the flask carried by the shaft and movable from a position transversely offset from the flask to a position in alignment with the flask upon turning of the shaft, means for stopping movement of the closure member when it reaches said position in alignment with the flask, cam means connected with one of the closure member and shaft and means connected with the other thereof engaging the cam means effective upon continued turning of the shaft after the closure member has reached said position in alignment with the flask to move the closure member generally axially of the flask into position closing the open end thereof.
  • Centrifugal casting apparatus comprising a cradle, an open-ended flask rotatably mounted in the cradle, means for rotating the flask, a shaft rotatably mounted in the cradle about an axis generally parallel with the axis of the flask, means for rotating the shaft, a closure member for the open end of the flask carried by the shaft and movable from a position transversely offset from the flask to a position in alignment with the flask upon turning of the shaft, means for stopping movement of the closure member when it reaches said position in alignment with the flask, cam means connected with one of the closure members and shaft, means connected with the other thereof engaging the cam means effective upon continued turning of the shaft after the closure member has reached said position in alignment with the flask 'to move the closure member generally axially of the flask into position closing the open end thereof and resilient means connected between the shaft and the closure member resisting said continued turning movement of the shaft after the closure member has reached said position in alignment with the flas
  • Centrifugal casting apparatus comprising a base,
  • a cradle an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, the cradle being mounted on the base for turning movement between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, a core holder carrier mounted on the base separately from the cradle for turning movement inv generally vertical plane between a position substantially coaxial with the flask adjacent an open end of the flask when the flask is disposed with its axis generally horizontal and a position with the axis of the core holder carrier generally upright, a core holder carried by the core holder carrier, means moving the core holder into cooperative relationship with the flask when the core holder carrier is in the first mentioned position and the flask is disposed with its axis generally horizontal, the core holder carrier having an opening therein positioned when the core holder carrier is disposed with its axis
  • Centrifugal casting apparatus comprising a base, a cradle, an open-ended flask adapted to receive finely divided, mold forming material rotatably mounted in the cradle, means for rotating the flask, the cradle being mounted on the base for turning movement between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, closure means carried by the cradle for movement between operative position closing the open end of the flask and inoperative position transversely offset from the open end of the flask, a core holder carrier mounted on the base separately from the cradle for turning movement in a generally vertical plane between a position substantially coaxial with the flask adjacent an open end of the flask when the flask is disposed with its axis generally horizontal and a position with the axis of the core holder carrier generallyupright, a core holder carried by the core holder carrier, means moving the core holder into cooperative
  • Centrifugal casting apparatus comprising a rotatably mounted flask, means for rotating the flask, a mandrel introducible through the flask for compacting finely divided mold forming material in the flask, a mounting member disposed adjacent the end of the flask opposite the end through which the mandrel is introduced, a support for the forward end of the mandrel and a pouring spout mounted on the mounting member and means for operating the mounting member to present selectively to the second mentioned end of the flask the support and the pouring spout.
  • Centrifugal casting apparatus comprising a rotatably mounted flask, means for rotating the flask, a mandrel introducible through the flask for compacting finely divided mold forming material in the flask, a molten material ladle mounted in a fixed location adjacent the end of the flask opposite the end through which the mandrel is introduced and adapted to pour out its contents for delivery into the flask, a mounting member disposed adjacent the end of the flask opposite the end through which the mandrel is intoduced, a support for the forward end of the mandrel mounted on the mounting member, a core holder and pouring spout combination mounted on the mounting member and means for oper-' ating the mounting member to selectively move the support into position to support the forward end of the mandrel and move the core holder and pouring spout combination into a position in which the core holder applies a core carriedthereby to the end of theflask opposite the end through which the mandrel
  • a centrifugal casting process comprising mounting for rotation about its axis an elongated peripherally closed open-ended mold having an enlargement therein adjacent an open end thereof, introducing simultaneously into said open end of the mold a hollow core and the outlet of a pouring spout, rotating the mold and core about the pouring spout and during such rotation introducing through the pouring spout through the core into the mold molten material to be centrifugally cast therein.
  • a centrifugal casting process comprising mounting for rotation about its axis an elongated peripherally closed mold open at both ends and having an enlargement therein adjacent each end, introducing a core into one of the open ends of the mold, introducing simultane ously into the other open end of the mold a hollow core and the outlet of a pouring spout, rotating the mold and cores and during such rotation introducing through the pouring spout through the hollow core into the mold molten material to be centrifugally cast therein.
  • a method of making a mold of finely divided mold forming material in an open-ended flask comprising disposing the flask in generally upright position with its bottom closed, introducing into the flask throughits upper end finely divided mold forming material, rotating the .flask to centrifuge the finely divided mold forming material and form an opening therethrough generally alongthe axis of the flask and turning the flask to generally horizontal position and unclosing the bottom.
  • the flask introducing a mandrel into the opening and maintaining the mandrel in position about a substantially fixed axis and angularly oifsetti'ng the flask relatively to the mandrel to consolidate the finely divided mold forming material in the flask to form a mold.
  • Centrifugal casting apparatus comprising a rotatable mold comprising a rotatable body portion and a rotatable end portion cooperating with the body portion at. anend thereof to form an end of a casting centrifugally' cast in. the mold, the end portion having a central opening therethrough, a carriage movable generally axial ly of the mold adjacent said end thereof, a carrier mounted on the carriage for shifting movement relatively to the carriage, the rotatable end portion of the mold being mounted on the carrier, and a pouring spout through which molten material to be cast is adapted to be introduced into the mold, the pouring spout being mounted on the carrier so as to deliver molten material into the mold when the carrier is in position with the outlet of the pouring spout disposedapp'roxirnately in the mold axis and the carriage is in position with the pouring spout disposed in cooperative relationship with the mold, the outlet of the pouring spout projecting through the openingin the end portion of the mold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Description

J. A. LASATER ETAL 2,849,769
CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 Sept. 2, 1958 8 Sheets-Sheet 1 INVENTORS JOHN A. LASATER a n w ATTORNEYS m Om MOI THOMAS A. DEAKINS wK mm mm Sept. 2, 1958 J. A. LASATER ET AL 2,849,769
CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 a Sheet-Sheet 2 no N INVENTORS JOHN A. LASATER a THOMAS A. DEAKINS BY M 6 Sept. 2, 1958 J. A. LASATER ETAL 2,349,769
A CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 8 Sheets-Sheet 4 INVENTORS JOHN A. LASATER 6 THOMAS A. DEAKINS ATTORNEYS Sept Z, 1958 A J. A. LASATER ETAL 2,849,769 CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 8 Sheets-Sheet 5 mvsmoxs JOHN A. LASATE R a THOMAS A.DEAKINS BY ATTORNEYS p 1958 J. A. LASATER EI'AL 7 2,849,769
CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 8 Sheets-Sheet 6 FIG. 7
0 A mvsmons l 7 JOHN A. LASATER a moms A. DEAKINS BY ATTORNEYS Sept. 2, 1958 J. A. LASATER El'AL ,84
CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 Y 8 Sheets-Sheet 7 1 INVENTORS JOHN A. LASATER a THOMAS A. DEAKINS I ATTORNEXJ BY w Sept. 2, 1958 J. A. LASATER ETAL 9 CENTRIFUGAL CASTING APPARATUS AND PROCESS Filed May 5, 1954 8 Sheets-Sheet 8 JOHN A.LASATER 8 THOMAS A. DEAKINS r ATTORNEY-5' nite States CEl' lTRIFUGAlJ (JASTING APPARATUS AND PROCESS I John A. Lasater and Thomas A. Deakins, Chattanooga,
Tenn, assignors to Herman Pneumatic Machine 6on2-v pany, Pittsburgh, Pa., a corporation of Pennsylvania Application May 5, 1954, Serial No. 427,842
25 Claims. (Cl. 22-65) to form a mold. Molten material to be cast, as, for
example, molten metal such as iron, may be introduced into the flask with the mold therein while the flask is rotated at high speed to centrifuge the molten metal and form a hollow article, such, for example, as a length of pipe. The rotation of the flask is continued until the hollow article has solidified sufficiently to permit it to be removed from the flask whereupon the flask may be disposed in generally upright position and the hollow article removed downwardly therefrom.
A form of centrifugal casting apparatus of the type above referred to which has proved highly satisfactory in use and which is disclosed in United States Letters Patent No. 2,613,410 embodies four flasks arranged side by side in generally horizontal alignment. In the use of the apparatus of that patent mandrels are introduced into the flasks to compact or consolidate the finely divided mold forming material, the mandrels when in posirion in the flasks being supported at both ends and the mandrel supports at the respective ends of the mandrels being offset or moved transversely of the flasks while the flasks with the mold forming material therein rotate to consolidate the mold forming material. While excellent results have been obtained in the use of that apparatus we have found that by a different arrangement of parts we can effect the consolidating of the mold forming material in the flasks without offsetting the mandrels and by a simple angular movement of the flasks. The mechanism is simpler, easier to operate and less likely to require'adjustment. In a preferred form of apparatus we utilize two flasks (although more than two may be incorporated if desired) mounted for rotation in a cradle. The cradle is in turn mounted in a cradle support which is carried by a stationary base for movement between a position in which the axes of the flasks are generally upright and a position in which the axes of the flasks are generally horizontal. The cradle is mounted for limited turning movement in the cradle support so that when the mandrels are introduced into the flasks the consolidating of the mold forming material in the flasks may be accomplished by the simple expedient of turning through a very small angle the cradle within the cradle support. Preferably the axes of the flasks are substantially equidistant from the axis of turning of the cradle in the cradle support.
Our apparatus is shown as designed for the casting of lengths of pipe having a bell or hub at one end and a spigot at the other end or having bells or hubs at both ends. To form a hell or hub in the centrifugal casting of lengths of pipe an enlargement is made in the mold aftcnt attains Patented Sept. 2, 1958 core be damaged. We provide for seating a core in a mold by the employment of resilient pressure so that the danger of damaging either the mold or the core is minimized.
In introducing a core into a mold the core is disposed upon a core holder which moves into cooperative rela- Yr tionship with the end of the mold to position the core therein. The core holder is rotatably mounted upon its supporting structure or core holder carrier so that'it may remain in supporting relationshipwith respect to the core during casting when the mold and core rotate together. Since the core holder and the flask are separately mounted their axes may not be in exact alignment. proper continued action of the core holder during the casting operation despite lack of exact coaxial relationship between the flasks and the core holder we preferably dispose resilient material between the core holderand' the core which yields slightly during the casting operation and compensates for any lack of proper alignment of the flask and core holder.
It has been customary heretofore after preparing the mold and inserting the coreor cores, when the molten material to be cast is to be introduced through a hollow core, as, for example, in the formation of double hub pipe, to insert through an opening provided in the core the outlet end of a pouring spout whereupon the molten material to be cast is introduced through the pouring spout while the flask and core rotate. .We have simplifled the apparatus and have provided for speeding up the operation by mounting our pouring spout unitarily with the core holder although providing for rotation of the core holder relatively to the pouring spout. We mount the pouring spout with its outlet end extending within or through the core holder. When a core is applied to the core holder the core, which has an opening therethrough receiving a portion of the core holder, not only surrounds that portion of the core holder but also surrounds the outlet end of the pouring spout which is disposed within the core holder. Thus the pouring spout is in eifect automatically disposed in its operative position when the core is introduced into the end of'the flask, obviating the separate manipulation of a pouring spout as heretofore.
When a mandrel is introduced into a flask to consolidate the mold forming material in the flask to form a mold the forward end of the mandrel is supported by a support provided adjacent the end of the flask opposite the end through which the mandrel is introduced. It has heretofore been proposed to mount the support for the forward end of the mandrel and a core holder, when double hub pipe is to be produced, on the same mounting member, provision being made for moving the mounting member to selectively present the mandrel support and the core holder to the end of the flask. We have explained above how we may mount the pouring spout together with the core holder. Thus in our preferred structure when double hub pipe is to be cast the mandrel support, core holder and pouring-spout are all carried by the same mounting member. to be cast and no core is to be used at the end of the flask through which the molten material is to be introduced we mount the pouring spout upon the same mounting member as the mandrel support; isCiliiating the re- Toinsure 1 When single hub pipe is moval of the mandrel support and the introduction into the end of the flask of the outlet end of the pouring spout. This obviates the separate introduction of a pouring spout through an opening provided in the mounting member for the mandrel support as heretofore.
The mounting of the pouring spout as above described has the further advantage that the molten material ladle which is to supply the molten material to be cast may be mounted in a fixed location so that the only motion of which it need partake is a tilting motion to discharge the molten material. If the molten material ladle is a bottom pour ladle it need not partake of any bodily motion. Heretofore the molten material ladle has been arranged for bodily movement toward and from the flask into which it pours its contents.
We provide novel closure means for closing the lower end or ends of the flask or flasks when mold forming material is introduced downwardly thereinto at the beginning of the cycle. We provide in a multi-flask centrifugal casting apparatus a single mounting member or spider having a plurality of closure members thereon, the mounting member being disposed intermediate the flasks and being adapted to simultaneously apply closure members to the respective flasks in a multi-flask apparatus. We also provide novel apparatus for first moving the closure members into alignment with the flasks and then moving them axially of the flasks into operative position. Our mechanism includes fewer parts than mechanisms previously provided for applying closure members to flasks and is relatively simple and inexpensive while at the same time being highly reliable in operation.
In a present preferred embodiment of our centrifugal casting apparatus we mount on a base a cradle having rotatably mounted therein an open-ended flask together with means for rotating the flask, the mounting of the cradle on the base being such that the cradle may be turned between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, and we provide a core holder carrier mounted on the base for turning movement in a generally vertical'plane between a position substantially coaxial with the flask adjacent an open end of the flask when the flask is disposed with its axis generally horizontal and a position with the axis of the core holder carrier generally upright. We mounton the core "holder carrier a core holder and means for moving the core holder into cooperative relationship with the flask when the core holder carrier is in the first mentioned position and the flask is disposed with its axis generally horizontal. The core holder carrier has therein an opening positioned when the core holder carrier is disposed with its axis generally upright to permit passage therethrough of a mandrel for consolidating finely divided mold forming material in the flask to form a mold. The mandrel is movable along a guide through said opening and into the flask when the flask is disposed with its axis generally horizontal. Means are provided for relatively transversely moving or offsetting the mandrel and flask when the mandrel is within the flask.
As explained above'we show the means for relatively transversely moving or offsetting the mandrel and flask when the mandrel is within-the flask as means for turning or swinging the flask through a small angle in a plane perpendicular to the axis of the mandreland about a center spaced from the axis of the mandrel. That is one of the features of our improved centrifugal casting apparatus. However, other means for relatively transversely moving the mandrel and flask'whenthe mandrel is within the flask'and the flask is-rotating to consolidate finely divided mold forming-material in-t he flask'toform a mold may be utilized in connection with other features of our apparatus'. Indeed, the features which -are described and shown have in many cases advantages when used individually although further advantages are realized when certain of the features are used in combination.
Other details, objects and advantages of the invention will become apparent as the following description of a present preferred embodiment of the invention and a present preferred method of practicing the same proceeds.
In the accompanying drawings we have shown a present preferred embodiment of the invention and have illustrated a present preferred method of practicing the same in which Figure 1 is a plan view, partly in horizontal cross section, of centrifugal casting apparatus having two flasks and cooperating elements, the flask and cooperating elements near the bottom of the figure being adapted for the casting of single hub pipe and the flask and cooperating elements nearer the top of the figure being adapted for the casting of double hub pipe;
Figure 2 is an elevational view of the appaartus shown in Figure l and additionally showing diagrammatically a ladle for pouring molten material to be cast into the .centrifugal casting apparatus and further showing in chain lines positions of certain of the parts different from the positions of those parts shown in full lines;
Figure 3 is a vertical transverse cross-sectional view taken on the line III-III of Figure 2 but with the core holder carriers and core holders moved to the chain line position of Figure 2 (and hence not shown at all in Figure 3) and the mandrels partially advanced;
Figure 4 is an enlarged elevational view showing the means for closing an end of each of the flasks;
Figure 5 is a view partly in elevation and partly in vertical longitudinal cross section on the line V-V of Figure 4;
Figure 6 is a fragmentary detail view to enlarged scale in comparison with the scale of Figures 1 and 2 showing the support for the forward end of a mandrel and the corresponding pouring spout as adapted for the forming of single hub pipe, the support forthe forward end of the mandrel being in operative mandrel-supporting position and the pouring spout being in inoperative position;
Figure 7 is a view similar to Figure 6 of the same elements of the apparatus but with' the pouring spout in operative position and the support for the forward end of the mandrel in inoperative position;
Figure 8 is a view similar to Figure 6 showing the support for the forward end of a mandrel provided with a hub cooperating with the mandrel for forming in the mold at the end thereof shown in the figure an enlarged portion for forming one of the hubs of double hub pipe and also showing the pouring spout and associated core holder as adapted for the forming of double hub pipe, the support for the forward end of the mandrel and the hub beingin operative position and the pouring spout and associated core holder being inoperative position; and
Figure 9 is a view similar to Figure 8 of the same elements of the apparatus but with the pouring spout and associated core holder in operative position and the support for the forward end of the mandrel and the hub in inoperative position.
Referring now more particularly to the drawings and first to Figures 1, 2 and 3, the centrifugal casting apparatus is mounted upon a fixed base designated generally by reference numeral 2. The fixed base 2 comprises opposed spaced apart elongated supporting portions 3 which are generally parallel and extend generally longitudinally of the apparatus. The supporting portions 3 are suitably connected together by transverse members such as shown at 4 in Figures 1 and 2.
Mounted on the respective supporting portions 3 in opposed spaced apart coaxial relationship are rotary cylinders 5 which may be of conventional construction having coaxial shafts 6 which are turned upon turning movement of the rotors of the rotary cylinders 5 in a manner known to those skilled in the art. Fastened to the opposed coaxial shafts 6 is a cradle Support 7 of generally U shape as shown in Figure 3, the cradle support 7 being carried by the shafts 6 adjacent the extremities of the legs of the U. The cradle support 7 is adapted to be turned by operation of the rotary cylinders 5 between a position in which it is disposed in a generally vertical plane as shown in Figure 3 and a position in which it is disposed in a generally horizontal plane; in other words, the cradle support is adapted to be turned about the common axis of the rotary cylinders 5 through an angle of approximately 90. Suitable positioning means not shown in the drawings are provided for stopping and positioning the cradle support in each of its two positions.
A pivot pin 8 is mounted in the cradle support 7, having its ends extending through bores 9 in opposed upstanding rib portions 10 of the cradle support. Pivotally carried by the pivot pin 8 is a cradle 11. The cradle 11 has spaced apart lugs 12 respectively provided with bores 13 through which the pivot pin 8 passes to pivotally mount the cradle 11 on the cradle support 7. The cradle 11 is adapted to partake of limited turning movement about the axis of the pivot pin 8 for a purpose to be presently described. The turning movement of the cradle need be through only a few degrees but the limits of the turning movement should be accurately determinable. While various means may be provided for turning and stopping the turning movement of the cradle 11 in the respective directions about the axis of the pivot pin 8, we have shown largely diagrammatically simple means which will accomplish the purpose, such means being in the form of opposed cylinders 14 mounted in the cradle support I, each of the cylinders 14 having a piston 15" operating therein, suitable connections (not shown) being provided for admitting fluid under pressure to the respective ends of the cylinders and conventional control means also being provided for controlling the flow of the fluid. Connected with each piston 15 and projecting out of the corresponding cylinder 14 into engagement with a pad 11a of the cradle 11 is a pin 15a as shown in Figure 3. The operative positions of the cradle 11 are determined by the engagement therewith of the pins 15a. In order to insure accuracy of movement and stopping of the cradle 11 we preferably provide two cylinders 14 each with a piston 15 operating therein and having a pin 15a projecting therefrom at each side of the pivot pin 8 as shown in Figure 1.
In the simplified construction shown in the drawings the turning movement of the cradle 11 in the clockwise direction about the axis of the pivot pin 8 viewing Figure 3 is stopped when the pistons 15 in the left-hand cylinders 14 viewing that figure engage the upper cylinder heads of their respective cylinders and the turning movement of the cradle 11 in the counterclockwise direction about the axis of the pivot pin 8 viewing Figure 3 is stopped when the pistons 15 in the right-hand cylinders 14 viewing that figure engage the upper cylinder heads of their respective cylinders. In Figure 3 the cradle 11 is shown in extreme position turned in the clockwise direction about the axis of the pivot pin 8. In that position the axes of the two flasks rotatably mounted in the cradle which will presently be described preferably lie substantially in a common horizontal plane when the cradle support 7 is disposed in a generally vertical plane as shown in Figure 3. When the cradle 11 is turned in the counterclockwise direction about the axis of the pivot pin 8 viewing Figure 3 the axes of the flasks move out of such common horizontal plane for a purpose which will be described.
Mounted for rotation in the cradle 11 are a plurality of flasks for the centrifugal casting of hollow elongated articles, such, for example, as lengths of pipe, and, by way of more specific example, lengths of cast iron soil pipe. It is to be understood, however, that elongated articles other than lengths of pipe may be centrifugally cast and materials other than iron may be employed. For example, other metals or non-metallic materials of suitable structural characteristics may be utilized.
We have shown two parallel flasks 16 each mounted for. rotation in the cradle 11 although more than two flasks may be mounted in the cradle if desired. To avoid complexity of the drawings we have not shown in detail the structure for rotatably mounting the flasks. Such structure is now a matter of knowledge to those skilled in the art. The flasks may, for example, be mounted for rotation as shown in United States Letters Patent No. 2,449,900. Desirably the two flasks 16 are mounted in the cradle 11 with their axes equidistant from the axis of the pivot pin 8. Such mounting of the flasks insures uniform compacting therein of finely divided mold forming material as will presently be described. If more than two flasks are mounted in the cradle 11 is is preferable that the axes of all of the flasks be equidistant from the axis of the pivot pin 8, although under certain conditions it may be possible to deviate somewhat from that arrangement.
Means are provided for rotating the flasks 16 at centrifugal speed so as to form therein centrifugally cast hollow elongated articles. For rotating the flasks we show an electric motor 17 mounted upon the cradle 11 and carrying upon its shaft 18 a multiple V-belt pulley 19. Similar pulleys 20 are mounted upon the respective flasks 16 and V-belts 21 are trained about the respective pulleys 19 and 20 as shown in Figure 3. The pulleys 20 are preferably of equal diameter so that the two flasks 16 are turned at the same speed by the V-belts 21 when the motor 17 is operated.
It has been mentioned above that the cradle support 7 is movable between a position in a substantially horizontal plane and a position in a substantially vertical plane and that means are provided for stopping movement of the cradle support when it reaches the respective positions mentioned. When the cradle support is in a generally vertical plane as shown in Figure 3 the axes of the flasks 16 are generally horizontal and, as also mentioned above, when the cradle 11 is in its extreme clockwise position viewing Figure 3 while the cradle support is in a generally vertical plane the axes of the flasks are in a common horizontal plane. When the cradle support 7 is in a generally horizontal plane the axes of the flasks are generally vertical. The cradle support turns between a position in which the flasks 16 are generally horizontal as shown in full lines in Figure 2 and a position in which the left-hand ends of the flasks as shown in full lines in Figure 2 are disposed upwardly as shown in chain lines in that figure.
The opposed supporting portions 3 of the base 2 have parallel longitudinal tracks 22 shown in Figure 3. We provide a mandrel support 23 adapted for movement longitudinally of the apparatus guided and supported by the tracks 22. The mandrel support 23 has rollers 24 rotatably mounted thereon cooperating with the tracks 22 as shown in Figures 1 and 3 to insure accurately guided movement of the mandrel support 23 longitudinally of the apparatus. Rotatably mounted in the mandrel support 23 in a manner known to those skilled in the art are a plurality of mandrels 25 having their axes substantially parallel to each other, there being the same number of mandrels 25 as there are flasks rotatably mounted in the cradle 11 and the axes of the mandrels being arranged in the same pattern and with the same spacing as the axes of the flasks. Since there are two flasks in the apparatus shown in the drawings we have shown two mandrels. The axes of the two mandrels 25 are spaced apart the same distance as the axes of the flasks 16 are spaced apart. The axes of the mandrels 25 lie in parallel relationship in a common horizontal plane and remain in that plane at all times. The mandrels are mounted to be rotated by frictional engagement with the finely divided mold forming material used for forming molds in the flasks as Will presently be described. The mandrels partake of only two motions, the rotative motion just mentioned and axial movement eflected by movement of the mandrel-support 23 along.
the rails 22. The mandrels are respectively. coaxial with the. flasks 16 when the. cradle support and cradle are in the position shown in Figures 1 and 3 and shown in full lines in Figure 2. Whenthe mandrels are in coaxial relationship with the flasks and finely divided mold forming material. has been introduced into the flasks and the flasks are rotated the mandrels are introduced into the flasks by. advancing the mandrel support 23 from right to left viewing Figures 1 and 2. The. mandrel support 23..is advanced by a piston in a cylinder 2.6, the cylinder being fixedly mounted on the base and the piston rod 27 being connected with the mandrel support 23 at. 274. Any suitable means as known to those skilled in the art may be provided for stopping the movement. of. the mandrel support 23 to introduce the mandrels into the flasks. Such means may be the cylinder head of the cylinder 26 or the means for supporting the forward. ends of the mandrels presently to be described. The mandrel support 23 has at its opposite sides bosses 28 (Figure 2) which when the mandrels reach operative position within the flasks underlie cooperating lugs' 29. carried by the base 2 to in effect clamp the mandrel support. 23 to the base to resist the tendency. to. lift the mandrel support from the rails or turn the mandrel support during compacting of the mold forming. material in the flasks as will presently be described.
We provide means. for closing the lower ends of the flasks when the flasks are in. generally upright position, i. e., the. chain. line position of- Figure 2, to hold finely divided. mold. forming material in the flasks when such material is introduced at. thebeginning of the cycle. Referring to Figures 1 to 5, inclusive, we mount for rotation in. the cradle 11 substantially centrally thereof in bushings 3.0a shaft31. The cradle 11 carries a rotary cylinder 32 coaxial with the shaft 31 and coupled to the shaft. 31 by. a coupling 33 whereby the rotary cylinder 32 turns the shaft. 31 in either direction upon appropriate application of fluid under pressure to the rotary cylinder. The. axis. of the shaft 31- is' parallel to and equidistant from the axes of. the flasks 16 and lies in the common plane of the axes of the flasks, as shown in Figure. 4.
The shaft 31 has the cndthereof opposite the end connectedtwiththe coupling 33. projectingfrom the cradle 11, and a spider34. is mountedon the shaft. for turning movement and also for axial movement relatively to the shaft, the spiderv having. a. central bore receiving the shaft and a bushing 35. lining. the central bore. Fixed to the extremity of the shaft'so as. ineffect to. form an integral part thereofis a cam36 as. shown in Figure 5. A complementary (36.11137 is. fixed to.the.spidcr 34. A coil spring 3S has one. endtconnected .withthe. shaft 31 and the other nd connectedwith the. spider 34.as,shown in Figure 5. Fixcdly xnountedcn the. cradle. 11 are stops 39. and 40. The spider..3.4ihas a hub. 41. having a. portion thereof at its peripherycut away to..forrn two shoulders 4?..and 43. VifiWingFigure 4, the. spider 34, insofar. as its turning movement isconcerned, ismovableonly through an angle of 90 betweenthe position inwhich. itisshown inthat figure. and a position turned. 90f clockwise therefrom. in Figure 4. the spider is shown, in. its extreme counterclockwise positionwiththe shoulder- 42. against. the stop 39. When. the spider turns clockwise.90.. from that position the shoulder 43 engages the stop40. and terminates the turning movement, of, the spider. The. spider has .opposed arms respectively. carryingflask closure members 44, one for each. flask. The closure members 44 are rotatably carried by the. arms so that when they are applied. to the flasks and the flasks are rotated the. closure memr Wi lrot t wi e flasks.
Thecarn 36 carried by the shaft 31 has a projection R adapted to. cooperate with. a projection 46. carried by the. spider. Thespring 3.8, at all times. urges the. projections 45 and 46 into contact with each other as shown in Figure 4 but resiliently permits the shaft 31 to be turned clockwise viewing Figure 4 relatively to the spider 34 after the shoulder 43 of the spider has engaged the stop 41). The eifect of continued turning of the shaft 31 after. the shoulder 43 of the spider has engaged the stop 4'1 is to turn. the cam 36 relative to the cam 37 and thereby move the spider axially of the shaft 31- toward the left viewing. Figures 1, 2 and 5 to apply the closure members 44 to the flasks.
The closure members. 44. are shown in the drawings in their inoperativepositions. When the closure members are to be applied to the flasks the rotary cylinder 32 is operated to turn the shaft 31 in the clockwise direction viewing. Figure 4. Since the spring 38 tends at alltimes to maintain the projections. 45 and 46 in contact with each other as shown in Figure 4, the shaft 31 and the spider 34 turn together until the shoulder 43 engages the stop 40.
When the shoulder 43. engages the stop 40 the closure members 44 are. respectively. in. coaxial alignment with the flasks. Continued turning thereafter. of the shaft 31 in the clockwise direction viewing Figure 4. causes theprojection 45 tomove away from the projection 46, the cam 3&5 acting on the cam 37 to move the spider recti-. linearly toward the cradle and apply the closure members 44 to the flasks 16. The spring 38 in additionto resiliently urging the projections 45 and 46. into contact with. each other also tendsto urge the spider 3.4 toward the right viewing Figure 5 and hence is effective for resil= iently maintaining the cams 36 and 37 inengagement with each other at all times.
When the closure members 44 are to be moved. from operative position closing the ends of the fiasks to in: operative position the rotary cylinder 32; is operated to turn the shaft 31 in the counterclockwise direction viewa ing Figure 4. Initially the shaft only will turn until the. projection 45. engages the. projection 46. During such turning of the shaft only, while the spider 34 does not turn the spider moves rectilinearly outwardly or toward the right viewing Figure 5 to separate the closure mem-. bers 44 from the flasks 16. By the time the projection 45 comes into contact with the projection 46 the closure members 44- will have parted contact with the flasks. so that they may then be turned to positions offset from the flasks. Such turning of the closure members to. positions offset from the flasks is accomplished by continued counterclockwise turning of the shaft 31 which through the engagement of the projection 45 with the projection.
46 turns with it the spider 34 carrying the closure mem-. bers 44. Such turning movement of the spider is continued until the shoulder 42 engages the stop 39 at which time the parts are in the position shown in the drawings with the closure members 44 in inoperative position.
Mounted on the respective supporting portions 3. in spaced apart coaxial relationship are rotary cylinders 47 having coaxial shafts 48 which are turned upon turning movement of the rotors of the rotary cylinders 47. Fastened to the opposed coaxial shafts 48 is a core holder carrier 49 of generally U shape as shown in Figure 1, the core holder carrier 49 being carried by the shafts 455 adjacent the extremities of the legs of the U. The core holder carrier 49 is adapted to be turned by operation of the rotary cylinders 47 between a position in; which it is disposed in a generally vertical plane as indicated; by chain lines in Figure 2 and a position in which it is disposed in a generally horizontal plane as shown in Figurel; in other words, the core holdercarrier is adapted to be turned about the common axis of the rotary cylinders 47 through an angle of approximately The opera,- tive position of the core holder carrier 49 is the generally horizontal position as shown in Figure 1 and in full lines in Figure 2. The core holder carrier is stopped accurately in operating position by a boss or bosses 50 carried by; the base with which anintegral positioning bracket or integral positioning brackets, 51carried by the core holder carrier coacts or coact.
The core holder carrier comprises two parallel cylinders 52 whose axes are spaced apart a distance equal to the spacing between the axis of the flasks 16. When the core holder carrier 49 is in operative position the cylinders 52 are respectively coaxial with the flasks. Within each cylinder 52 is mounted for axial movement by fluid under pressure a core holder 53 adapted to hold a core 53a to be applied to the corresponding flask. The core holder carrier 49, being of generally U shape as above described, has therein an opening or space designated 54 in Figure 1 through which the mandrels 25 may pass when the core holder carrier is in the generally upright position indicated by chain lines in Figure 2.
When the mandrels 25 are performing their function in the flasks and moving between their respective positions the core holder carrier is disposed in its generally upright position. When the core holder carrier is in its generally upright position the core holders 53 are adapted to have cores 53a applied thereto. When the mandrels are withdrawn from the flasks the core holder carrier is moved to operative position as shown in Figure 2 and the core holders 53 each with a core 53a thereon are moved toward the left viewing Figures 1 and 2 to apply the cores within the right-hand ends of the flasks 16 viewing those figures in preparation for casting. At that time, of course, the closure plates 44 are in their inoperative positions as shown in the drawings.
Our apparatus is adaptable for forming either single hub or double hub pipe, requiring some modification when it is changed over from one to the other. Fig.- ures 6 and 7 show a mandrel support and a pouring spout employed when single hub pipe is being cast. The hub is formed at the right-hand end of each flask viewing Figures '1 and 2, the spigot being formed at the left-hand end, which is the end shown in Figures 6 and 7. Figures 6 and 7 show mechanism cooperating with one flask; it is to be understood that the mandrel support and pouring spout shown in Figures 6 and 7 are duplicated for each flask.
The forward end of each mandrel 25 is designed to selectively accommodatae means for use when single hub pipe is being cast and means for use when double hub pipe is being cast, such means also being disclosed in copending application Serial No. 285,213, filed April 30, 1952, now abandoned. The forward end of each mandrel 25 has a reduced portion 55 forming with the body of the mandrel a shoulder 56. Beyond the reduced portion 55 is a further reduced'portion 57. A sleeve is introduced over the portion 57 and the portion 55 so as to abut against the shoulder 56, the shape of the sleeve being determined by whether single hub pipe or double hub pipe is to be cast. In Figures 8 and 9 the sleeve is designated 58 and has an enlarged portion 59 whose extremity engages the shoulder 56 and which fits snugly about the portion 55 of the mandrel and a reduced portion 60 which fits snugly about the portion 57 of the mandrel. The outer surfaces of the portions 59 and 60 are cylindrical, the outer surface of the portion 59 being of the same diameter throughout as the outer surface of the body of the mandrel 25. The sleeve 58 is held in place on the mandrel by a cap 61 fitting snugly over the end of the portion 57 and maintained in place by a stud 62 threaded into the end of the mandrel and passing through a bore 63 in the head of the cap, a holding nut 64 being threaded onto the stud 62 and bearing against the end of the cap.
A sleeve 58 is used on each mandrel 25 when double hub pipe is being cast as will presently be explained. When single hub pipe is being cast each sleeve 58 is replaced by a sleeve 65 shown in Figure 6. The sleeves 65 differ from the sleeves 58 in that each sleeve 65 has an annular outward projection 66 at the left-hand extremity of the larger portion of the sleeve viewing Figure 6, the projection 66 being for the purpose of forming in the mold a depression for casting of the spigot at the end of a length of single hub pipe opposite the end at which the hub or bell of the pipe is disposed. Likewise the portion of the sleeve 65 to the left of the projection 66, viewing Figure 6, which portion is designated 67, is of smaller external diameter than the portion 60 of the sleeve 58. This is to insure formation in the mold of an adequate dam beyond the depression in which the pipe spigot is formed so that the molten material of which the pipe is being cast will not flow out of the end of the mold.
The base 2 carries adjacent the left-hand ends of the flasks viewing Figures 1 and 2 parallel rods 68 on which is mounted for movement generally parallel to the axes of the flasks when in generally horizontal position a carriage 69. The carriage 69 has downward projections 76 in each of which is mounted a bushing 71, the bushings riding in guided relationship upon the rods 68. Carried by the base 2 substantially at the longitudinal center line thereof is a cylinder 72 arranged with its axis generally horizontal and generally parallel to the length of the apparatus in which operates a piston whose piston rod 73 is connected to the carriage 69. Thus operation of the piston in the cylinder 72 causes movement of the carriage 69 along the rods 68. Movement of the carriage toward the right viewing Figure 1 is limited by a pair of adjustable stop screws 74 mounted on the base. Movement of the carriage 69 in the opposite direction is limited by the piston in the cylinder 72 reaching the end of its stroke.
The carriage 69 is of generally U shape in plan as shown in Figure l. Mounted on the opposed portions of the carriage 69 as shown in Figure l in opposed spaced apart coaxial relationship are rotary cylinders 75 having coaxial shafts 76 which are turned upon turning movement of the rotors of the rotary cylinders '75. Fastened to the opposed coaxial shafts 76 is a carrier 77. By operation of the rotary cylinders 75 the carrier 77 may be turned between two positions approximately 90 apart, suitable stop means (not shown) being provided for stopping the carrier in each of those positions. In one of the positions means carried by the carrier for supporting the forward end of the mandrel are positioned in alignment with the mandrel and in the other position a pouring spout carried by the carrier is positioned with its outlet end generally in alignment with the axis of the flask. Figures 6 and 8 show the carrier in the first mentioned position for the formation of single hub and double hub pipe respectively and Figures 7 and 9 show the carrier in the second mentioned position for the formation of single hub and double hub pipe respectively.
The body of the carrier 77 is of generally hollow shape as shown in Figures 6, 7, 8 and 9. The Wall f the carrier which is disposed toward the cradle 11 in the position in which the carrier is shown in Figures 6 and 8 has two circular openings 78 therein, such openings being respectively substantially coaxial with the flasks 16. Applied to the carrier 77 at each of the openings 73 is a. bearing bracket 79. Each bearing bracket 79 is fastened to the carrier 77 by any suitable fastening means not shown and which may, for example, be as disclosed in copending application Serial No. 285,213. Disposed within each bearing bracket 79 is a bearing unit 80 of any suitable type. such, for example, as a Dodge bearing unit. Each bearing unit 80 may be maintain-ed within its bearing bracket 79 by being pressed therein. Each bearing unit 80 has a generally cylindrical opening therethrough as known to those skilled in the art for receiving a rotatable machine part.
We provide for rotatably mounting in each of the bearing units 80 a part whose form is determined by whether the pipe being cast is single hub pipe or double hub pipe. For casting single hub pipe that part is in the form of a flanged sleeve Sl shown in Figure 6 serving as pilot or mandrel support. The flange of the pilot I1 is designated 82. and serves. as a guard to prevent mold forming material from getting into the bearingunit. The bore of the pilot is dimensioned to snugly and. guidingly. receive the mandrel cap 61 as shown in Figure 6-. The pilot supports the end of the mandrel while themandrel is performing its mold forming function.
When double hub pipe is being cast the pilot 81 is. re laced by acornbination pilot and hub 33. as shown in Figure 8. The combination pilot and hub 83 may be formed in one piece as shown or intwopieces: bolted. or otherwise fastened together. The hub portion is designated 84 and projects axially from. the pilot portion as shown in Figure 8. The hub 84 is adapted to be engaged by the forward portion of the mandrel when. the mandrel is introduced into the flask and to lie-within the flask to form an enlargement at the end of a mold of compacted mold forming material in the flask to form one of the hubs on the pipe being cast. The nose of the hub 84 is tapered. as. shown at 85 and. has a bore 36v of such size as to snugly receiv the portion 59; of the. sleeve 58. as shown in Figure 8. The rearward portion. of the hub 84: ishollowed and has passages 87 to P rmit mold forming material pushed. into the hub by the end,
of the mandrel to be discharged centrifugally upon. rotation of the mandrel and hub.
The axial distance from the end of the mandrel. to the tapered shoulder between the portions 59 and 66): of the sleeve 58' is greater than the axial. distance between the extremity of the hub 84 and the mouth.- of the pilot... This is to. insure that the mandrel will be in guided relationship to the pilot when the portion 59 of the sleeve 58 enters the hub 84. whereby to avoid damage, to the hub. 4
The carrier 77 has two openings 83 disposed respectively with their centers approximately in the vertical longitudinal: planes, containing the axes of the flasks 16.
Each of the openings 88 is flanked on both sides by pads 89 for the application of a coreholder when double hub pipe is to be cast. When single hub pipe is to be cast no core holder is used and the pads 89 are covered and protected by cover plates 90. When double hu-b pipe is being cast a core holder 91 is rotatably mounted on the carrier 77 at each of the openings 38. Each of the core holders 91 has a mounting structure com,- prising two cylinders .92 which are spaced apartin; parallelrelationship asshownin Figure 1. Each of the cylinders d2, has a closed end; 93 andan open endsurrounded by a flange 9,4 which is bolted to the corresponding pads 89 whereby toi asten the cylinder in place on the carrier 77. Each of the cylinders 92 has therein a piston 95 having a very short stroke as shown in Figure l, a piston rod 96 being connected with each piston 95 and project ing out of'the open end of the cylinder and through an ear 97 projecting outwardly from a core holder mounting bracket 98 in which one of the core holding 91 is rotatably mounted in bearings 105. Nuts 99 are applied to the ends of the rods 96 as shown in Figure 1. Fluid pressure connections lead from a source of fluid under pressure such as compressed air to the closed ends of the cylinders 92 so that the small space between the closed end of each cylinder 92 and the piston 95 therein is under resilient compression. The purpose of thus mounting the core holders is to allow the core holders to yield slightly when cores carried thereby are introduccd into the ends of the flasks into contact with molds formed in the flasks to inhibit possible damage to the cores and/or molds such as might occur if the core holders were rigidly mounted on the carrier.
Mounted on the carrier 77 are two pouring spouts 1%, each positioned so that upon appropriate operation of the carrier 77 and the carriage 69 its outlet end may be introduced into the corresponding flask to deliver molten material for casting thereinto. The pouring spouts are mounted on the carrier so that when double hub pipe is to be cast the core holders 91 and the cores flasks.
flask is in coaxial relationship with the flask it is brou ht 12 carried thereby are disposed about the outlet ends of the spouts.
Each core holder 91 is rotatably mounted within the corresponding core holder mounting bracket 98v so that when a core is held thereby in operative relation to a mold in the adjacent rotating flask the core. while being continually supported by the core holder is free toturn with the mold and flask. The pouring spouts 10,0, of course, do not turn but remain. in stationary position while discharging the molten material. to be cast into the rotating molds.
We preferably dispose an annular mass of resilient material, such as rubber or the like, upon. each. of the. core holders 91 so as to be interposed between the supporting or backing portion of the core holder and: the core to compensate for possible slight lack of coaxial relationship between the core and the mold during easting as above explained. Such a mass. or" resilient-m l rial is shown at 101 in Figures 8 and 9. A core applied to a core holder M; is shown at 1&2 in Figures 8 and 9., Suitable stop means (not shown) are provided for stopping the turning movement of the carrier 77 with. the respective instrumentalities above described selectively disposed in coaxial relationship with, the respective When an instrumentality to cooperate with a into cooperative relationship with the flask by moving the carriage 69 toward the right viewing Figures 1 and 2 until its motion. is stopped by'the screws 74 as above described, The screws '74 are. adjusted to stop the movement of the. carriage when the instrumentalities carried thereby are in proper cooperative relationship with the flasks.
For each flask we provide a ladle adapted to pour:
molten material into the corresponding pouring spout: l0!) and thence into the flask. We have shown a ladle dia grammatically in chain lines at 103 in each of Figures 6, 7, 3 and 9. In Figure 2 the ladle 103 is ShQfWn in; full lines in its position prior to pouring and in chain lines in its position upon completion of the pour. The ladle diagrammatically shown in the drawingsis a tilting; type ladle although a bottom pour ladle maybe: us d i desired. In any event, each ladle 103 is mounted at a fixed location and does not have to be bodily shifted; to. ward and away from the corresponding flask. A til1ti ng type ladle need partake only of tilting movement.v to discharge its contents. A ladle of the bottom pour type; need not partake of any movement.
We shall now describe a present preferred method. o casting single hub pipe by use of our apparatus, At theend of a cycle the flasks are in generally upright position. and are open top and bottom since the pipes. cast duringthat cycle have been discharged downwardly therefrom. The molds and cores have likewise been so discharged. The first step is to move the closure members 44 to operative position to close the lower ends of the flasks. When the lower ends of the flasks have been closed finely divided mold forming material is introduced downwardly into the flasks. The flasks may be used to measure the quantity of finely divided mold forming material introduced as disclosed in United States Letters Patent No. 2,598,554. As soon as the finely divided mold forming material has been introduced into the flasks rotation of the flasks is commenced and at the same time the cradle support is turned about the axes of the rotary cylinders 5 until the cradle is in a position in which the axes of the flasks are substantially horizontal. The rotation of the flasks centrifuges the mold forming material so that an opening is formed in the mold forming materialin each flask extending generally axially of the flask. About the time the flasks reach horizontal position the closure members 44 are moved to inoperative position to uncover the right-hand ends of the flasks viewing Figures 1 and 2. At that time the core holder carrier 49 is positioned with the core holders generally upright as shown in chain lines in Figure 2 so that the opening 54 is in the path of movement of the mandrels 25 as above explained. The mandrels 25 are moved from right to left viewing Figures 1 and 2 to introduce the mandrels into the flasks through the openings in the finely divided mold forming material formed by the initial centrifuging of the mold forming material above described. At the same time the carriage 69 with the carrier 77 oriented as shown in Figure 6 is advanced from left to right viewing Figures 1 and 2. Thus the mandrels and the pilots for the leading ends of the mandrels move into cooperative relationship as shown in Figure 6.
When the mandrels are supported in coaxial relationship with the flasks with the leading end of each mandrel disposed in the corresponding pilot as shown in Figure 6, and while rotation of the flasks continues, the cradle 11 is turned through a small angle in the counterclockwise direction about the axis of the pivot pin 8 viewing Figure 3 by admitting fluid above the left-hand pistons 15 as above described, the extent of such movement of the cradle 11 being as has been stated determined by the rig t-hand pistons 15 reaching the upper ends of their strokes in the corresponding cylinders 14. By such movement of the cradle the flasks and mandrels are relatively offset whereby the mandrels consolidate and smooth the mold forming material in the flasks. The mandrels are shaped as shown in the lower portion of Figure 1 to form at the right-hand end of each mold an enlargement for receiving a core and to form at the left-hand end of each mold a depression for forming a spigot when the molten material is cast. The mandrel shape is not new.
After the mold forming material has thus been acted upon by the mandrels and the molds have been completely formed within the flasks the cradle ll is moved back to its original position as shown in Figure 3 by admitting fluid under pressure above the right-hand pistons 15. When the cradle and flasks reach their original position as shown in Figure 3 the mandrels are withdrawn toward the right viewing Figures 1 and 2 to their inoperative position as shown in those figures and at the same time the carriage 69 is moved to the left. The carrier 77 is turned from the orientation shown in Figure 6 to that shown in Figure 7 whereupon the carriage as is again moved to the right until it is stopped by the screws '74. Meanwhile the core holder carrier 49 is moved from the upright position indicated in chain lines in Figure 2 to the operative position shown in full lines in Figures 1 and 2 whereupon the core holders 53 each with a core 53a thereon are moved toward the left to position the cores in cooperative relationship with the molds in the flasks. The pouring spouts itltl having reached operative position with their outlet ends within the molds as shown in Figure 7, the ladles 1433 are caused to discharge their contents into the respective pouring spouts which deliver the molten material into the rotating molds. The molten material thus delivered into the rotating molds is centrifuged therein to form lengths of single hub pipe. Rotation of the flasks is continued until the molten material has solidified sufilciently to retain its shape. The core holders 53 are removed from the flasks and tilted to the chain line position of Figure 2 and the pouring spouts 160 are removed from the flasks, whereupon the flasks are turned to upright position and the cast lengths of pipe are discharged downwardly therefrom. Gravity may be suflicient to cause the cast pipe lengths to be discharged downwardly from the molds, but in any event we prefer to provide means known to those skilled in the art and not shown in the drawings to forcibly eject the pipe lengths it necessary.
The cycle of operations is the same when double hub pipe is bein formed except that when the mandrels are introduced into the flasks to consolidate and smooth the mold forming material therein to form the molds the hubs 84 shown in Figure 8 are employed to form at the left-hand end of each flask viewing Figures 1 and 2 as well as at the right-hand end a core receiving eulargemerit. Also, when double hub pipe is to be formed the introduction of the pouring spout into the end of each mold is accompanied by simultaneous introduction of the corresponding core holder 91 with a core 102 thereon as shown in Figure 9. When the cores 102 are introduced the resilient mounting of the core holders 91 carrying them inhibits damage to the cores of the molds when the cores seat in the molds. The seating of the cores in the molds is along complementary shoulders indicated at 104 in Figure 9.
Thus we obtain advantages in efliciency and economy of operation and produce a superior product.
While we have shown and described a present preferred embodiment of the invention and have illustrated a present preferred method of practicing the same it is to be distinctly understood that the invention is not limited thereto but may be otherwise variously embodied and practiced within the scope of the following claims.
We claim:
1. Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder and mounting means mounting the core holder on the carriage for movement into and out of cooperative relationship with the mold upon movement of the carriage generally axially of the mold, the mounting means including cushioning means operatively interposed between the core holder and the carriage to permit slight relative movement between the core holder and the carriage when a core carried by the core holder comes into engagement with a portion of the mold whereby to minimize the likelihood of damage to the core or mold when applying a core to the mold.
2. Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder, mounting means mounting the core holder on the carriage for movement into and out of cooperative relationship with the mold upon movement of the carriage generally axially of the mold and for rotation about an axis generally coincident with the axis of rotation of the mold, the mounting means including cushioning means operatively interposed between the core holder and the carriage to permit slight relative movement between the core holder and the carriage when a core carried by the core holder comes into engagement with 'a portion of the mold and resilient means mounted upon the core holder disposed so as to be interposed between the core holder and a core when a core is applied to the core holder, said resilient means being adapted to yield to compensate for any slight lack of coincidence between the axis of rotation of the mold and the axis of rotation of the core holder to insure proper cooperative relationship between the core and the mold during rotation.
3. Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder mounted on the carriage so as to position a core held thereby to extend within the open end of the mold when the carriage is in position with the core holder in cooperative relationship with the mold and a pouring spout mounted on the carriage with its outlet extending within the core holder.
4. Centrifugal casting apparatus comprising a rotatable open-ended mold, a carriage movable generally axially of the mold adjacent an open end thereof, a core holder rotatably mounted on the carriage so as to rotatably position a core held thereby to extend within the open end of the mold when the carriage is in position with the core holder in cooperative relationship with the mold and a pouring spout mounted in fixed position on '15 the carriage with its outlet extending within the rotatably mounted core holder.
5. Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, a mandrel and a guide for the mandrel along which the mandrel is movable into the flask when the cradle is in a predetermined position in the cradle support, the mandrel when within the flask being eifective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support.
6. Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle sup port, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, a mandrel, a guide for the mandrel along which the mandrel is movable into the flask when the cradle is in a predetermined position in the cradle support, the mandrel when within the flask being effective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support, means acting between the cradle and the cradle support for turning the cradle relatively to the cradle support and stop means for limiting the turning movement of the cradle relatively to the cradle support.
7. Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, a plurality of generally parallel open-ended flasks each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means carried by the cradle for rotating the flasks, a plurality of gen erally parallel mandrels, guide means for the mandrels along which the mandrels are movable into the respective flasks when the cradle is in a predetermined position in the cradle support, the mandrels when within the flasks being elfective during rotation of the flasks to consolidate finely divided mold forming material therein to form molds upon limited turning of the cradle in the cradle support.
8. Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement about an axis relatively to the cradlesupport, a plurality of generally parallel open-ended flasks having their respective axes substantially equidistant from the first mentioned axis each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means carried by the cradle for rotating the flasks, a plurality of generally parallel mandrels, guide means for the mandrels along which the mandrels are movable into the respective flasks when the cradle is in a predetermined position in the cradle support, the mandrels when within the flasks being substantially equally eifective during rotation of the flasks to consolidate finely divided mold forming material therein to form molds upon limited turning of the cradle in the cradle support.
9. Centrifugal casting apparatustomprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, a base upon which the cradle support is mounted for turning movement between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, a mandrel and a guide for the mandrel along which the mandrel is movable into the flask tvhen the axis of the flask is generally horizontal and the cradle is in a predetermined position in the cradle support, the mandrel when within the flask being etfective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support.
l0. Centrifugal casting apparatus comprising a base, a cradle support mounted on the base for turning movement about a generally horizontal axis, means for turning the cradle support about that axis, a cradle pivotally carried by the cradle support, a plurality of generally parallel openended flasks each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flasks, a plurality of generally parallel mandrels mounted for movement to enter the respective flasks when the cradle support is in a predetermined position relatively to the base and the cradle is in a predetermined position relatively to the cradle support and means for turning the cradle about its pivotal connection with the cradle support when the mandrels are within the flasks and the flasks with finely divided mold forming material therein are rotating to consolidate the finely divided mold forming material to form molds in the flasks.
11. Centrifugal casting apparatus comprising a base, a cradle, a plurality of generally parallel open-ended flasks rotatably mounted in the cradle, means for rotating the flasks, the cradle being mounted on the base for turning movement between a position in which the axes of the flasks are generally upright and a position in which the axes of the flasks are generally horizontal, a spider carrying a plurality of closure members, one for each flask, having an operative position with the closure members closing an end of each flask, and means moving the spider to dispose the closure members in inoperative position removed from the ends of the flasks and core -holders for holding cores in position at said ends of the flasks when the flasks are in position with their axes generally horizontal, the core holders being separate from the closure members.
12. Centrifugal casting apparatus comprising a cradle, a plurality of generally parallel open-ended flasks rotatably mounted in the cradle, means for rotating the flasks, a spider carrying a plurality of rotatable closure members, one for each flask, having an operative position with the closure members closing an end of each flask, and means turning the spider and also moving it away from the ends of the flasks to dispose the closure members in inoperative position axially removed from the ends of the flasks and offset from the flasks and core holders for holding cores in position at said ends of the flasks when the flasks are in position with their axes generally horizontal, the core holders being separate from the closure members.
13. Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, closure means carried by the cradle for movement between operative position closing the open end of the flask and inoperative position removed from the open end of the flask, a mandrel and a guide for the mandrel along which the mandrel is movable into the flask when the cradle is in a predetermined position in the cradle support and the closure means is in inoperative position, the mandrel when Within the flask being effective during rotation of the flask to consolidate finely divided mold forming material therein to form a mold upon limited turning of the cradle in the cradle support.
14. Centrifugal casting apparatus comprising a cradle support, a cradle carried by the cradle support for limited turning movement relatively to the cradle support, a plurality of generally parallel open-ended flasks each adapted to receive finely divided mold forming material rotatably mounted in the cradle, means carried by the cradle for rotating the flasks, closure means carried by the cradle for movement between operative position closing the open ends of the flasks and inoperative position removed from the open ends of the flasks, a plurality of generally parallel mandrels and guide means for the mandrels along which the mandrels are movable into the respective flasks when the cradle is in a predetermined position in the cradle support and the closure means is in inoperative position, the mandrels when within the flasks being effective during rotation of the flasks to consolidate finely divided mold forming material therein to form molds upon limited turning of the cradle in the cradle support.
15. Centrifugal casting apparatus comprising a cradle, an open-ended flask rotatably mounted in the cradle, means for rotating the flask, a shaft rotatably mounted in the cradle about an axis generally parallel with the axis of the flask, means for rotating the shaft, a closure member for the open end of the flask carried by the shaft and movable from a position transversely offset from the flask to a position in alignment with the flask upon turning of the shaft, means for stopping movement of the closure member when it reaches said position in alignment with the flask and connections between the closure member and the shaft effective upon continued turning of the shaft after the closure member has reached said position in alignment with the flask to move the closure member generally axially of the flask into position closing the open end thereof.
16. Centrifugal casting apparatus comprising a cradle, an open-ended flask rotatably mounted in the cradle, means for rotating the flask, a shaft rotatably mounted in the cradle about an axis generally parallel with the axis of the flask, means for rotating the shaft, a closure member for the open end of the flask carried by the shaft and movable from a position transversely offset from the flask to a position in alignment with the flask upon turning of the shaft, means for stopping movement of the closure member when it reaches said position in alignment with the flask, cam means connected with one of the closure member and shaft and means connected with the other thereof engaging the cam means effective upon continued turning of the shaft after the closure member has reached said position in alignment with the flask to move the closure member generally axially of the flask into position closing the open end thereof. 1
17. Centrifugal casting apparatus comprising a cradle, an open-ended flask rotatably mounted in the cradle, means for rotating the flask, a shaft rotatably mounted in the cradle about an axis generally parallel with the axis of the flask, means for rotating the shaft, a closure member for the open end of the flask carried by the shaft and movable from a position transversely offset from the flask to a position in alignment with the flask upon turning of the shaft, means for stopping movement of the closure member when it reaches said position in alignment with the flask, cam means connected with one of the closure members and shaft, means connected with the other thereof engaging the cam means effective upon continued turning of the shaft after the closure member has reached said position in alignment with the flask 'to move the closure member generally axially of the flask into position closing the open end thereof and resilient means connected between the shaft and the closure member resisting said continued turning movement of the shaft after the closure member has reached said position in alignment with the flask and maintaining the cam means and the means engaging the cam means in engagement so that with the closure member closing the open end of the flask turning of the shaft in the reverse direction will cause an initial movement of the closure member generally axially away from the flask followed by movement of the closure member to said position transversely offset from the flask.
18. Centrifugal casting apparatus comprising a base,
a cradle, an open-ended flask adapted to receive finely divided mold forming material rotatably mounted in the cradle, means for rotating the flask, the cradle being mounted on the base for turning movement between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, a core holder carrier mounted on the base separately from the cradle for turning movement inv generally vertical plane between a position substantially coaxial with the flask adjacent an open end of the flask when the flask is disposed with its axis generally horizontal and a position with the axis of the core holder carrier generally upright, a core holder carried by the core holder carrier, means moving the core holder into cooperative relationship with the flask when the core holder carrier is in the first mentioned position and the flask is disposed with its axis generally horizontal, the core holder carrier having an opening therein positioned when the core holder carrier is disposed with its axis generally upright to permit passage therethrough of the mandrel hereinafter referred to, a mandrel, a guide for the mandrel along which the mandrel is movable through said opening and into the flask when the flask is disposed with its axis generally horizontal and means for relatively transversely moving the mandrel and flask when the mandrel is within the flask and the flask is rotating to consolidate finely dividing mold forming material in the flask to form a mold.
l9. Centrifugal casting apparatus comprising a base, a cradle, an open-ended flask adapted to receive finely divided, mold forming material rotatably mounted in the cradle, means for rotating the flask, the cradle being mounted on the base for turning movement between a position in which the axis of the flask is generally upright and a position in which the axis of the flask is generally horizontal, closure means carried by the cradle for movement between operative position closing the open end of the flask and inoperative position transversely offset from the open end of the flask, a core holder carrier mounted on the base separately from the cradle for turning movement in a generally vertical plane between a position substantially coaxial with the flask adjacent an open end of the flask when the flask is disposed with its axis generally horizontal and a position with the axis of the core holder carrier generallyupright, a core holder carried by the core holder carrier, means moving the core holder into cooperative relationship with the flask when the core holder carrier is in the first mentioned position and the flask is disposed with its axis generally horizontal and the closure means is in inoperative position, the core holder carrier having an opening therein positioned when the core holder carrier is disposed with its axis generally upright to permit passage therethrough of the mandrel hereinafter referred to, a mandrel, a guide for the mandrel along which the mandrel is movable through said opening and into the flask when the flask is disposed with its axis generally horizontal and means for relatively transversely moving the mandrel and flask when the mandrel is within the flask and the flask is rotating to consolidate finely divided mold forming material in the flask to form a mold.
20. Centrifugal casting apparatus comprising a rotatably mounted flask, means for rotating the flask, a mandrel introducible through the flask for compacting finely divided mold forming material in the flask, a mounting member disposed adjacent the end of the flask opposite the end through which the mandrel is introduced, a support for the forward end of the mandrel and a pouring spout mounted on the mounting member and means for operating the mounting member to present selectively to the second mentioned end of the flask the support and the pouring spout.
21. Centrifugal casting apparatus comprising a rotatably mounted flask, means for rotating the flask, a mandrel introducible through the flask for compacting finely divided mold forming material in the flask, a molten material ladle mounted in a fixed location adjacent the end of the flask opposite the end through which the mandrel is introduced and adapted to pour out its contents for delivery into the flask, a mounting member disposed adjacent the end of the flask opposite the end through which the mandrel is intoduced, a support for the forward end of the mandrel mounted on the mounting member, a core holder and pouring spout combination mounted on the mounting member and means for oper-' ating the mounting member to selectively move the support into position to support the forward end of the mandrel and move the core holder and pouring spout combination into a position in which the core holder applies a core carriedthereby to the end of theflask opposite the end through which the mandrel is introduced and the pouring spout receives the contents of the ladle and delivers theminto the flask.
22. A centrifugal casting process comprising mounting for rotation about its axis an elongated peripherally closed open-ended mold having an enlargement therein adjacent an open end thereof, introducing simultaneously into said open end of the mold a hollow core and the outlet of a pouring spout, rotating the mold and core about the pouring spout and during such rotation introducing through the pouring spout through the core into the mold molten material to be centrifugally cast therein.
23. A centrifugal casting process comprising mounting for rotation about its axis an elongated peripherally closed mold open at both ends and having an enlargement therein adjacent each end, introducing a core into one of the open ends of the mold, introducing simultane ously into the other open end of the mold a hollow core and the outlet of a pouring spout, rotating the mold and cores and during such rotation introducing through the pouring spout through the hollow core into the mold molten material to be centrifugally cast therein.
24'. A method of making a mold of finely divided mold forming material in an open-ended flask comprising disposing the flask in generally upright position with its bottom closed, introducing into the flask throughits upper end finely divided mold forming material, rotating the .flask to centrifuge the finely divided mold forming material and form an opening therethrough generally alongthe axis of the flask and turning the flask to generally horizontal position and unclosing the bottom. of
20 the flask, introducing a mandrel into the opening and maintaining the mandrel in position about a substantially fixed axis and angularly oifsetti'ng the flask relatively to the mandrel to consolidate the finely divided mold forming material in the flask to form a mold.
25. Centrifugal casting apparatus comprising a rotatable mold comprising a rotatable body portion and a rotatable end portion cooperating with the body portion at. anend thereof to form an end of a casting centrifugally' cast in. the mold, the end portion having a central opening therethrough, a carriage movable generally axial ly of the mold adjacent said end thereof, a carrier mounted on the carriage for shifting movement relatively to the carriage, the rotatable end portion of the mold being mounted on the carrier, and a pouring spout through which molten material to be cast is adapted to be introduced into the mold, the pouring spout being mounted on the carrier so as to deliver molten material into the mold when the carrier is in position with the outlet of the pouring spout disposedapp'roxirnately in the mold axis and the carriage is in position with the pouring spout disposed in cooperative relationship with the mold, the outlet of the pouring spout projecting through the openingin the end portion of the mold so as to permit rotation of the mold with the pouring spout of contact therewith while the pouring spout remains stationary.
References Cited in the file of this patent UNITED STATES PATENTS 1,567,488 Burchartz Dec. 29, 1925 1,615,877 Knocke Feb. 1, 1927 1,735,969 Hurst et a1. Nov. 19, 1929 1,794,527 Mathieu Mar. 3, 1931 1,942,919 Enrich et a1 I an. 9, 1 934 1,959,227 Barr et al.. May 15, 1934 2,449,900 Johnston Sept. 21, 1948 2,480,284 Boucher Aug. 30, 1949 2,563,844 Johnston Aug. 14, 1951 2,598,554 Johnston May 27, 1952 2,613,410 Johnston Oct. 14, 1952 2,663,058 Lentz et al Dec. 22, 1953 2,729,865 Kaveny Jan. 10, 1956 FOREIGN PATENTS 590,287 France Mar. 13, 1925 688,270 France May 12, 1930 UNITED STATES PATENT OFFICE CERTIFICATE ()F CORRECTION Patent No., 2,849,,769 September 2, 1958 John A, Lasater et al..
It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 4, line 16, for "appaartus" read apparatus line 52, before "inoperative" insert in column 6, line 13, for "is is" read it is column 9, line 3, for "axis" read axes line 41, for "accommodatae" read me accommodate column 14, line 9, for "of the" read or th column 16, line 33, before "means" strike out "and"; column l7, line 58, for "members" read member column 18, line 9, before "generally insert we a 5 column 19,, line '7, for "intoduced" read we introduced a; column 20, line 25, after "spout" insert an out Signed and sealed this 16th day of December 19580 1 (SEAL) v Attest:
KARL AXLINE ROBERT C. WATSON Commissioner of Patents Attesting Oflicer
US427842A 1954-05-05 1954-05-05 Centrifugal casting apparatus and process Expired - Lifetime US2849769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US427842A US2849769A (en) 1954-05-05 1954-05-05 Centrifugal casting apparatus and process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US427842A US2849769A (en) 1954-05-05 1954-05-05 Centrifugal casting apparatus and process

Publications (1)

Publication Number Publication Date
US2849769A true US2849769A (en) 1958-09-02

Family

ID=23696515

Family Applications (1)

Application Number Title Priority Date Filing Date
US427842A Expired - Lifetime US2849769A (en) 1954-05-05 1954-05-05 Centrifugal casting apparatus and process

Country Status (1)

Country Link
US (1) US2849769A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001253A (en) * 1959-09-29 1961-09-26 United States Pipe Foundry Centrifugal mold end closure means
US3004314A (en) * 1959-09-17 1961-10-17 United States Pipe Foundry Centrifugal casting process
US3072980A (en) * 1960-04-11 1963-01-15 Rich Mfg Company Of California Centrifugal casting apparatus for manufacture of pipe
US3074130A (en) * 1959-06-22 1963-01-22 Rheinstahl Eisenwerke Ge Centrifugal casting apparatus
US3111729A (en) * 1960-05-05 1963-11-26 Clay & Bailey Mfg Company Apparatus for centrifugal casting
US3191245A (en) * 1962-02-19 1965-06-29 United States Pipe Foundry Centrifugal casting apparatus
DE1210139B (en) * 1960-12-28 1966-02-03 Schloemann Ag Device for feeding the starting strand into the mold of continuous casting plants

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR590287A (en) * 1924-01-28 1925-06-13 Casting device for the manufacture of tubes and other hollow bodies by jet casting
US1567488A (en) * 1925-01-29 1925-12-29 Gelsenkirchener Bergwerks Ag Centrifugal casting machine
US1615877A (en) * 1923-03-17 1927-02-01 Louis T Knocke Centrifugal casting machine
US1735969A (en) * 1928-01-04 1929-11-19 Centrifugal Castings Ltd Centrifugal machine for casting metal pipes and the like
FR688270A (en) * 1929-04-05 1930-08-21 Chappee Ets Method and apparatus for clamping molds and rotating parts
US1794527A (en) * 1928-04-27 1931-03-03 Hauts Fcurneaux Et Fonderies D Sand-packing device for pipe molds
US1942919A (en) * 1930-05-07 1934-01-09 Youngstown Sheet And Tube Co Machine for continuous centrifugal casting
US1959227A (en) * 1932-01-05 1934-05-15 Sand Spun Patents Corp Sand ramming equipment station for flasks
US2449900A (en) * 1946-02-18 1948-09-21 Herman Pneumatic Machine Co Apparatus for forming molds for centrifugal casting and centrifugally casting products therein
US2480284A (en) * 1943-12-23 1949-08-30 Cie De Pont A Mousson Apparatus for making pipes of small diameter by centrifugal casting
US2563844A (en) * 1948-02-11 1951-08-14 Herman Pneumatic Machine Co Apparatus for processing cast elongated articles
US2598554A (en) * 1948-07-29 1952-05-27 Herman Pneumatic Machine Co Method of making a hollow mold of compacted mold forming material
US2613410A (en) * 1949-03-11 1952-10-14 Herman Pneumatic Machine Co Molding apparatus
US2663058A (en) * 1951-04-06 1953-12-22 Gen Motors Corp Core lifting and setting fixture
US2729865A (en) * 1952-07-08 1956-01-10 Herman Pneumatic Machine Co Centrifugal casting apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1615877A (en) * 1923-03-17 1927-02-01 Louis T Knocke Centrifugal casting machine
FR590287A (en) * 1924-01-28 1925-06-13 Casting device for the manufacture of tubes and other hollow bodies by jet casting
US1567488A (en) * 1925-01-29 1925-12-29 Gelsenkirchener Bergwerks Ag Centrifugal casting machine
US1735969A (en) * 1928-01-04 1929-11-19 Centrifugal Castings Ltd Centrifugal machine for casting metal pipes and the like
US1794527A (en) * 1928-04-27 1931-03-03 Hauts Fcurneaux Et Fonderies D Sand-packing device for pipe molds
FR688270A (en) * 1929-04-05 1930-08-21 Chappee Ets Method and apparatus for clamping molds and rotating parts
US1942919A (en) * 1930-05-07 1934-01-09 Youngstown Sheet And Tube Co Machine for continuous centrifugal casting
US1959227A (en) * 1932-01-05 1934-05-15 Sand Spun Patents Corp Sand ramming equipment station for flasks
US2480284A (en) * 1943-12-23 1949-08-30 Cie De Pont A Mousson Apparatus for making pipes of small diameter by centrifugal casting
US2449900A (en) * 1946-02-18 1948-09-21 Herman Pneumatic Machine Co Apparatus for forming molds for centrifugal casting and centrifugally casting products therein
US2563844A (en) * 1948-02-11 1951-08-14 Herman Pneumatic Machine Co Apparatus for processing cast elongated articles
US2598554A (en) * 1948-07-29 1952-05-27 Herman Pneumatic Machine Co Method of making a hollow mold of compacted mold forming material
US2613410A (en) * 1949-03-11 1952-10-14 Herman Pneumatic Machine Co Molding apparatus
US2663058A (en) * 1951-04-06 1953-12-22 Gen Motors Corp Core lifting and setting fixture
US2729865A (en) * 1952-07-08 1956-01-10 Herman Pneumatic Machine Co Centrifugal casting apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074130A (en) * 1959-06-22 1963-01-22 Rheinstahl Eisenwerke Ge Centrifugal casting apparatus
US3004314A (en) * 1959-09-17 1961-10-17 United States Pipe Foundry Centrifugal casting process
US3001253A (en) * 1959-09-29 1961-09-26 United States Pipe Foundry Centrifugal mold end closure means
US3072980A (en) * 1960-04-11 1963-01-15 Rich Mfg Company Of California Centrifugal casting apparatus for manufacture of pipe
US3111729A (en) * 1960-05-05 1963-11-26 Clay & Bailey Mfg Company Apparatus for centrifugal casting
DE1210139B (en) * 1960-12-28 1966-02-03 Schloemann Ag Device for feeding the starting strand into the mold of continuous casting plants
US3191245A (en) * 1962-02-19 1965-06-29 United States Pipe Foundry Centrifugal casting apparatus

Similar Documents

Publication Publication Date Title
US2849769A (en) Centrifugal casting apparatus and process
US2892225A (en) Process and means for casting system for operating pouring ladles
US2195960A (en) Apparatus for casting metal
US1949433A (en) Method and apparatus for casting pipes centrifugally
US2326164A (en) Metal-casting method and apparatus
US2370953A (en) Centrifugal casting machine
USRE24827E (en) Centrifugal casting apparatus and process
US2853755A (en) Centrifugal casting method
US1982762A (en) Method for casting metallic annuli
US1751766A (en) Casting machine
US1634914A (en) Centrifugal casting apparatus
US2879563A (en) Apparatus for forming a lining on centrifugal mold
US2613410A (en) Molding apparatus
US3579755A (en) Slinger apparatus for lining the interior of a vessel
US1620831A (en) Charging device for tilting molds
GB1368167A (en) Lead dispenser for grid casting
US2451103A (en) Centrifugal casting apparatus
US1802613A (en) Centrifugal casting machine
US1925495A (en) Casting machine
US3605864A (en) Turntable shell moulding machine with pivotally interconnected mould parts
US4628984A (en) Method and apparatus for applying a layer of material to a centrifugal casting mold
US2409779A (en) Apparatus for introducing molten material into molds
US2266723A (en) Method of and apparatus for molding
US3121266A (en) Centrifugal mold closure assembly
US2480284A (en) Apparatus for making pipes of small diameter by centrifugal casting