US2829530A - Stepping mechanisms - Google Patents

Stepping mechanisms Download PDF

Info

Publication number
US2829530A
US2829530A US495494A US49549455A US2829530A US 2829530 A US2829530 A US 2829530A US 495494 A US495494 A US 495494A US 49549455 A US49549455 A US 49549455A US 2829530 A US2829530 A US 2829530A
Authority
US
United States
Prior art keywords
armature
solenoid
pawl
teeth
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US495494A
Inventor
Holden Alfred Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Decca Record Co Ltd
Original Assignee
Decca Record Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Decca Record Co Ltd filed Critical Decca Record Co Ltd
Application granted granted Critical
Publication of US2829530A publication Critical patent/US2829530A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H31/00Other gearings with freewheeling members or other intermittently driving members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/15Intermittent grip type mechanical movement
    • Y10T74/1526Oscillation or reciprocation to intermittent unidirectional motion
    • Y10T74/1529Slide actuator

Definitions

  • This invention relates to electrical stepping mechanisms of the kind in which a rotatable member is rotated in stepwise movements by two solenoids, one or other of which is operated in accordance with the required direction of rotation.
  • said rotatable member has two sets of ratchet teeth arranged in opposite directions and associated respectively with the two solenoids, each of which solenoid is arranged, when ener gised, to operate a claw so as to engage a tooth of the associated set and pull that tooth through one step and also, when energised, to operate a spring-loaded escapement mechanism associated with the other set of teeth, so as to disengage, at the beginning of the operating stroke, the pawl which prevents rotation and to engage, at the end of the stroke, a latch for preventing further rotation in the same direction.
  • neither of the operating claws are normally in engagement with the teeth.
  • Each escapement mechanism may comprise a rigid member freely pivoted and spring-loaded in a direction to engage the pawl and conveniently the movable part of each solenoid assembly has a portion adapted to bear against a roller mounted on the escapement mechanism.
  • the solenoid when operated, moves the rigid member to disengage the pawl but the pawl and rigid member can be moved freely against thespringloading without operation of the solenoid.
  • This freedom Patented Apr. 8, 1958 of movement of the spring-loaded pawl ensures that when the rotatable member is being turned in one direction the pawl preventing rotation in the other direction can ride over its associated teeth but is maintained by the springloading in engagement with the teeth.
  • the pawl and latch of each escapement mechanism may be formed of a length of stiii spring strip attached to the pivoted rigid member and extending on either side of the pivot axis.
  • the spring strip is made substantially stiffer than the spring loading the rigid member and merely provides a slightly resilient pawl and latch thereby taking up any shocks on engagement.
  • the pawl is formed by a relatively long arm of the spring strip so that it is quickly disengaged when the rigid member is turned about its pivot axis by the solenoid.
  • the latch on the other hand need only be on a relatively short arm so as to be engaged only at the very end of the operating stroke.
  • the claws may each be formed of a spring strip which extends from the solenoid alongside the toothed member, the end portion of the strip being bent back so that the end of the strip can engage its associated teeth.
  • guide means may be provided on either side of the bent part of the strip to ensure that the end of the strip engages the teeth when the solenoid is energised but is held clear of the teeth when the solenoid is not energised.
  • These guide means may comprise a pair of pins which are freely rotatable or have freely rotatable sleeves between which the bent part of the strip extends.
  • a single pair of pins are spaced on a line extending from the centre of rotation of said rotatable member and the two solenoids are arranged with their directions of operation at right angles to one another and at 45 degrees to this line so that both strips can pass between the single pair of pins.
  • Each solenoid preferably comprises an armature mov able into a coil, which coil has a ferro-magnetic core extending from inside the coil at one end thereof externally around the coil to embrace the armature at the other end of the coil, the armature and core being arranged so that, when the armature is fully into the coil, there is an air gap introduced between the armature and the external part of the core on the last part of the stroke. This air gap ensures that there is some reluctance in the magnetic circuit thereby facilitating the release of the armature.
  • the return movement of the armature may conveniently be effected by a spring.
  • Figure 1 is a vertical elevation of a stepping mechanism
  • Figure 2 is a section along the line 2-2 of Figure 1;
  • Figure 3 is a sectional view of a solenoid and armature along the line 3-3 of Figure 2;
  • Figure 4 is an enlarged fragmentary plan view of one of the two operating claws shown on. a smaller scale in Figure 2.
  • a stepping mechanism comprising a pair of parallel plates 10, 11 which are held in fixed spaced relationship by means of spacers l2 and bolts 13. Extending between these plates and journalled therein is a shaft 14 on which are secured two ratchet Wheels 115, 16. These ratchet wheels are similar except that their teeth are arranged in opposite directions. As seen in Figure 2, on a radial line from the axis of the spindle are two pins 18, 19-which are rotatably journalled in the plates iii, ii and which are parallel to the shaft14 carrying the ratchet wheels l5, 16.
  • These pins form guides for two operating claws 20, 21 which are attached to the armatures of sole- Iii noids 22, 23 respectively, these armatures having their lines of operation at right angles to one another and at 45 degrees to the radial direction of the two pins 18, 19.
  • Each of the claws 20, 21 comprises a strip of stilt spring metal which at one end is attached to a rod 25 secured to the respective armature of the associated solenoid. The other end of the strip is bent back on itself as shown at 26 ( Figure 4) to form a V-shaped portion such that the end of the strip points towards the axis of said shaft 14.
  • V-shaped portions of the two claws lie between the two pins 13, 19 and these pins form guides maintaining the strips 2t), 21 in the correct position so that when the armature of a solenoid is withdrawn, the end of the strip is brought into engagement with a tooth on the associated wheel and moves with the tooth through one step.
  • each of the solenoids comprises a coil of wire 30 wound upon the central arm 31 of a core, this arm extending about half the length of the coil.
  • the outer part of the core is in the form of a cylinder 32 extending around the outside of the coil and is joined to a further core piece 33 which embraces the armature 3d at the far end of the coil i. e. the end remote from the plate 35 which completes the magnetic circuit between the core 31 and cyklinder 32.
  • the armature 34 is provided with an extension forming the aforementioned rod 25 to which the operating claw (2% or 21) is attached.
  • ahelical spring 36 one end of which bears against a bush 37 secured in the core piece 33 and the other end of which bears against a collar 38 on the rod 25 so as to urge the armature outwardly from the coil.
  • the bush 37 and collar 38 are made of sintered bronze impregnated with oil to form self-lubricating bearings.
  • the armature is formed so that, when the coil 3i) is energised so as to attract the armature into the coil, an air gap is opened between the armature 34 and the embracing portion 33 of the core on the last part of the stroke.
  • This air gap ensures that there is some reluctance in the magnetic circuit when the solenoid energising circuit is broken and thereby enables the armature 34- to be readily returned by the helical spring 36.
  • a small brass washer 39 is arranged between the armature 34 and the part 33 of the core in order to ensure that the magnetic field enters the armature at right angles to the axis of the armature thereby facilitating the rapid movement of the armature when the coil 3% is energised.
  • a transverse pin 4% ( Figure 2) is arranged to extend through the aforementioned collar 33 and this pin 49 serves not only to secure the collar to the rod 25 but also extends through slots in the core piece 33 and bears against a roller ill mounted on one side of an escape ment member 42.
  • Two such escapement members are provided, associated respectively with the two solenoids.
  • Each escapement member is freely pivoted at 4-3 between the plates 1t and ill but is provided with a spring 44 which biases the roller 43. to bear against the pin it).
  • the escapement members 42 are each formed of a rigid arcuate member pivoted near its centre and having attached on its near side a stifi spring strip 45.
  • the end 46 of the strip which is biased towards the ratchet wheels is arranged as a pawl which engages one of the ratchet wheels in such a manner as to prevent rotation of the Wheels in one direction.
  • the two escapements engage the two wheels 15, 16 respectively and normally hold the wheels against rotation. Initial movement of one of the solenoids, however, releases the pawl 46 on one escapement so as to permit rotation of the wheels by the appropriate solenoid-operated claw 2d or 21.
  • the arm of each escapement member remote from the pawl is formed into a latch 47 which engages, at the end of the operating stroke of the appropriate solenoid, the same ratchet wheel as is released by the pawl.
  • the latches on the two escapements serve to stop the wheels rotating at the end of each stroke even if they should have acquired momentum during the operating of the armature.
  • the spring biasing on each escapement mechanism permits movement of that escapement when the ratchet wheels are rotated in the direction permitted by the pawl of that escapement but it serves to keep the pawl in engagement so as to prevent any reverse movement of the ratchet wheels on the return movement of the operating claw.
  • the escapements serve to ensure that the wheels can rotate only one step in the appropriate direction whenever a solenoid is engaged. If the armature of the solenoid moves through the small travel necessary, the wheels will rotate one step and there is no possibility of either missing a step or of jumping two steps.
  • An electrical stepping mechanism comprising a main frame, a rotatable member rotatably mounted in said frame and having two sets of ratchet teeth arranged in opposite directions, a pair of solenoids one or other of which is energised in accordance with the required di rection of rotation, a pair of armatures operated respectively by said solenoids, a pair of claws, one on each armature, arranged to engage respectively said sets of ratchet teeth when the appropriate solenoid is energised to pull said rotatable member through one step, a pair of spring-loaded escapement mechanisms associated respectively with said two sets of teeth and each having a'pawl and a latch and means coupling the armatures respectively to the two escapementmechanisms so that when a claw is moved by an armature to engage one set of teeth, the pawl of the escapement mechanism associated with the other set of teeth is disengaged at the beginning of the operating stroke to permit of rotation of the rotatable member in the required direction and the latch is
  • each escapement mechanism includes a rigid member carrying said pawl and latch, a pivot freely pivoting said rigid member on said frame, spring means urging said rigid member in a direction to engage the pawl with the ratchet teeth, and a roller mounted on the rigid member; and in which the armature of each solenoid includes a portion adapted to engage said roller upon movement of the armature.
  • An electrical stepping mechanism comprising: a main frame; a rotatable member rotatably mounted in said frame and having two sets of ratchet teeth arranged in opposite directions; a solenoid; an armature operated by said solenoid; a claw on said armature arranged to engage one of said sets of ratchet teeth when said solenoid is energized to pull said rotatable member through one step; a spring loaded escapement mechanism having a pawl and a latch disposed to cooperate with the other of said sets of ratchet teeth, said pawl being normally engaged therewith and said latch being normally disengaged therefrom; and means coupling the armature to the escapement mechanism so that when the claw is moved by the armature to engage said one set of teeth, the pawl of the escapement mechanism is disengaged from the other set of said teeth at the beginning of the operating stroke to permit of rotation of the rotatable member and the latch is engaged therewith at the end of the stroke to prevent further rotation.
  • said escapement mechanism includes a rigid member carrying said pawl and latch, a pivot freely pivoting said rigid member on said frame, spring means urging said rigid member in a direction to engage the pawl with the ratchet teeth, and a roller mounted on the rigid member; and in which the armature includes a portion adapted to engage said roller upon movement of the armature.
  • An electrical stepping mechanism as specified in claim 9 in which guide means are provided embracing the bent part of the strip to ensure that the end of the strip engages the teeth when the solenoid is energized but is held clear of the teeth when the solenoid is not energized.
  • said solenoid comprises a coil, an armature movable into said coil, a forte-magnetic core extending from inside the coil at one end thereof and externally around the coil to a core piece embracing the armature at the other end of the coil, the armature and said core piece being so arranged that an air gap is introduced between the armature and the core piece when the armature is fully into the coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnets (AREA)

Description

- April 8, 19 58 A, HOLDEN 2,829,530
STEPPING MECHANISMS Filed March 21, 1955 Fly/- 31 32 37 INVENTOR.
44min 717 4145 1 /0405 United States Patent .1.":
STEPPING MECHANISMS Alfred Thomas Holden, London, England, assignor to The Decca Record Company Limited, London, England, a British company Application March 21, 1955, Serial No. 495,494
Claims priority, application Great Britain March 23, 1954 12 Claims. (Cl. 74-128) This invention relates to electrical stepping mechanisms of the kind in which a rotatable member is rotated in stepwise movements by two solenoids, one or other of which is operated in accordance with the required direction of rotation.
It is one of the objects of the present invention to provide an improved construction of mechanism of this kind which will reliably drive the rotatable member by only one step at a time in response to each impulse on a solenoid without any possibility of either missing a step or jumping two steps.
According to this invention in an electrical stepping mechanism of the kind set forth above, said rotatable member has two sets of ratchet teeth arranged in opposite directions and associated respectively with the two solenoids, each of which solenoid is arranged, when ener gised, to operate a claw so as to engage a tooth of the associated set and pull that tooth through one step and also, when energised, to operate a spring-loaded escapement mechanism associated with the other set of teeth, so as to disengage, at the beginning of the operating stroke, the pawl which prevents rotation and to engage, at the end of the stroke, a latch for preventing further rotation in the same direction. With this construction neither of the operating claws are normally in engagement with the teeth. The two pawls in engagement with their respective sets of teeth will normally hold the rotatable member against rotation in either direction. When one of the solenoids is operated its claw moves into engagement with one set of teeth and at the same time the solenoid releases the appropriate pawl to permit rotation in one direction only. The claw pulls the rotatable member around but, even if this member should acquire substantial momentum, it is prevented from moving more than one step by the engagement of the latch at the end of the operating stroke. This latch stops the rotatable member. During the return movement of the claw there is no possibility of the rotatable member being turned in the opposite direction since the second pawl is still in engagement. This return movement of the operating claw and of its associated armature in its solenoid will release the springloaded escapement so as to allow the pawl to fall back into engagement with its teeth. The rotatable member is thereby locked against movement in either direction by the two pawls. It will be appreciated that with this construction the two solenoids must not be operated simultaneously and provision would be made in the electrical operating circuits to ensure this.
Each escapement mechanism may comprise a rigid member freely pivoted and spring-loaded in a direction to engage the pawl and conveniently the movable part of each solenoid assembly has a portion adapted to bear against a roller mounted on the escapement mechanism. By this arrangement the solenoid,.when operated, moves the rigid member to disengage the pawl but the pawl and rigid member can be moved freely against thespringloading without operation of the solenoid. This freedom Patented Apr. 8, 1958 of movement of the spring-loaded pawl ensures that when the rotatable member is being turned in one direction the pawl preventing rotation in the other direction can ride over its associated teeth but is maintained by the springloading in engagement with the teeth. In this construction the pawl and latch of each escapement mechanism may be formed of a length of stiii spring strip attached to the pivoted rigid member and extending on either side of the pivot axis. The spring strip is made substantially stiffer than the spring loading the rigid member and merely provides a slightly resilient pawl and latch thereby taking up any shocks on engagement. Conveniently the pawl is formed by a relatively long arm of the spring strip so that it is quickly disengaged when the rigid member is turned about its pivot axis by the solenoid. The latch on the other hand need only be on a relatively short arm so as to be engaged only at the very end of the operating stroke.
The claws may each be formed of a spring strip which extends from the solenoid alongside the toothed member, the end portion of the strip being bent back so that the end of the strip can engage its associated teeth. In this construction guide means may be provided on either side of the bent part of the strip to ensure that the end of the strip engages the teeth when the solenoid is energised but is held clear of the teeth when the solenoid is not energised. These guide means may comprise a pair of pins which are freely rotatable or have freely rotatable sleeves between which the bent part of the strip extends. Conveniently a single pair of pins are spaced on a line extending from the centre of rotation of said rotatable member and the two solenoids are arranged with their directions of operation at right angles to one another and at 45 degrees to this line so that both strips can pass between the single pair of pins.
Each solenoid preferably comprises an armature mov able into a coil, which coil has a ferro-magnetic core extending from inside the coil at one end thereof externally around the coil to embrace the armature at the other end of the coil, the armature and core being arranged so that, when the armature is fully into the coil, there is an air gap introduced between the armature and the external part of the core on the last part of the stroke. This air gap ensures that there is some reluctance in the magnetic circuit thereby facilitating the release of the armature. The return movement of the armature may conveniently be effected by a spring.
The following is a description of one embodiment of the invention reference being made to the accompanying drawings in which:
Figure 1 is a vertical elevation of a stepping mechanism;
Figure 2 is a section along the line 2-2 of Figure 1;
Figure 3 is a sectional view of a solenoid and armature along the line 3-3 of Figure 2; and
Figure 4 is an enlarged fragmentary plan view of one of the two operating claws shown on. a smaller scale in Figure 2.
Referring to Figures 1 and 2 of the drawing, there is shown a stepping mechanism comprising a pair of parallel plates 10, 11 which are held in fixed spaced relationship by means of spacers l2 and bolts 13. Extending between these plates and journalled therein is a shaft 14 on which are secured two ratchet Wheels 115, 16. These ratchet wheels are similar except that their teeth are arranged in opposite directions. As seen in Figure 2, on a radial line from the axis of the spindle are two pins 18, 19-which are rotatably journalled in the plates iii, ii and which are parallel to the shaft14 carrying the ratchet wheels l5, 16. These pins form guides for two operating claws 20, 21 which are attached to the armatures of sole- Iii noids 22, 23 respectively, these armatures having their lines of operation at right angles to one another and at 45 degrees to the radial direction of the two pins 18, 19. Each of the claws 20, 21 comprises a strip of stilt spring metal which at one end is attached to a rod 25 secured to the respective armature of the associated solenoid. The other end of the strip is bent back on itself as shown at 26 (Figure 4) to form a V-shaped portion such that the end of the strip points towards the axis of said shaft 14. These V-shaped portions of the two claws lie between the two pins 13, 19 and these pins form guides maintaining the strips 2t), 21 in the correct position so that when the armature of a solenoid is withdrawn, the end of the strip is brought into engagement with a tooth on the associated wheel and moves with the tooth through one step.
As is shown in Figure 3, each of the solenoids comprises a coil of wire 30 wound upon the central arm 31 of a core, this arm extending about half the length of the coil. The outer part of the core is in the form of a cylinder 32 extending around the outside of the coil and is joined to a further core piece 33 which embraces the armature 3d at the far end of the coil i. e. the end remote from the plate 35 which completes the magnetic circuit between the core 31 and cyklinder 32. The armature 34 is provided with an extension forming the aforementioned rod 25 to which the operating claw (2% or 21) is attached. Around this rod 25 is arranged ahelical spring 36 one end of which bears against a bush 37 secured in the core piece 33 and the other end of which bears against a collar 38 on the rod 25 so as to urge the armature outwardly from the coil. The bush 37 and collar 38 are made of sintered bronze impregnated with oil to form self-lubricating bearings. The armature is formed so that, when the coil 3i) is energised so as to attract the armature into the coil, an air gap is opened between the armature 34 and the embracing portion 33 of the core on the last part of the stroke. This air gap ensures that there is some reluctance in the magnetic circuit when the solenoid energising circuit is broken and thereby enables the armature 34- to be readily returned by the helical spring 36. A small brass washer 39 is arranged between the armature 34 and the part 33 of the core in order to ensure that the magnetic field enters the armature at right angles to the axis of the armature thereby facilitating the rapid movement of the armature when the coil 3% is energised.
A transverse pin 4% (Figure 2) is arranged to extend through the aforementioned collar 33 and this pin 49 serves not only to secure the collar to the rod 25 but also extends through slots in the core piece 33 and bears against a roller ill mounted on one side of an escape ment member 42. Two such escapement members are provided, associated respectively with the two solenoids. Each escapement member is freely pivoted at 4-3 between the plates 1t and ill but is provided with a spring 44 which biases the roller 43. to bear against the pin it). The escapement members 42 are each formed of a rigid arcuate member pivoted near its centre and having attached on its near side a stifi spring strip 45. The end 46 of the strip which is biased towards the ratchet wheels is arranged as a pawl which engages one of the ratchet wheels in such a manner as to prevent rotation of the Wheels in one direction. The two escapements engage the two wheels 15, 16 respectively and normally hold the wheels against rotation. Initial movement of one of the solenoids, however, releases the pawl 46 on one escapement so as to permit rotation of the wheels by the appropriate solenoid-operated claw 2d or 21. The arm of each escapement member remote from the pawl is formed into a latch 47 which engages, at the end of the operating stroke of the appropriate solenoid, the same ratchet wheel as is released by the pawl. The latches on the two escapements serve to stop the wheels rotating at the end of each stroke even if they should have acquired momentum during the operating of the armature. The spring biasing on each escapement mechanism permits movement of that escapement when the ratchet wheels are rotated in the direction permitted by the pawl of that escapement but it serves to keep the pawl in engagement so as to prevent any reverse movement of the ratchet wheels on the return movement of the operating claw.
It will be seen that in the above described stepping mechanism, the escapements serve to ensure that the wheels can rotate only one step in the appropriate direction whenever a solenoid is engaged. If the armature of the solenoid moves through the small travel necessary, the wheels will rotate one step and there is no possibility of either missing a step or of jumping two steps.
I claim:
1. An electrical stepping mechanism comprising a main frame, a rotatable member rotatably mounted in said frame and having two sets of ratchet teeth arranged in opposite directions, a pair of solenoids one or other of which is energised in accordance with the required di rection of rotation, a pair of armatures operated respectively by said solenoids, a pair of claws, one on each armature, arranged to engage respectively said sets of ratchet teeth when the appropriate solenoid is energised to pull said rotatable member through one step, a pair of spring-loaded escapement mechanisms associated respectively with said two sets of teeth and each having a'pawl and a latch and means coupling the armatures respectively to the two escapementmechanisms so that when a claw is moved by an armature to engage one set of teeth, the pawl of the escapement mechanism associated with the other set of teeth is disengaged at the beginning of the operating stroke to permit of rotation of the rotatable member in the required direction and the latch is engaged at the end of the stroke to prevent further rotation in the same direction.
2. An electrical stepping mechanism as specified in claim 1 in which each escapement mechanism includes a rigid member carrying said pawl and latch, a pivot freely pivoting said rigid member on said frame, spring means urging said rigid member in a direction to engage the pawl with the ratchet teeth, and a roller mounted on the rigid member; and in which the armature of each solenoid includes a portion adapted to engage said roller upon movement of the armature.
3. An electrical stepping mechanism as specified in claim 2 in which the pawl and latch of each escapement mechanism comprises a length of stiff spring strip attached to the rigid member and disposed with the ends thereof on opposite sides of said pivot.
4. An electrical stepping mechanism as specified in claim 1 in which the claws are each carried near one end of a spring strip secured at its other end to the armature of the solenoid and extending alongside the rotat able member; in which a pair of spaced pins are secured to the frame on a radial line extending from the center of rotation of said rotatable member; and in which the two solenoids are arranged to dispose said spring strips between said pair of pins to ensure that the claws engage the teeth when the solenoids are energized but are held clear of the teeth when the solenoids are not energized.
5. An electrical stepping mechanism as specified in claim 3 inwhich the two solenoids are arranged to dispose said spring strips at right angles to each other and at 45 to said radial line.
6. An electrical stepping mechanism comprising: a main frame; a rotatable member rotatably mounted in said frame and having two sets of ratchet teeth arranged in opposite directions; a solenoid; an armature operated by said solenoid; a claw on said armature arranged to engage one of said sets of ratchet teeth when said solenoid is energized to pull said rotatable member through one step; a spring loaded escapement mechanism having a pawl and a latch disposed to cooperate with the other of said sets of ratchet teeth, said pawl being normally engaged therewith and said latch being normally disengaged therefrom; and means coupling the armature to the escapement mechanism so that when the claw is moved by the armature to engage said one set of teeth, the pawl of the escapement mechanism is disengaged from the other set of said teeth at the beginning of the operating stroke to permit of rotation of the rotatable member and the latch is engaged therewith at the end of the stroke to prevent further rotation.
7. An electrical stepping mechanism a specified in claim 5 in which said escapement mechanism includes a rigid member carrying said pawl and latch, a pivot freely pivoting said rigid member on said frame, spring means urging said rigid member in a direction to engage the pawl with the ratchet teeth, and a roller mounted on the rigid member; and in which the armature includes a portion adapted to engage said roller upon movement of the armature.
8. An electrical stepping mechanism as specified in claim 6 in which the pawl is disposed a relatively great distance from said pivot and the latch is disposed a relatively short distance therefrom.
9. An electrical stepping mechanism as specified in claim 5 in which the claw is carried near one end of a spring strip secured at its other end to the armature of the solenoid and extending alongside the rotatable member.
10. An electrical stepping mechanism as specified in claim 8 in which said claw comprises a portion of said strip adjacent said one end bent back upon itself and inwardly toward said rotatable member to dispose said end in a position to engage said ratchet teeth upon movement of said armature.
11. An electrical stepping mechanism as specified in claim 9 in which guide means are provided embracing the bent part of the strip to ensure that the end of the strip engages the teeth when the solenoid is energized but is held clear of the teeth when the solenoid is not energized.
12. An electrical stepping mechanism as specified in claim 5 in which said solenoid comprises a coil, an armature movable into said coil, a forte-magnetic core extending from inside the coil at one end thereof and externally around the coil to a core piece embracing the armature at the other end of the coil, the armature and said core piece being so arranged that an air gap is introduced between the armature and the core piece when the armature is fully into the coil.
References Cited in the file of this patent UNITED STATES PATENTS Binks July 27, 1954
US495494A 1954-03-23 1955-03-21 Stepping mechanisms Expired - Lifetime US2829530A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2829530X 1954-03-23

Publications (1)

Publication Number Publication Date
US2829530A true US2829530A (en) 1958-04-08

Family

ID=10916094

Family Applications (1)

Application Number Title Priority Date Filing Date
US495494A Expired - Lifetime US2829530A (en) 1954-03-23 1955-03-21 Stepping mechanisms

Country Status (1)

Country Link
US (1) US2829530A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2998000A (en) * 1957-06-24 1961-08-29 Skf Svenska Kullagerfab Ab Device for performing an automatic grinding operation
US3087347A (en) * 1959-12-03 1963-04-30 Iii Elihu Root Counting devices
US3091895A (en) * 1960-07-21 1963-06-04 Ideal Toy Corp Toy submarine
US3122027A (en) * 1960-04-04 1964-02-25 Frisch Erling Linear motion device
US3299302A (en) * 1964-08-20 1967-01-17 Westinghouse Electric Corp Linear motion device
US3320821A (en) * 1965-07-12 1967-05-23 Nat Broach & Mach Feed mechanism
US3501968A (en) * 1967-10-18 1970-03-24 Bliss Co Drive mechanism
US3530346A (en) * 1969-07-17 1970-09-22 Dale Electronics Electromagnetically displacing a shaft in stepwise increments
US4621221A (en) * 1985-06-26 1986-11-04 Eastman Kodak Company Reversible vibratory motor
US5077515A (en) * 1987-07-01 1991-12-31 St Arnauld Ernest E Pulsed, electro-mechanical high-torque mechanism with alternator
US20090282937A1 (en) * 2008-05-19 2009-11-19 Michele Picerno Stepper actuator having a breaking mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1565336A (en) * 1924-05-16 1925-12-15 Hermann Seufert Film-feeding mechanism for cinematographs
US2093074A (en) * 1934-01-15 1937-09-14 Dickinson William Noble Electrical control device
US2684597A (en) * 1951-07-07 1954-07-27 Republic Patent Corp Combination step-up and reset mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1565336A (en) * 1924-05-16 1925-12-15 Hermann Seufert Film-feeding mechanism for cinematographs
US2093074A (en) * 1934-01-15 1937-09-14 Dickinson William Noble Electrical control device
US2684597A (en) * 1951-07-07 1954-07-27 Republic Patent Corp Combination step-up and reset mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2998000A (en) * 1957-06-24 1961-08-29 Skf Svenska Kullagerfab Ab Device for performing an automatic grinding operation
US3087347A (en) * 1959-12-03 1963-04-30 Iii Elihu Root Counting devices
US3122027A (en) * 1960-04-04 1964-02-25 Frisch Erling Linear motion device
US3091895A (en) * 1960-07-21 1963-06-04 Ideal Toy Corp Toy submarine
US3299302A (en) * 1964-08-20 1967-01-17 Westinghouse Electric Corp Linear motion device
US3320821A (en) * 1965-07-12 1967-05-23 Nat Broach & Mach Feed mechanism
US3501968A (en) * 1967-10-18 1970-03-24 Bliss Co Drive mechanism
US3530346A (en) * 1969-07-17 1970-09-22 Dale Electronics Electromagnetically displacing a shaft in stepwise increments
US4621221A (en) * 1985-06-26 1986-11-04 Eastman Kodak Company Reversible vibratory motor
US5077515A (en) * 1987-07-01 1991-12-31 St Arnauld Ernest E Pulsed, electro-mechanical high-torque mechanism with alternator
US20090282937A1 (en) * 2008-05-19 2009-11-19 Michele Picerno Stepper actuator having a breaking mechanism
US8261625B2 (en) 2008-05-19 2012-09-11 Sti Srl Stepper actuator having a breaking mechanism

Similar Documents

Publication Publication Date Title
US2829530A (en) Stepping mechanisms
US2531905A (en) Rotary solenoid
US2682004A (en) Electrically operated mechanism
US2909940A (en) Detent mechanism
US1960004A (en) Power transmitting mechanism
GB1192511A (en) Reading or Recording Apparatus
US3128955A (en) Device for winding annular cores
US2851619A (en) Pawl-type incremental motor
US3137176A (en) Ratchet relay with articulated driving mechanism
US2987656A (en) Remote controlled gear shift
US2866910A (en) Pawl type incremental motor
US2721904A (en) Driving apparatus
US3159759A (en) Electromagnetic stepping device or the like
US2487469A (en) Counter-actuating mechanism
US3112068A (en) Electromagnetically operated counter
US2692965A (en) Solenoid with hinged core
US893305A (en) Electromagnet.
US3677468A (en) Counter mechanism
US2847534A (en) Stepping switch
US3134917A (en) Stepper motor
US3114862A (en) Latching relay
US3636782A (en) Indexing mechanism
US2193629A (en) Register
US3164732A (en) Rotary solenoid having a stepped output
US3472087A (en) Reversible stepping mechanisms