US2798806A - Titanium alloy - Google Patents

Titanium alloy Download PDF

Info

Publication number
US2798806A
US2798806A US305284A US30528452A US2798806A US 2798806 A US2798806 A US 2798806A US 305284 A US305284 A US 305284A US 30528452 A US30528452 A US 30528452A US 2798806 A US2798806 A US 2798806A
Authority
US
United States
Prior art keywords
alloys
manganese
iron
titanium
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US305284A
Inventor
Robert I Jaffee
Horace R Ogden
Daniel J Maykuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rem Cru Titanium Inc
Original Assignee
Rem Cru Titanium Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rem Cru Titanium Inc filed Critical Rem Cru Titanium Inc
Priority to US305284A priority Critical patent/US2798806A/en
Application granted granted Critical
Publication of US2798806A publication Critical patent/US2798806A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • This invention relates to titanium-base alloys, and more specifically to quaternary and higher components, titanium-base alloys, containing as essential constituents, aluminum and iron together with one or more of the metals manganese, molybdenum and chromium.
  • a broad range of analysis of alloys in accordance with the invention will contain from about 1 to 7.5% aluminum, about 1 to iron, and about 1 to 20% in aggregate of metal of the group manganese, molybdenum and chromium, wherein the chromium may range up to about 12%, molybdenum up to about 8% and manganese up to about 6%.
  • a preferred range of analysis for assuring adequate ductility for purposes aforesaid, together With high strength is that containing about 3 to 7.5% aluminum, about 1 to 5% iron and about 1 to 3% of metal of the group manganese, molybdenum and chromium.
  • the presence of some carbon is desirable, for further enhancing the tensile properties, consistent with retention of adequate ductility, but the carbon should not exceed about 0.3%, about 0.25% carbon being the preferred upper limit.
  • Patent No. 2,575,962, granted November 20, 1951 the present inventors have disclosed a group of ternary alloys of titanium, aluminum and iron, optionally containing carbon up to about 0.25
  • the present invention contemplates additions to the ternary alloys of the aforesaid patent, of one or more of the metals manganese, molybdenum and chromium.
  • the alloys of the present invention are an improvement over the ternary alloys of the aforesaid patent in several respects.
  • the beta phase in these alloys is less subject to transformation to alpha or eutectoid decomposition than is the beta phase in the ternary alloys of the above-mentioned patent.
  • the presence of one or more of manganese, molybdenum and chromium, along with iron, permits the use as alloying constituents of the commercial complexes known as ferro-chrome, term-manganese and ferro-molybdenum.
  • manganese may be substi tuted in whole or in part for iron.
  • Such alloys may contain, in addition to about 1 to 7.5% aluminum, about 1 to 16% of metal of the group chromium and molybdenum and about 1 to 6% of metal of the group iron and manganese.
  • ployed may be that of commercial purity, as produced, for
  • the magnesium reduction of titanium tetrachloride or by other methods, or the iodide base material may be used.
  • a ternary alloy containing 5% aluminum and 1% iron has, in the fully annealed condition, an ultimate strength of 97,500 p. s. i., a surface hardness of 306 Vickers and an elongation of 17%
  • the addition to this alloy of 8% chromium and 8% molybdenum, in accordance with the present invention increases the ultimate strength to 130,000 to 145,000 p. s.
  • the alloys were tested in the annealed condition.
  • the annealed condition was obtained by annealing 3% hours at 850 C. and slow cooling to room temperature.
  • the annealed condition was obtained by heating the alloys into the beta field at 900 C. and cooling rapidly therefrom.
  • the alloys with a total of 10% or less combined beta-promoting elements are microstructurally mixed alpha-beta titaniumbase alloys, consisting predominantly of equiaxed grains of alpha titanium with beta titanium present as a grain than 10% combined beta-promoting elements are predominantly beta phase in structure.
  • These alloys may be further strengthened by cold Working or by aging them after a high-temperature solution anneal. They may be rendered stable by annealing them at a suificiently low temperature to effect transformation of the unstable beta phase to alpha, leaving a structure of alpha and stable beta phases.
  • the stability of these alloys so treated is such as to make them valuable for use as structural parts which in service are exposed to elevated temperatures, as from 300-5 00 C., such, for example, as components of high speed aircraft and their power plants.
  • An alloy consisting essentially of: 3-7.5% aluminum, 15% iron, 1-3% chromium, up to 0.3% carbon, balance titanium.
  • An alloy consisting essentially of: 37.5% aluminum, 15% iron, 1-3% manganese, up to 0.3% carbon, balance titanium.
  • An alloy consisting essentially of: 37.5% aluminum, 1-5% iron, 13% molybdenum, up to 0.3% carbon, balance titanium.
  • An alloy consisting essentially of about 1%7.5% aluminum, about 6%12%- chromium, about 3%8% molybdenum, about 1%6% of metal selected from the group consisting of iron and manganese, and the balance titanium.
  • An alloy consisting essentially of about; 1 to 7.5% aluminum, 1 to 5% iron, 1 to- 20% of at least one element selected from the group consisting of manganese, molybdenum and chromium, but not to exceed about 6% of manganese, 8% of molybdenum and 12% of chromium up to 0.3% carbon, and the balance substantially titanium.

Description

United States Patent 9 TITANIUM ALLOY Robert I; Jaltee, Worthington, and Horace R. Ogden and Daniel J. Maykuth, Columbus, Ohio, assignors, by mesne assignments, to Rem-Cru Titanium, Inc., Midland, Pa., a corporation of Pennsylvania No Drawing. Application August 19, 1952, Serial No. 305,284
11 Claims. (Cl. 75-175.5)
This invention relates to titanium-base alloys, and more specifically to quaternary and higher components, titanium-base alloys, containing as essential constituents, aluminum and iron together with one or more of the metals manganese, molybdenum and chromium.
A broad range of analysis of alloys in accordance with the invention will contain from about 1 to 7.5% aluminum, about 1 to iron, and about 1 to 20% in aggregate of metal of the group manganese, molybdenum and chromium, wherein the chromium may range up to about 12%, molybdenum up to about 8% and manganese up to about 6%.
As shown by the test results presented below, the majority of the analyses within the aforesaid range, are sufficiently ductile to be rolled, forged or otherwise Wrought or fabricated. The relatively few analyses which are too brittle for such purposes, are useful in cast form.
A preferred range of analysis for assuring adequate ductility for purposes aforesaid, together With high strength is that containing about 3 to 7.5% aluminum, about 1 to 5% iron and about 1 to 3% of metal of the group manganese, molybdenum and chromium.
In the alloys of the invention, the presence of some carbon is desirable, for further enhancing the tensile properties, consistent with retention of adequate ductility, but the carbon should not exceed about 0.3%, about 0.25% carbon being the preferred upper limit.
In Patent No. 2,575,962, granted November 20, 1951, the present inventors have disclosed a group of ternary alloys of titanium, aluminum and iron, optionally containing carbon up to about 0.25 The present invention contemplates additions to the ternary alloys of the aforesaid patent, of one or more of the metals manganese, molybdenum and chromium. The alloys of the present invention are an improvement over the ternary alloys of the aforesaid patent in several respects. The beta phase in these alloys is less subject to transformation to alpha or eutectoid decomposition than is the beta phase in the ternary alloys of the above-mentioned patent. Moreover, the presence of one or more of manganese, molybdenum and chromium, along with iron, permits the use as alloying constituents of the commercial complexes known as ferro-chrome, term-manganese and ferro-molybdenum.
In the alloys of the invention, containing either or both chromium and molybdenum, manganese may be substi tuted in whole or in part for iron. Such alloys may contain, in addition to about 1 to 7.5% aluminum, about 1 to 16% of metal of the group chromium and molybdenum and about 1 to 6% of metal of the group iron and manganese.
Typical alloys in accordance with the invention, together with their mechanical properties are set forth in the following Table I:
Table I.-' liAZ-Fe base alloys with additions of 01, Mo and Mn ANNEALED CONDITION Composition Percent (Balance Gross- Ultimate Titanium) Section Strength HVierers Bend '1 (1,000 at ness s. i. Al Cr Mo Fe Mn 0 p 5 1. 25 1. 25 310 1. 2 131 5 1. 25 1.25 0 25 346 1. 5 150 5 1. 25 1.25 331 1. 4 126 5 1 25 1.25 0.25 346 1.5 153 5 2.5 2. 5 334 1.1 131 5 2. 5 2.5 0 25 376 1. 2 148 5 8 8 1 322 0 -145 5 8 8 2 352 0. 9 1 146160 5 8 8 2 328 0 130-145 5 8 8 4 342 0 1 135-155 5 6 6 1 2 l 340 0.8 1 135-155 5 6 6 2 4 353 Brittle 1 -160 5 8 8 1 2 346 0. 4 1 140-155 5 8 8 1. 5 3 l. 359 1. 7 1 -160 5 8 8 2 4 412 Brittle 1 165-185 5 9 3 1 2 338 0. 4 1 135-150 5 9 3 2 4 362 5. 4 1 145-165 5 9 3 3 6 395 Brittle 1 160-175 5 l2 4 l 2 356 1. 7 1 140-160 5 12 4 2 4 392 Brittle 1 -175 5 l0 1 2 321 1.8 130-145 1 Tensile strength values converted from cross-section Vickers hardness values by multiplying by a factor of 400 to 450. Thus 200 Vickers X 400 to 450 equals a tensile strength from 80,000 to 00,000 p. s. i.
ployed may be that of commercial purity, as produced, for
example, by the magnesium reduction of titanium tetrachloride, or by other methods, or the iodide base material may be used.
By way of comparing the mechanical properties of the quaternary and higher component alloys of the present invention, with the ternary alloys of the aforesaid patent, a ternary alloy containing 5% aluminum and 1% iron, has, in the fully annealed condition, an ultimate strength of 97,500 p. s. i., a surface hardness of 306 Vickers and an elongation of 17% As shown by the data in the above table, the addition to this alloy of 8% chromium and 8% molybdenum, in accordance with the present invention, increases the ultimate strength to 130,000 to 145,000 p. s. i., the hardness to 322 Vickers, the bend ductility being zero, thus to produce an alloy with greatly increased strength and ductility as compared to the ternary alloy aforesaid. Also as shown by the above table, the further addition of 2% manganese to the 5Al--1Fe-8Cr-8Mo alloy aforesaid, increases the ultimate strength to 140,000 to 155,000 p. s. i., the hardness to 346 Vickers, and the bend ductility to 0.4. Thus the strength is further increased with no substantial reduction in ductility. It will be seen, therefore, that the alloys of the present invention constitute a pronounced improvement over those of said patent.
In the test results of the foregoing table, the alloys were tested in the annealed condition. .For the alloys with the combined contents of iron, chromium, manganese and molybdenum of 10% or less, the annealed condition was obtained by annealing 3% hours at 850 C. and slow cooling to room temperature. For the alloys with a combined content of iron, chromium, manganese and molybdenum totalling more than 10%, the annealed condition was obtained by heating the alloys into the beta field at 900 C. and cooling rapidly therefrom. The alloys with a total of 10% or less combined beta-promoting elements are microstructurally mixed alpha-beta titaniumbase alloys, consisting predominantly of equiaxed grains of alpha titanium with beta titanium present as a grain than 10% combined beta-promoting elements are predominantly beta phase in structure. When carbon is present, and increases in amount, increasing amounts of titanium carbide appear. These alloys may be further strengthened by cold Working or by aging them after a high-temperature solution anneal. They may be rendered stable by annealing them at a suificiently low temperature to effect transformation of the unstable beta phase to alpha, leaving a structure of alpha and stable beta phases. The stability of these alloys so treated is such as to make them valuable for use as structural parts which in service are exposed to elevated temperatures, as from 300-5 00 C., such, for example, as components of high speed aircraft and their power plants.
This application is a continuation-in-part of our abandoned co-pending applications Serial No. 187,369, filed September 28, 1950, and Serial Nos. 255,545 and 255,546, both filed November 8, 1951.
What is claimed is:
1. An alloy containing: about 17.5% aluminum, about 1-5% iron, a metal selected from the group consisting of manganese, molybdenum and chromium in the ranges 16%, 18% and 1-12% respectively, up to 0.3% carbon, and the balance titanium.
2. An alloy containing: about l7.5% aluminum, iron and manganese from about 1% to 6% in aggregate, about ll6% of metal selected from the group consisting of chromium and molybdenum, and the balance substantially all titanium.
3. An alloy containing: about 1-7.5% aluminum, about 1-5% iron, about 112% chromium, up to 0.3% carbon, and the balance substantially titanium.
4. An alloy containing: about 17.5% aluminum, about 4 1-5% iron, about 1-8% molybdenum, up to 0.3% carbon, and the balance substantially titanium.
5. An alloy containing: about 1-7.5% aluminum, about 15% iron, about 16% manganese, up to 0.3% carbon, and the balance substantially titanium.
6. An alloy consisting essentially of: 3-7.5% aluminum, 15% iron, 1-3% chromium, up to 0.3% carbon, balance titanium.
7. An alloy consisting essentially of: 37.5% aluminum, 15% iron, 1-3% manganese, up to 0.3% carbon, balance titanium.
8. An alloy consisting essentially of: 37.5% aluminum, 1-5% iron, 13% molybdenum, up to 0.3% carbon, balance titanium.
9. An alloy consisting essentially of about 1%7.5% aluminum, about 6%12%- chromium, about 3%8% molybdenum, about 1%6% of metal selected from the group consisting of iron and manganese, and the balance titanium.
10. An alloy containing about 1%7.5% aluminum, about 1%5% iron, about 1%6'% manganese, a metal selected from the groupmolybdenum and chromium in the ranges 1%8% and 1%-12% respectively, the aggregate of manganese and saidmetal not exceeding about 20%, up to about 03% carbon, and the balance substantially titanium.
11. An alloy consisting essentially of about; 1 to 7.5% aluminum, 1 to 5% iron, 1 to- 20% of at least one element selected from the group consisting of manganese, molybdenum and chromium, but not to exceed about 6% of manganese, 8% of molybdenum and 12% of chromium up to 0.3% carbon, and the balance substantially titanium.
' No references cited.

Claims (1)

1. AN ALLOY CONTAINING: ABOUT 1-7.5% ALUMINUM, ABOUT 1-5% IRON, A METAL SELECTED FROM THE GROUP CONSISTING OF MANGANESE, MOLYBDENUM AND CHROMIUM IN THE RANGES 1-6% 1-8% AND 1-12% RESPECTIVELY, UP TO 0.3% CARBON AND THE BALANCE TITANIUM.
US305284A 1952-08-19 1952-08-19 Titanium alloy Expired - Lifetime US2798806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US305284A US2798806A (en) 1952-08-19 1952-08-19 Titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US305284A US2798806A (en) 1952-08-19 1952-08-19 Titanium alloy

Publications (1)

Publication Number Publication Date
US2798806A true US2798806A (en) 1957-07-09

Family

ID=23180170

Family Applications (1)

Application Number Title Priority Date Filing Date
US305284A Expired - Lifetime US2798806A (en) 1952-08-19 1952-08-19 Titanium alloy

Country Status (1)

Country Link
US (1) US2798806A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865742A (en) * 1957-06-25 1958-12-23 Chicago Dev Corp Alloys of titanium containing beta stabilizers with minor amounts of aluminum
US2880089A (en) * 1957-12-13 1959-03-31 Crucible Steel Co America Titanium base alloys
US3405016A (en) * 1956-04-11 1968-10-08 Crucible Steel Co America Heat treatable titanium base alloys and method
US3922872A (en) * 1975-02-04 1975-12-02 Us Energy Iron titanium manganase alloy hydrogen storage
US4161211A (en) * 1975-06-30 1979-07-17 International Harvester Company Methods of and apparatus for energy storage and utilization
USRE30083E (en) * 1975-02-04 1979-08-28 The United States Of America As Represented By The United States Department Of Energy Iron titanium manganase alloy hydrogen storage
US4197643A (en) * 1978-03-14 1980-04-15 University Of Connecticut Orthodontic appliance of titanium alloy
US5219521A (en) * 1991-07-29 1993-06-15 Titanium Metals Corporation Alpha-beta titanium-base alloy and method for processing thereof
US6001495A (en) * 1997-08-04 1999-12-14 Oregon Metallurgical Corporation High modulus, low-cost, weldable, castable titanium alloy and articles thereof
US6531091B2 (en) * 2000-02-16 2003-03-11 Kobe Steel, Ltd. Muffler made of a titanium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405016A (en) * 1956-04-11 1968-10-08 Crucible Steel Co America Heat treatable titanium base alloys and method
US2865742A (en) * 1957-06-25 1958-12-23 Chicago Dev Corp Alloys of titanium containing beta stabilizers with minor amounts of aluminum
US2880089A (en) * 1957-12-13 1959-03-31 Crucible Steel Co America Titanium base alloys
US3922872A (en) * 1975-02-04 1975-12-02 Us Energy Iron titanium manganase alloy hydrogen storage
USRE30083E (en) * 1975-02-04 1979-08-28 The United States Of America As Represented By The United States Department Of Energy Iron titanium manganase alloy hydrogen storage
US4161211A (en) * 1975-06-30 1979-07-17 International Harvester Company Methods of and apparatus for energy storage and utilization
US4197643A (en) * 1978-03-14 1980-04-15 University Of Connecticut Orthodontic appliance of titanium alloy
US5219521A (en) * 1991-07-29 1993-06-15 Titanium Metals Corporation Alpha-beta titanium-base alloy and method for processing thereof
US5342458A (en) * 1991-07-29 1994-08-30 Titanium Metals Corporation All beta processing of alpha-beta titanium alloy
US6001495A (en) * 1997-08-04 1999-12-14 Oregon Metallurgical Corporation High modulus, low-cost, weldable, castable titanium alloy and articles thereof
US6531091B2 (en) * 2000-02-16 2003-03-11 Kobe Steel, Ltd. Muffler made of a titanium alloy

Similar Documents

Publication Publication Date Title
US2915391A (en) Aluminum base alloy
US3767385A (en) Cobalt-base alloys
JPS6386840A (en) High temperature processable nickel-iron aluminide alloy
US4386976A (en) Dispersion-strengthened nickel-base alloy
US11920231B2 (en) Creep resistant titanium alloys
US4043807A (en) Alloy steels
US2798806A (en) Titanium alloy
US4711761A (en) Ductile aluminide alloys for high temperature applications
JP2955778B2 (en) Controlled thermal expansion alloys and products made thereby
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
US2985530A (en) Metallurgy
US2588007A (en) Titanium-molybdenum-chromium alloys
US2943960A (en) Process for making wrought coppertitanium alloys
US2596485A (en) Titanium base alloy
US2622023A (en) Titanium-base alloys
JPS6137347B2 (en)
US2780545A (en) High-temperature alloy
US2726954A (en) Titanium base alloy
US3069259A (en) Titanium base alloy
US3157496A (en) Magnesium base alloy containing small amounts of rare earth metal
US3370945A (en) Magnesium-base alloy
US4049432A (en) High strength ferritic alloy-D53
US3322533A (en) Aluminum base casting alloys
US3364013A (en) Stainless steel alloy
JPS58100654A (en) Aluminum alloy for casting with superior heat resistance