US2793275A - Photoconductive cell - Google Patents

Photoconductive cell Download PDF

Info

Publication number
US2793275A
US2793275A US388705A US38870553A US2793275A US 2793275 A US2793275 A US 2793275A US 388705 A US388705 A US 388705A US 38870553 A US38870553 A US 38870553A US 2793275 A US2793275 A US 2793275A
Authority
US
United States
Prior art keywords
cell
photoconductive
photoconductive cell
photo
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US388705A
Inventor
Robert G Breckenridge
Oshinsky William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US388705A priority Critical patent/US2793275A/en
Application granted granted Critical
Publication of US2793275A publication Critical patent/US2793275A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the invention described herein relates to the photoelectric art and more particularly to a photoconductive cell utilizing a novel photosensitive element.
  • the single figure of the drawing illustrates an isometric view of an embodiment of the invention.
  • the intermetallic compound indium antimonide, InSb was prepared by melting together stoichiometric amounts of commercial indium and Bakers analyzed grade of antimony in a vycor vessel evacuated to a pressure of ca. 10-6 mm. Hg. The best results were obtained if the melt was heated for several hours at about 850 C.
  • This material, InSb was previously prepared in essentially this manner and its crystal structure determined. The appearance of the resulting material is very much like germanium, i. e. shiny, dark grey, and it is very brittle as is germanium.
  • the first photo cell was made with a supporting means in the form of a small Dewar ask circa 1" O. D. and 3 long.
  • a small heater and Crucible is in the vacuum so that a small amount of InSb may be vaporized and condensed onto the vacuum side of the inner wall of the Dewar near the bottom.
  • Aquadag electrodes were previously painted on this wall and electrical leads brought out.
  • a similar arrangement is conventional and used in the preparation of some types of lead sulphide photo cells.
  • the cell was of pyrex glass. After evaporating a layer of InSb onto the space between the electrodes, the resulting cell was tested for photo response to visible light with the cell at liquid nitrogen temperature and a conclusive observation of photo conduction was noted. It should be noted that the type of cell used is well known in the art and no novel features are here present. See for example T. S. Moss Photoconductivity in the elements; Butterworths Scientific Publications, London 1952.
  • a number of evaporated iilms of InSb on glass supporting means were prepared as shown on the drawing. These lms ranged from 0.2 to 12p in thickness and, when leads were soldered to them, had resistances of from 20,000 to l0 ohms. The thickest of these tilms showed a photoconductive response at room temperature in air when illuminated through a lter that transmits only wavelengths between 2.0 and 2.3M.
  • a second group of evaporated films have been prepared. These films were evaporated onto glass slides on which aquadag electrodes had been previously applied. The resistance of the cell was measured during the course of evaporation and cells with desirable high resistances obtained.
  • One such film with a resistance of 1 megohm in vacuum was found to increase in resistance to 1.5 megohm after exposure to air, indicating some effect of the oxygen on the film.
  • This film was tested for photo response and a considerable effect was found at room temperature in air with visible light, radiation transmitted through the 2,0 to 2.3,u lter, and radiation from a metal body at circa 600 K.
  • a photoconductive cell comprising a supporting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Description

May 2l', 1957 R.' G. BRECKENRIDGE Erm. 2,793,275
PHOTOCONDUCTIVE CELL Filed Oct. 27, 1953 INVENTOR.; Al Dh e111; Breckenridge By Wiliam Elshinskg United States Patent O PHOTOCONDUCTIVE.Y CELL Robert G. Breckenridge, Bethesda, Md., and William Oshnsky, Washington, D. C., assignors to the United States of America as represented by the Secretary of the Army Application October 27, 1953, Serial No. 388,705 1 Claim. (Cl. 201-63) (Granted under Title 35, U. S. Code (1952), sec. 266) This invention may be used by or for the Government for governmental purposes without the payment to us of any royalty thereon.
The invention described herein relates to the photoelectric art and more particularly to a photoconductive cell utilizing a novel photosensitive element.
It is accordingly a broad object of our invention to provide a novel photoconductive cell.
It is a more specific object of our invention to provide a photoconductive cell which will respond to radiation in the infrared region.
It is a still more speciiic object of our invention to provide a photoconductive cell which will respond to radiation in the region of the infrared spectrum beyond 5u.
Other objects and advantages will be obvious from the following description.
The single figure of the drawing illustrates an isometric view of an embodiment of the invention.
In the last few years, particularly because of the wartime military applications, there has been a considerable effort to develop photosensitive elements that would respond to radiation in the infrared region of the spectrum, the most desirable region being at wavelengths between 8 and 14p where the atmospheric absorption is low. The most promising photo cells for infrared work have been of the photoconductive type. The thallium sulphide cell, which was used in some numbers in our forces, responds only to wavelengths of 1.4M or shorter; another recent discovery, the lead sulphide cell, goes to 3.6M. Since the war, a lead telluride cell that extends the range to ca. 8.0/1. has been developed, largely by the British at the Telecommunications Research Establishment, and at Northwestern University in the United States.
The theory of these cells is not well understood, but apparently their sensitivity is not due to a true intrinsic photoconductivity in which each incident photon raises one electron from the filled to the conduction band, but rather it is a grain boundary effect depending very sensitively on the mode of preparation, especially the exposure to oxygen. While this requires a cookbook procedure in the cell manufacture and necessitates keeping the film inside a vacuum tube, it does have a compensating benefit in that the quantum efficiency, the number of electrons transferred per incident photon, is much greater than the unity expected for an intrinsic photoconductor, being of the order of 103. This gives a great sensitivity to the cells. In regard to the spectral response, there is evidence that the energy required from the photon to transfer the electron across the grain boundary is determined by the energy gap observed for intrinsic conduction so that the primary requirement for a far infrared photoconductor is that it have a very small energy gap, circa 0.1 electron volts, between the filled and conduction bands. At the start of our investigation only one semiconductor was known for which this is true, namely grey tin.
We have noticed the striking similarity in crystal structure and lattice constant of the compound indium antimonide, nSb, and grey tin. They are, in fact, identical except for the alternation of indium and antimony in the compound structure, making it of the ZnS type, while grey tinv has the diamond lattice. In addition, the trivalent indium combined with pentavelent antimony will produce an average electron density corresponding to the tetravalent tin, and, since the atomic radii of In, Sb and Sn are almost the same, a strong similarity in the band structure may be anticipated. This physical resemblance suggested a possible similarity in the electrical and photo properties.
The intermetallic compound indium antimonide, InSb, was prepared by melting together stoichiometric amounts of commercial indium and Bakers analyzed grade of antimony in a vycor vessel evacuated to a pressure of ca. 10-6 mm. Hg. The best results were obtained if the melt was heated for several hours at about 850 C. This material, InSb, was previously prepared in essentially this manner and its crystal structure determined. The appearance of the resulting material is very much like germanium, i. e. shiny, dark grey, and it is very brittle as is germanium.
The first photo cell was made with a supporting means in the form of a small Dewar ask circa 1" O. D. and 3 long. A small heater and Crucible is in the vacuum so that a small amount of InSb may be vaporized and condensed onto the vacuum side of the inner wall of the Dewar near the bottom. Aquadag electrodes were previously painted on this wall and electrical leads brought out. A similar arrangement is conventional and used in the preparation of some types of lead sulphide photo cells. The cell was of pyrex glass. After evaporating a layer of InSb onto the space between the electrodes, the resulting cell was tested for photo response to visible light with the cell at liquid nitrogen temperature and a conclusive observation of photo conduction was noted. It should be noted that the type of cell used is well known in the art and no novel features are here present. See for example T. S. Moss Photoconductivity in the elements; Butterworths Scientific Publications, London 1952.
Three series of measurements were made of the temperature variation of resistance of the cell. These measurements indicated that the material was an extrinsic semiconductor at temperatures below 350 C.; above this temperature the material entered its intrinsic range. The slope of the plot of log R vs l/Tk where R is the resistivity and Tk is the absolute temperature indicates an activation energy for conduction of 0.11 e. v. This is important because it means that photons of energies equal to or greater than 0.11 e. v. can excite an electron from the lled to the conduction band of the material giving rise to photoconductivity. A photon with this energy corresponds to light with a wavelength of 11p.
A number of evaporated iilms of InSb on glass supporting means were prepared as shown on the drawing. These lms ranged from 0.2 to 12p in thickness and, when leads were soldered to them, had resistances of from 20,000 to l0 ohms. The thickest of these tilms showed a photoconductive response at room temperature in air when illuminated through a lter that transmits only wavelengths between 2.0 and 2.3M.
A second group of evaporated films have been prepared. These films were evaporated onto glass slides on which aquadag electrodes had been previously applied. The resistance of the cell was measured during the course of evaporation and cells with desirable high resistances obtained. One such film with a resistance of 1 megohm in vacuum was found to increase in resistance to 1.5 megohm after exposure to air, indicating some effect of the oxygen on the film. This film was tested for photo response and a considerable effect was found at room temperature in air with visible light, radiation transmitted through the 2,0 to 2.3,u lter, and radiation from a metal body at circa 600 K.
In view of the above it will be seen that the several objects of the invention are achieved and other advantageous results attained.
We claim:
A photoconductive cell comprising a supporting means,
l a body of indium antimonide supported by said supporting means and two electrical terminals connected to said body and adapted to complete an electrical circuit through said body.
References Cited in the tile of this patent Zweistoegerungen, 1943, page 826.
US388705A 1953-10-27 1953-10-27 Photoconductive cell Expired - Lifetime US2793275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US388705A US2793275A (en) 1953-10-27 1953-10-27 Photoconductive cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US388705A US2793275A (en) 1953-10-27 1953-10-27 Photoconductive cell

Publications (1)

Publication Number Publication Date
US2793275A true US2793275A (en) 1957-05-21

Family

ID=23535180

Family Applications (1)

Application Number Title Priority Date Filing Date
US388705A Expired - Lifetime US2793275A (en) 1953-10-27 1953-10-27 Photoconductive cell

Country Status (1)

Country Link
US (1) US2793275A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892250A (en) * 1954-11-03 1959-06-30 Hupp Corp Method of producing photocells
US2994621A (en) * 1956-03-29 1961-08-01 Baldwin Piano Co Semi-conductive films and methods of producing them
US3011379A (en) * 1957-02-05 1961-12-05 Baldwin Piano Co Electronic musical instrument with photoelectric switching
US3016507A (en) * 1959-09-14 1962-01-09 Ibm Thin film magneto resistance device
US3019404A (en) * 1955-12-22 1962-01-30 Bulova Res And Dev Lab Inc Thermistors and methods of making same
US3128253A (en) * 1961-04-05 1964-04-07 Texas Instruments Inc Infrared detector and method of making same
US3138850A (en) * 1956-12-04 1964-06-30 Cosmocord Ltd Method of making a transducer element
US3187414A (en) * 1959-02-05 1965-06-08 Baldwin Co D H Method of producing a photocell assembly
US4580194A (en) * 1984-10-19 1986-04-01 Sprague Electric Company Aluminum electrolytic capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892250A (en) * 1954-11-03 1959-06-30 Hupp Corp Method of producing photocells
US3019404A (en) * 1955-12-22 1962-01-30 Bulova Res And Dev Lab Inc Thermistors and methods of making same
US2994621A (en) * 1956-03-29 1961-08-01 Baldwin Piano Co Semi-conductive films and methods of producing them
US3138850A (en) * 1956-12-04 1964-06-30 Cosmocord Ltd Method of making a transducer element
US3011379A (en) * 1957-02-05 1961-12-05 Baldwin Piano Co Electronic musical instrument with photoelectric switching
US3187414A (en) * 1959-02-05 1965-06-08 Baldwin Co D H Method of producing a photocell assembly
US3016507A (en) * 1959-09-14 1962-01-09 Ibm Thin film magneto resistance device
US3128253A (en) * 1961-04-05 1964-04-07 Texas Instruments Inc Infrared detector and method of making same
US4580194A (en) * 1984-10-19 1986-04-01 Sprague Electric Company Aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
DeVore Spectral distribution of photoconductivity
US2793275A (en) Photoconductive cell
Moss Lead salt photoconductors
Dennis Photodetectors: an introduction to current technology
US2765385A (en) Sintered photoconducting layers
US3629585A (en) Immersed bolometer using thin film thermistors
US3607388A (en) Method of preparing photoconductive layers on substrates
Sommer n‐Type and p‐Type Conduction in Alkali‐Antimonide Photoemitters
US2953690A (en) Photosensitive cells, radiation filters and semiconductor materials for use in such cells and filters
US3755002A (en) Method of making photoconductive film
US3142586A (en) Method for the manufacture of photosensitive elements
US3054917A (en) Heat imaging device
US2888370A (en) Photoconductor of lead oxide and method of making
US3574140A (en) Epitaxial lead-containing photoconductive materials
US3447234A (en) Photoconductive thin film cell responding to a broad spectral range of light input
Chopra et al. Thin film thermal device applications
US3191045A (en) Photosensitive element having photoconductive layers
US3177576A (en) Method of photocell manufacture by simultaneously sintering the photosensitive material and sealing the cell
Harper et al. The Resistance of Semitransparent Photocathodes
US2847329A (en) Sensitization of photoconductive cells by the use of indium vapor
Klick Search for F-center luminescence
USH95H (en) Heterojunction D- (or A+) millimeter and submillimeter wave detector
US3252029A (en) Pickup tube having a photoconductive target of enlarged crystal structure
US3858074A (en) Photoelectric transducer element including a heterojunction formed by a photoelectric transducer film and an intermediate film having a larger energy gap than the photoelectric transducer film
US3492620A (en) Photosensitive device