US2787453A - Fractionating tower utilizing directional upflow means in conjunction with slanted trays - Google Patents

Fractionating tower utilizing directional upflow means in conjunction with slanted trays Download PDF

Info

Publication number
US2787453A
US2787453A US395024A US39502453A US2787453A US 2787453 A US2787453 A US 2787453A US 395024 A US395024 A US 395024A US 39502453 A US39502453 A US 39502453A US 2787453 A US2787453 A US 2787453A
Authority
US
United States
Prior art keywords
tray
liquid
trays
vapor
conjunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US395024A
Inventor
Henry J Hibshman
Stephen H Dole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US395024A priority Critical patent/US2787453A/en
Application granted granted Critical
Publication of US2787453A publication Critical patent/US2787453A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • B01D3/24Fractionating columns in which vapour bubbles through liquid with sloping plates or elements mounted stepwise

Definitions

  • the present invention relates to improved apparatus for operating a countercurrent-vapor-liquid treating zone.
  • the invention is more particularly concerned with an improved fractionation zone and is especially directed toapparatus for contacting upflowing vapor and downflowing liquid utilizing improved contacting trays.
  • the capacity of particular contacting trays and the entire treating zone is markedly increased by providing a means for efliciently and effectively contacting the countercurrently flowing phases.
  • selected directional vapor and liquid streams are produced on the respective trays which facilitates the passage of the downfiowing liquid across the tray, thus reducing liquid holdup on the tray.
  • the directional stream is secured by a contacting tray which i characterized by containing directional openings, such as tab openings.
  • a specific adaptation of the present invention is to utilize a slanted tray in conjunction with the directional upfiow means. 'A
  • the upflow means such as the tabs in an elliptical pattern on the tray.
  • the upflow means such as the tabs in an elliptical pattern
  • especially excellent uniform liquid distribution is secured by employing vertical vanes in conjunction with broad crested or sharp edged weirs at the inlet side of the tray.
  • the downcomer from the zone above must of necessity extend below the top of the liquid phase on the lower tray in order that vapor will not pass up through the downcomer instead of through the bubble caps.
  • the capacity of the tray and consequently the tower is determined to a large extent by the degree of efiiciency with which the downfiowing liquid flows across the tray and into the downcomer.
  • the capacity of a fractionation tower is determined by several factors. Basically, these arelimitations to passage of liquid down'and vapor up the tower in such a manner that efiicient contacting is achieved.
  • the requirement of efiicient contacting means that the limitation may be one of too rapid or free passage of one or more of the phases through the tower, as well as restrictions to flow of the phases.
  • Tray dumping, liquid running down throughbub'ole cap chimneys, is an example ats atent of too free flow of liquid.
  • Downcomer filling with backup of liquid on the tray is the opposite type of limitation, resulting in poor efiiciency because of excessive entrainmerit and ultimately in tower flooding.
  • a similar high entrainment result is produced by excessive vapor rates.
  • each of these limitations predominates over a diiierent vapor rate range.
  • One operating disadvantage comprises excessive liquid holdup which, in the absence of a downcomer limitation and obstructions on the tray, is determined by the linear velocity at which liquid is able to pass across the tray. For a given liquid velocity across the tray the liquid holdup is directly proportional to the volume of liquid flowing across the tray in a unit of time. Since the liquid on the tray is aerated by the vapor, the volume occupied by the liquid is a function of the velocity of the vapor in the tower and the amount of liquid holdup on the tray. At normal tray spacings a tower will ultimately be limited in capacity by the liquid flow approaching the tray above, resulting in excessive entrainment. Accord ingly, higher capacities can be reached if the liquid holdup is reduced. Reduced holdup is accomplished by the present invention which directs the upflowing vapor stream through the trays in such a manner as to push liquid across the tray at a faster rate.
  • directional jet or tab-style fractionating trays are used in conjunction with slanted trays. While directional jet or tab-style fractionating trays have been shown in laboratory and plant scale operations to possess vapor handling capacities, up to and greater than 40% higher than conventional bubble cap plates, one disadvantage of these directional trays has been their tendency to dump or spill liquid through the tray at vapor rates below about 40 to 50% of the tray capacity. Thus, since the jet style tray dumps or spills more liquid than bubble cap tray at low liquid loadings, their usefulness has been somewhat limited.
  • Figure 1 is a vertical cross-sectional view illustrating a plurality of tray elements disposed Within a countercurrent treating zone.
  • Figure 2 is a top cross-sectional view of tray element 2.
  • FIG 2A is a detailed vertical cross-sectional view of tray element 2.
  • a plurality of tray elements 1, 2, 3, 4 and 5 are disposed within a countercurrent contacting zone s.
  • Plate ele ment 1 contains openings 7 secured by punching tabs. 8.
  • trays 2, 3, 4 and 5 contain ope-r, lugs 99, 10, 11, and 12., respectively, secured by punch-- ing tabs 13, 14, 15 and 16, respectively. These openings permit communication from the area below the respec tive trays to the area above the respective trays.
  • Downcomers are provided by means of bathe elements 17, 18, 19, 2t), 21, and 22.
  • baffle elements extend into liquid seal reservoirs 23, 2d, 25, 26 and 27, associated with plates 1, 2, 3, 4 and 5, respectively.
  • counter-current contacting zone 6 is pr o- Patented Apr. 2, 1957 vided with a means for withdrawing vapor from the top of the zone, a means for withdrawing liquid from the bottom of the zone as well as other input and output means at selected portions of, the zone.
  • liquid flows downwardly onto plate 1 through downcomer 17 into liquid seal reservoir 23.
  • the liquid flows across the plate past tabs or equivalent means 8.
  • Upilowing vapor passes through openings 7 inthe direction of the cross flowing liquid and thereby intimately contacts the same.
  • the liquid flows across the plate into downcomer 18 and passes to the liquid seal reservoir 24 associated with plate 2.
  • the downflowing liquid passes over tray .2 into downcomer 19 and into well element 25.
  • the liquid contacts upfiowing vapor passing through the openings 9.
  • the liquid passes across tray 3 into well 26 across tray 4 into well 27 and across tray 5.
  • the character and particular dimensions of the plates illustrated in Figure 1 may vary appreciably.
  • a typical lO-foot diameter tower would have trays having preferably a 7.5 degree slope with respect to the horizontal.
  • the trays themselves would be about 7 feet in length and the average distance between the rehandling capacity of about 10 feet per second, the superficial air velocity at which 5% dumping occurred, was reduced from 3.1 feet per second to 1.97 feet per second by changing the tray slope from to degrees and further reduced to 0.66 feet per second by slanting the tray degrees.
  • the operability range of the tray was increased from 69%;to 80% and 93% by sloping the tray 5 degrees-and 10 degrees respectively.
  • FIG.2 illustrates the preferred elliptical jet pattern on the slanted .tray employed in conjunction with. direcfi 1 m tional vertical vanes and broad crested weirs.
  • Figure 2 0:9: i197 is a top view of plate 2 with similar numerals designating 8 8- ti similar elements. 4.5 0 0 0133 In operation, liquid flows downwardly to tray'2 through downcomer inlet 24.
  • the liquid is directed into elliptical ILmay beseenfl'om hi bl th i order to b R y.
  • the Size stantially reduce dumping, it is necessary to slope the dimensions .of these vanes will vary depending uponthe tray;only.,5 o 1 slanting th tray more th hi size of the unit being utilized. In general, these vanes '50 say 15 .or 20, results in atray more dump-free than is have heights ill the range from bout 2 to 6" and are practically, required in. most commercial fractionating about 4" to 18 long.
  • the liquid fiowsacross the preferredtrayxangle in this invention is 5 to 10.
  • the tray and across the jets 13, the elliptical pattern-of What is claimed is: which is illustrated by lines 31.
  • the liquid enters down- 1.
  • An advantage of the present invention is that reduced plurality ofvertically spaced plates the plane of said tray inlet liquid heads are secured.
  • tab tray which has a vapor said conduit being arrayed along a chord subtendi'ng an arc of the circumferenceof lsaid tower,'.the other end of said.array;- describing anarcuate configuration, thesaid' vanes-being adapted to. direct a.
  • each of said vapor directing means forming vapor ejecting orifices adapted to effect flow of vapor across said plate in a predetermined direction, said vapor directing means being disposed on said plates along the circumference of a plurality of concentric ellipses and oriented with said orifices ejecting vapor along said circumferences, whereby liquid flowing across said plate is directed to a pattern corresponding to the circumference of said concentric ellipses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

i 1957 H. J. HIBSHMAN ETAL 87,
FRACTIONATING TOWER UTILIZING DIRECTIONAL UPFLOW MEANS IN CONJUNCTION WITH SLANTED TRAYS Filed Nov. 30, 1953 2 Sheets-Sheet 1 HENRYJHIBSHMAN sTEPHE HDOLE av monnsy Apnl 2, 957 H. J. HIBSHMAN ETAL 2,737,453
FRACTIONATING TOWER UTILIZING DIRECTIONAL UPFLQW MEANS IN CONJUNCTION WITH SLANTED TRAYS Filed Nov. 30, 1953 2 Sheets-Sheet 2 Fl ca.- 2
3 2 6| E 26 FIC5.2A
HENRYJ.HIBSHMAN I STEPHEN H. DOLE '"VENTORS Inf L0 momm' FRACTIONATING TOWER UTILIZING DIREC- TIONAL UPFLOW MEANS 1N CONJUNCTION WITH SLANTEE TRAYS Henry J. Hibshrnan, Plainiicld, and Stephen H. Date,
Westtield, N. 5., assignors to Esso Research and Engineering Company, a corporation of Delaware The present invention relates to improved apparatus for operating a countercurrent-vapor-liquid treating zone. The invention is more particularly concerned with an improved fractionation zone and is especially directed toapparatus for contacting upflowing vapor and downflowing liquid utilizing improved contacting trays. In accordance with the present invention, the capacity of particular contacting trays and the entire treating zone is markedly increased by providing a means for efliciently and effectively contacting the countercurrently flowing phases. In accordance with the present invention, selected directional vapor and liquid streams are produced on the respective trays which facilitates the passage of the downfiowing liquid across the tray, thus reducing liquid holdup on the tray. The directional stream is secured by a contacting tray which i characterized by containing directional openings, such as tab openings. A specific adaptation of the present invention is to utilize a slanted tray in conjunction with the directional upfiow means. 'A
particular adaptation of the present invention is to arrange the upflow means, such as the tabs in an elliptical pattern on the tray. When employing this latter modifi cation, especially excellent uniform liquid distribution is secured by employing vertical vanes in conjunction with broad crested or sharp edged weirs at the inlet side of the tray.
It is well known in the art to carry out many chemical reactions and separations wherein vapor and liquid'are contacted in a countercurrent zone, such as in a vapor' liquid fractionation zone. Normally the liquid passes from one zone to a lower zone by means of downcomers or their equivalent while the vapors pass upwardly from zone to zone through chimneys in the tray, around various types of hell caps or their equivalent into the liquid phase disposed on top of the tray. The liquid phase flows across the tray and over weirs on the respective trays into downcomers and onto the tray in the zone below. The height of the liquid phase on the tray is determined by the height of the weir. The downcomer from the zone above must of necessity extend below the top of the liquid phase on the lower tray in order that vapor will not pass up through the downcomer instead of through the bubble caps. In liquid-gas, contacting operations of this character, the capacity of the tray and consequently the tower is determined to a large extent by the degree of efiiciency with which the downfiowing liquid flows across the tray and into the downcomer. Thus, aside from limitations of auxiliary equipment, such as furnaces, feed pumps, and condensers, the capacity of a fractionation tower is determined by several factors. Basically, these arelimitations to passage of liquid down'and vapor up the tower in such a manner that efiicient contacting is achieved.
The requirement of efiicient contacting means that the limitation may be one of too rapid or free passage of one or more of the phases through the tower, as well as restrictions to flow of the phases. Tray dumping, liquid running down throughbub'ole cap chimneys, is an example ats atent of too free flow of liquid. Downcomer filling with backup of liquid on the tray is the opposite type of limitation, resulting in poor efiiciency because of excessive entrainmerit and ultimately in tower flooding. A similar high entrainment result is produced by excessive vapor rates. In a typical bubble cap tower, each of these limitations predominates over a diiierent vapor rate range.
One operating disadvantage comprises excessive liquid holdup which, in the absence of a downcomer limitation and obstructions on the tray, is determined by the linear velocity at which liquid is able to pass across the tray. For a given liquid velocity across the tray the liquid holdup is directly proportional to the volume of liquid flowing across the tray in a unit of time. Since the liquid on the tray is aerated by the vapor, the volume occupied by the liquid is a function of the velocity of the vapor in the tower and the amount of liquid holdup on the tray. At normal tray spacings a tower will ultimately be limited in capacity by the liquid flow approaching the tray above, resulting in excessive entrainment. Accord ingly, higher capacities can be reached if the liquid holdup is reduced. Reduced holdup is accomplished by the present invention which directs the upflowing vapor stream through the trays in such a manner as to push liquid across the tray at a faster rate.
In accordance with the present invention, directional jet or tab-style fractionating trays are used in conjunction with slanted trays. While directional jet or tab-style fractionating trays have been shown in laboratory and plant scale operations to possess vapor handling capacities, up to and greater than 40% higher than conventional bubble cap plates, one disadvantage of these directional trays has been their tendency to dump or spill liquid through the tray at vapor rates below about 40 to 50% of the tray capacity. Thus, since the jet style tray dumps or spills more liquid than bubble cap tray at low liquid loadings, their usefulness has been somewhat limited.
In accordance with the present invention, it has been found that if these jet or tab trays are slanted from about 5 to 10 degrees from the horizontal toward the downcomer, this spilling of the liquid is substantially eliminated. It has also been found that if the pattern of the direc tional means is arranged in a family of ellipses, unexpected desirable results are secured with respect to the tray phase contacting efiiciency. It is very desirable to use in conjunction with the slanted tray, vertical vanes in conjunction with broad crested or sharp edged weirs at the inlet side of the tray, the weirs being perpendicular to the elliptical flow lines.
The present invention may be readily understood by reference to the drawings illustrating embodiments of the 1 same.
Figure 1 is a vertical cross-sectional view illustrating a plurality of tray elements disposed Within a countercurrent treating zone.
Figure 2 is a top cross-sectional view of tray element 2.
Figure 2A is a detailed vertical cross-sectional view of tray element 2. Referring specifically to Figure l, a plurality of tray elements 1, 2, 3, 4 and 5 are disposed within a countercurrent contacting zone s. Plate ele ment 1 contains openings 7 secured by punching tabs. 8. In a similar manner trays 2, 3, 4 and 5 contain ope-r, lugs 99, 10, 11, and 12., respectively, secured by punch-- ing tabs 13, 14, 15 and 16, respectively. These openings permit communication from the area below the respec tive trays to the area above the respective trays. Downcomers are provided by means of bathe elements 17, 18, 19, 2t), 21, and 22. These baffle elements extend into liquid seal reservoirs 23, 2d, 25, 26 and 27, associated with plates 1, 2, 3, 4 and 5, respectively. It is to be understood that counter-current contacting zone 6 is pr o- Patented Apr. 2, 1957 vided with a means for withdrawing vapor from the top of the zone, a means for withdrawing liquid from the bottom of the zone as well as other input and output means at selected portions of, the zone.
In operation, liquid flows downwardly onto plate 1 through downcomer 17 into liquid seal reservoir 23. The liquid flows across the plate past tabs or equivalent means 8. Upilowing vapor passes through openings 7 inthe direction of the cross flowing liquid and thereby intimately contacts the same. The liquid flows across the plate into downcomer 18 and passes to the liquid seal reservoir 24 associated with plate 2. In a similar manner the downflowing liquid passes over tray .2 into downcomer 19 and into well element 25. As the liquid flows across tray 2, it contacts upfiowing vapor passing through the openings 9. Thus the liquid passes across tray 3 into well 26 across tray 4 into well 27 and across tray 5.
The character and particular dimensions of the plates illustrated in Figure 1 may vary appreciably. For instance, a typical lO-foot diameter tower would have trays having preferably a 7.5 degree slope with respect to the horizontal. The trays themselves would be about 7 feet in length and the average distance between the rehandling capacity of about 10 feet per second, the superficial air velocity at which 5% dumping occurred, was reduced from 3.1 feet per second to 1.97 feet per second by changing the tray slope from to degrees and further reduced to 0.66 feet per second by slanting the tray degrees. Thus, the operability range of the tray was increased from 69%;to 80% and 93% by sloping the tray 5 degrees-and 10 degrees respectively.
Although the specific reduction in dumping obtained by slanting a jet tray depends upon the design of the tray such as'number of openings of unit area, opening size, opening shape, openingangle, and percent open area of the tray, nevertheless the preferred sloped angle remains from about 5 to 10 degrees. In general, with jet trays such as tab trays, dumping is most severe at low liquid loadings.
The invention may be more fully understood by the following example illustrating the same:
EXAMPLE A number of operations were carried out wherein the air rate was varied as well as the tray angle. The percent dumping was also determined. The results of. these tests are illustrated in .the following table:
Table Dumpz'ng data for tab tray hni1ing 80% tab area .(tabsfl' x 1 1") [Percent dumping at various air rates at 900 G. l. IEL/lt. water rate. Tray pressure drop-mm. H1O in parentheses 'Iab Angle 0 Air Rate, Ft./Sec 0 1 2 3 0' l 2 5 0 l 2 3 Tray Angle:
0 0.2(14. 5) 10 10 2s .ss 100(0 100(1) 58(13) 2608) 0 13 70 0 447(7) 0.7(10) 100(0) 85(1) 34 4) 5 0 0(11) 31(0) 2.6(3) 0.6(7) 0.1(s5) 51(0) 11(2. 5 am. 5 1.1(7 0 11.50) 0.7(3) 0.2(5;5) .0.1(8) 18.560) 2.8.(2) 1.5(4 0.8(5) 4:2(0) 0.4,(2) 0.08.01) 0.0 1(15) 7.4(03 2.1(2) 0.56.5) 0.2(5) (8. 6) (3) spective trays about 2% feet. The height of the down- MR RATE FOR DUMPING comer would be about 1.58 feet and the distance between the respective trays at the farthest point about 3.42 feet. Tab Angie Figure .2 illustrates the preferred elliptical jet pattern on the slanted .tray employed in conjunction with. direcfi 1 m tional vertical vanes and broad crested weirs. Figure 2 0:9: i197 is a top view of plate 2 with similar numerals designating 8 8- ti similar elements. 4.5 0 0 0133 In operation, liquid flows downwardly to tray'2 through downcomer inlet 24. The liquid is directed into elliptical ILmay beseenfl'om hi bl th i order to b R y. means of Vertical vanes The Size stantially reduce dumping, it is necessary to slope the dimensions .of these vanes will vary depending uponthe tray;only.,5 o 1 slanting th tray more th hi size of the unit being utilized. In general, these vanes '50 say 15 .or 20, results in atray more dump-free than is have heights ill the range from bout 2 to 6" and are practically, required in. most commercial fractionating about 4" to 18 long. The vanes at the Ce t r of the towers. Slanting; atray 5 to 10 increases its vapor inlet section of the plate are relatively straight, while handling-capacity about 10% but slanting it more than their curvature increases as they approach the shellwall. 10? ed e th available downcomer height excessively Positioned between the respective vertical vanes as dfmi ht rgduc;$ower a it b making th d ShOWu in Figum 2A arebfoad Crested Weirs leflgt comer limiting. No important reduction in pressure drop of Whlch is m the range of 0" to-6"- accrues fromzslantingthe tray more than 10. Hence In operation as illustrated above, the liquid fiowsacross the preferredtrayxangle in this invention is 5 to 10. the tray and across the jets 13, the elliptical pattern-of What is claimed is: which is illustrated by lines 31. The liquid enters down- 1. Apparatus. adapted for contacting upflowing vapor comer 19 and passes to the next succeeding zone. and downfiowingliquidcomprising a vertical tower, a An advantage of the present invention is that reduced plurality ofvertically spaced plates the plane of said tray inlet liquid heads are secured. In a normal bubble plates being inclined at an angle of from 5 to 10 do cap tray operation there is a tendency for liquid, to build greesv with the horizontal, said plates extending substanup to a higher level at the inlet side of the 'tray than 05 daily across said tower and intersecting vertically posianywhere else on the tray. It has been found .that :the tioned conduits extending through each of 'said plates use of tabs in place of bubble caps producestheopposite. and .terminating below. each plate; in spaced-relation to effect. In this case, the inlet head is lower than anysuccessiveplates, an array ofivertically disposed liquid where else on the tray. directing vanes extendingfrom said conduits a short The design of the tabs is not critical. Hemispherical. v distance .onto;.said plates, the end. of said vanes nearer baffies open on one side towards the downcomer, square orrectangular box-type battles open towards the downused.
In one preferred design of tab tray, which has a vapor said conduit being arrayed along a chord subtendi'ng an arc of the circumferenceof lsaid tower,'.the other end of said.array;- describing anarcuate configuration, thesaid' vanes-being adapted to. direct a. liquid stream in an elliptical' pattern, an array ofvapor directing means carried on said plates, each of said vapor directing means forming vapor ejecting orifices adapted to effect flow of vapor across said plate in a predetermined direction, said vapor directing means being disposed on said plates along the circumference of a plurality of concentric ellipses and oriented with said orifices ejecting vapor along said circumferences, whereby liquid flowing across said plate is directed to a pattern corresponding to the circumference of said concentric ellipses.
2. Apparatus according to claim 1 wherein said vanes are separated by individual weirs positioned perpendicular to the elliptical liquid flow lines across the plate.
References Cited in the file of this patent UNITED STATES PATENTS Sneath Apr. 27, Stone Dec. 5, Rudeen Feb. 8, Piron Apr. 3, Bergman Aug. 31, Rocke Nov. 10, Gadwa et al May 17, Kittel Sept. 25, Thrift et a1. June 15,
FOREIGN PATENTS Austria Dec. 27,
France Aug. 5,
US395024A 1953-11-30 1953-11-30 Fractionating tower utilizing directional upflow means in conjunction with slanted trays Expired - Lifetime US2787453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US395024A US2787453A (en) 1953-11-30 1953-11-30 Fractionating tower utilizing directional upflow means in conjunction with slanted trays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US395024A US2787453A (en) 1953-11-30 1953-11-30 Fractionating tower utilizing directional upflow means in conjunction with slanted trays

Publications (1)

Publication Number Publication Date
US2787453A true US2787453A (en) 1957-04-02

Family

ID=23561382

Family Applications (1)

Application Number Title Priority Date Filing Date
US395024A Expired - Lifetime US2787453A (en) 1953-11-30 1953-11-30 Fractionating tower utilizing directional upflow means in conjunction with slanted trays

Country Status (1)

Country Link
US (1) US2787453A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965548A (en) * 1955-08-11 1960-12-20 Phillips Petroleum Co Fractionation method and apparatus for conducting same
US3105862A (en) * 1960-09-14 1963-10-01 Esso Res And Enginecring Compa Jet tray tabs
US3464679A (en) * 1965-01-22 1969-09-02 Linde Ag Rectification-column assembly
US3729179A (en) * 1970-09-23 1973-04-24 Fractionation Res Inc Apparatus for liquid and vapor or gas mass transfer
US3747905A (en) * 1970-11-10 1973-07-24 Pantaleoni N Contact apparatus and method
US3759498A (en) * 1970-03-16 1973-09-18 Union Carbide Corp Liquid-gas contact tray
US4101610A (en) * 1977-02-28 1978-07-18 Union Carbide Corporation Liquid-gas contacting tray
US4133714A (en) * 1975-10-03 1979-01-09 Vorobiev Jury P Reaction vessel with pulsating means for producing lignocellulose product from crushed vegetable raw materials
US4174363A (en) * 1978-03-10 1979-11-13 Union Carbide Corporation Vapor-liquid contacting tray with vapor thrust means
US4504426A (en) * 1982-11-24 1985-03-12 Atomic Energy Of Canada Limited Gas-liquid contacting apparatus
US4550000A (en) * 1982-04-15 1985-10-29 Shell Oil Company Apparatus for contacting a liquid with a gas
US4557876A (en) * 1984-01-04 1985-12-10 Nutter Dale E Gas-liquid contact apparatus and method of making it
US5106556A (en) * 1989-03-08 1992-04-21 Glitsch, Inc. Method of downcoer-tray vapor venting
US5192466A (en) * 1991-10-09 1993-03-09 Glitsch, Inc. Method of and apparatus for flow promotion
US5480595A (en) * 1994-04-28 1996-01-02 Koch Engineering Chemical, Inc. Vapor-liquid contact tray and downcomer assembly and method employing same
US5547617A (en) * 1995-03-31 1996-08-20 Glitsch, Inc. Apparatus for increasing effective active area
US5632935A (en) * 1994-04-28 1997-05-27 Koch Engineering Company, Inc. Vapor-liquid contact tray and downcomer assembly and method employing same
US5641338A (en) * 1994-04-08 1997-06-24 Ev-Air Systems, Inc. Air scrubber and method
US5702647A (en) * 1995-03-31 1997-12-30 Koch Enterprises, Inc. Multiple downcomer high performance tray assembly
US5895608A (en) * 1996-10-30 1999-04-20 Koch Enterprises, Inc. Downcomer for chemical process tower and method of forming the same
US6029956A (en) * 1998-02-06 2000-02-29 Foster Wheeler Usa Corporation Predominantly liquid filled vapor-liquid chemical reactor
US6325361B1 (en) * 1996-11-27 2001-12-04 Albert Van Duijn Method and device for bringing a gas and a liquid into contact with one another
US6386520B2 (en) * 2000-02-16 2002-05-14 Shell Oil Company Fluid inlet device
GB2422561A (en) * 2005-01-31 2006-08-02 Clive Hadfield Improved baffle plate
US20080277260A1 (en) * 2007-04-27 2008-11-13 Binkley Michael J Fluid dispersion unit assembly and method
EP1317948B1 (en) * 2001-12-05 2010-08-25 Sulzer Chemtech AG Plate column
US20100288624A1 (en) * 2009-05-15 2010-11-18 Kim Soowoong Activated hinge-joint
WO2013022346A1 (en) * 2011-08-10 2013-02-14 Albert Van Duijn Apparatus and method for contacting a gas and liquid
US8517352B1 (en) 2008-04-04 2013-08-27 Gtc Technology Us Llc Liquid distributor
US8517354B1 (en) 2008-03-20 2013-08-27 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US8678357B2 (en) 2010-05-17 2014-03-25 Gtc Technology Us, Llc Fluid contactor-diffuser tray assembly
US9072986B2 (en) 2011-02-23 2015-07-07 Gtc Technology Us Llc Method and apparatus for securing fractionation trays
US20150352597A1 (en) * 2002-04-17 2015-12-10 Cytonome/St, Llc Method and apparatus for sorting particles
US9463397B2 (en) 2008-04-04 2016-10-11 Gtc Technology Us Llc System and method for liquid distribution
US9597650B2 (en) 2011-04-18 2017-03-21 Gtc Technology Us Llc System for improved reactant mixing and distribution
US9715030B1 (en) * 2016-03-07 2017-07-25 Matias SaavedraSilvia Object detection and removal apparatus
US9943857B1 (en) * 2015-09-08 2018-04-17 Frank E. Reed Louvered sluice
US10029263B2 (en) 2002-04-17 2018-07-24 Cytonome/St, Llc Method and apparatus for sorting particles
US10279310B2 (en) * 2013-09-12 2019-05-07 Is Clean Air Italia S.R.L. Method and system for fluid stream chemical compounds collection, deposition and separation
US10427159B2 (en) 2002-04-17 2019-10-01 Cytonome/St, Llc Microfluidic device
US10994273B2 (en) 2004-12-03 2021-05-04 Cytonome/St, Llc Actuation of parallel microfluidic arrays

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581439A (en) * 1897-04-27 Apparatus for cooling
US638406A (en) * 1899-07-24 1899-12-05 Abraham L Stone Milk cooler and aerator.
US948432A (en) * 1909-07-06 1910-02-08 Elmer F Rudeen Condenser.
US1664483A (en) * 1921-09-30 1928-04-03 Piron Coal Distillation System Apparatus for absorbing fluids from gases
US2091349A (en) * 1936-03-30 1937-08-31 Universal Oil Prod Co Fractional distillation
US2301707A (en) * 1939-01-19 1942-11-10 Rocke Fritz Rectifying column
US2470483A (en) * 1947-05-08 1949-05-17 Lummus Co Apparatus for contacting a liquid and a vapor
US2568749A (en) * 1941-12-16 1951-09-25 Kittel Walter Contact plate construction
AT173433B (en) * 1951-01-29 1952-12-27 Wilhelm Vogelbusch Replacement tray for distillation and rectification columns or the like.
FR1048712A (en) * 1951-08-23 1953-12-23 Koch Eng Co Inc Improvements relating to an apparatus and a process for bringing gases and liquids into contact
US2681219A (en) * 1952-09-05 1954-06-15 Koch Eng Co Inc Gas-liquid contact apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581439A (en) * 1897-04-27 Apparatus for cooling
US638406A (en) * 1899-07-24 1899-12-05 Abraham L Stone Milk cooler and aerator.
US948432A (en) * 1909-07-06 1910-02-08 Elmer F Rudeen Condenser.
US1664483A (en) * 1921-09-30 1928-04-03 Piron Coal Distillation System Apparatus for absorbing fluids from gases
US2091349A (en) * 1936-03-30 1937-08-31 Universal Oil Prod Co Fractional distillation
US2301707A (en) * 1939-01-19 1942-11-10 Rocke Fritz Rectifying column
US2568749A (en) * 1941-12-16 1951-09-25 Kittel Walter Contact plate construction
US2470483A (en) * 1947-05-08 1949-05-17 Lummus Co Apparatus for contacting a liquid and a vapor
AT173433B (en) * 1951-01-29 1952-12-27 Wilhelm Vogelbusch Replacement tray for distillation and rectification columns or the like.
FR1048712A (en) * 1951-08-23 1953-12-23 Koch Eng Co Inc Improvements relating to an apparatus and a process for bringing gases and liquids into contact
US2681219A (en) * 1952-09-05 1954-06-15 Koch Eng Co Inc Gas-liquid contact apparatus

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965548A (en) * 1955-08-11 1960-12-20 Phillips Petroleum Co Fractionation method and apparatus for conducting same
US3105862A (en) * 1960-09-14 1963-10-01 Esso Res And Enginecring Compa Jet tray tabs
US3464679A (en) * 1965-01-22 1969-09-02 Linde Ag Rectification-column assembly
US3759498A (en) * 1970-03-16 1973-09-18 Union Carbide Corp Liquid-gas contact tray
US3729179A (en) * 1970-09-23 1973-04-24 Fractionation Res Inc Apparatus for liquid and vapor or gas mass transfer
US3747905A (en) * 1970-11-10 1973-07-24 Pantaleoni N Contact apparatus and method
US4133714A (en) * 1975-10-03 1979-01-09 Vorobiev Jury P Reaction vessel with pulsating means for producing lignocellulose product from crushed vegetable raw materials
US4101610A (en) * 1977-02-28 1978-07-18 Union Carbide Corporation Liquid-gas contacting tray
US4174363A (en) * 1978-03-10 1979-11-13 Union Carbide Corporation Vapor-liquid contacting tray with vapor thrust means
US4550000A (en) * 1982-04-15 1985-10-29 Shell Oil Company Apparatus for contacting a liquid with a gas
US4504426A (en) * 1982-11-24 1985-03-12 Atomic Energy Of Canada Limited Gas-liquid contacting apparatus
US4557876A (en) * 1984-01-04 1985-12-10 Nutter Dale E Gas-liquid contact apparatus and method of making it
US5106556A (en) * 1989-03-08 1992-04-21 Glitsch, Inc. Method of downcoer-tray vapor venting
US5192466A (en) * 1991-10-09 1993-03-09 Glitsch, Inc. Method of and apparatus for flow promotion
US5641338A (en) * 1994-04-08 1997-06-24 Ev-Air Systems, Inc. Air scrubber and method
US5480595A (en) * 1994-04-28 1996-01-02 Koch Engineering Chemical, Inc. Vapor-liquid contact tray and downcomer assembly and method employing same
US5632935A (en) * 1994-04-28 1997-05-27 Koch Engineering Company, Inc. Vapor-liquid contact tray and downcomer assembly and method employing same
US5547617A (en) * 1995-03-31 1996-08-20 Glitsch, Inc. Apparatus for increasing effective active area
US5702647A (en) * 1995-03-31 1997-12-30 Koch Enterprises, Inc. Multiple downcomer high performance tray assembly
US5895608A (en) * 1996-10-30 1999-04-20 Koch Enterprises, Inc. Downcomer for chemical process tower and method of forming the same
US6325361B1 (en) * 1996-11-27 2001-12-04 Albert Van Duijn Method and device for bringing a gas and a liquid into contact with one another
US6029956A (en) * 1998-02-06 2000-02-29 Foster Wheeler Usa Corporation Predominantly liquid filled vapor-liquid chemical reactor
US6386520B2 (en) * 2000-02-16 2002-05-14 Shell Oil Company Fluid inlet device
EP1317948B1 (en) * 2001-12-05 2010-08-25 Sulzer Chemtech AG Plate column
US10029263B2 (en) 2002-04-17 2018-07-24 Cytonome/St, Llc Method and apparatus for sorting particles
US11027278B2 (en) 2002-04-17 2021-06-08 Cytonome/St, Llc Methods for controlling fluid flow in a microfluidic system
US10029283B2 (en) * 2002-04-17 2018-07-24 Cytonome/St, Llc Method and apparatus for sorting particles
US10710120B2 (en) 2002-04-17 2020-07-14 Cytonome/St, Llc Method and apparatus for sorting particles
US20150352597A1 (en) * 2002-04-17 2015-12-10 Cytonome/St, Llc Method and apparatus for sorting particles
US10427159B2 (en) 2002-04-17 2019-10-01 Cytonome/St, Llc Microfluidic device
US10994273B2 (en) 2004-12-03 2021-05-04 Cytonome/St, Llc Actuation of parallel microfluidic arrays
GB2422561A (en) * 2005-01-31 2006-08-02 Clive Hadfield Improved baffle plate
GB2422561B (en) * 2005-01-31 2009-10-28 Clive Hadfield Baffle plate
US8540218B2 (en) 2007-04-27 2013-09-24 Gtc Technology Us Llc Fluid dispersion unit assembly and method
US8430380B2 (en) 2007-04-27 2013-04-30 Gtc Technology Us Llc Fluid dispersion unit assembly and method
US20080277260A1 (en) * 2007-04-27 2008-11-13 Binkley Michael J Fluid dispersion unit assembly and method
US10561961B2 (en) 2008-03-20 2020-02-18 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US8517354B1 (en) 2008-03-20 2013-08-27 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US8876088B1 (en) 2008-03-20 2014-11-04 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US10384147B2 (en) 2008-03-20 2019-08-20 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US10376810B2 (en) 2008-03-20 2019-08-13 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US9586160B2 (en) 2008-03-20 2017-03-07 Gtc Technology Us Llc Fluid dispersion unit with directional component vector
US8888077B1 (en) 2008-04-04 2014-11-18 Gtc Technology Us Llc Liquid distributor
US8517352B1 (en) 2008-04-04 2013-08-27 Gtc Technology Us Llc Liquid distributor
US9463397B2 (en) 2008-04-04 2016-10-11 Gtc Technology Us Llc System and method for liquid distribution
US9327209B2 (en) 2008-04-25 2016-05-03 Gtc Technology Us, Llc Fluid contactor-diffuser tray assembly
US20100288624A1 (en) * 2009-05-15 2010-11-18 Kim Soowoong Activated hinge-joint
US8480062B2 (en) 2009-05-15 2013-07-09 Gtc Technology Us, Llc Activated hinge-joint
US8678357B2 (en) 2010-05-17 2014-03-25 Gtc Technology Us, Llc Fluid contactor-diffuser tray assembly
US9072986B2 (en) 2011-02-23 2015-07-07 Gtc Technology Us Llc Method and apparatus for securing fractionation trays
US9597650B2 (en) 2011-04-18 2017-03-21 Gtc Technology Us Llc System for improved reactant mixing and distribution
CN103796723B (en) * 2011-08-10 2016-09-28 阿尔贝特·范杜伊杰恩 Make the device and method that gas contacts with liquid phase
US9630154B2 (en) * 2011-08-10 2017-04-25 Albert Van Duijn Apparatus and method for contacting a gas and a liquid
US20150085600A1 (en) * 2011-08-10 2015-03-26 Albert Van Duijn Apparatus and Method for Contacting a Gas and a Liquid
CN103796723A (en) * 2011-08-10 2014-05-14 阿尔贝特·范杜伊杰恩 Apparatus and method for contacting a gas and liquid
WO2013022346A1 (en) * 2011-08-10 2013-02-14 Albert Van Duijn Apparatus and method for contacting a gas and liquid
US10279310B2 (en) * 2013-09-12 2019-05-07 Is Clean Air Italia S.R.L. Method and system for fluid stream chemical compounds collection, deposition and separation
US9943857B1 (en) * 2015-09-08 2018-04-17 Frank E. Reed Louvered sluice
US9715030B1 (en) * 2016-03-07 2017-07-25 Matias SaavedraSilvia Object detection and removal apparatus

Similar Documents

Publication Publication Date Title
US2787453A (en) Fractionating tower utilizing directional upflow means in conjunction with slanted trays
US2853281A (en) Fractionating tower
US5213719A (en) Gas-liquid contacting device
US4140625A (en) Mixed-phase distributor for fixed-bed catalytic reaction chambers
US2973189A (en) Fractionating columns
US5885488A (en) Column for counter-currently contacting gas and liquid
US3233879A (en) Fixed centrifugal gas and liquid contacting device
US4235847A (en) Vapor/liquid distributor for fixed-bed catalytic reaction chambers
US7648128B2 (en) Gas-liquid contact apparatus
CA1046428A (en) Vapor-liquid separator and method
US2697653A (en) Contacting tower for vapors and finely divided solids, including heat exchange means therefor
US3231251A (en) Froth disengagement in gas-liquid contact apparatus
US5300132A (en) Contacting device
US2501114A (en) Fractionation apparatus
US3589689A (en) Vapor-liquid contact process
US2681269A (en) Contacting apparatus
US3632315A (en) Liquid-liquid contacting tray system
US2804935A (en) Vapor-liquid contacting apparatus
US2702696A (en) Apparatus for operating a countercurrent vapor-liquid processing zone
US6287367B1 (en) High-capacity vapor/liquid contacting device
US4588563A (en) Cascade sieve tray for extraction and deasphalting
US2716587A (en) Process and apparatus for contacting solids and vapors
US2401569A (en) Apparatus for effecting intimate contact between gases and liquids
CN1024258C (en) Vapour diffusers for process columns
US2702742A (en) Apparatus for contacting solids and vapors