US2772518A - Method of coating glass filaments with metal - Google Patents

Method of coating glass filaments with metal Download PDF

Info

Publication number
US2772518A
US2772518A US319724A US31972452A US2772518A US 2772518 A US2772518 A US 2772518A US 319724 A US319724 A US 319724A US 31972452 A US31972452 A US 31972452A US 2772518 A US2772518 A US 2772518A
Authority
US
United States
Prior art keywords
metal
filaments
coating
glass
globule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US319724A
Inventor
Harry B Whitehurst
William H Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL85676D priority Critical patent/NL85676C/xx
Priority to US791291D priority patent/USB791291I5/en
Priority to BE524157D priority patent/BE524157A/xx
Priority to US319724A priority patent/US2772518A/en
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US322598A priority patent/US2963739A/en
Priority to FR1092604D priority patent/FR1092604A/en
Priority to CH334251D priority patent/CH334251A/en
Priority to GB30973/53A priority patent/GB745279A/en
Priority to DEO3275A priority patent/DE1000972B/en
Application granted granted Critical
Publication of US2772518A publication Critical patent/US2772518A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S118/00Coating apparatus
    • Y10S118/19Wire and cord immersion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49801Shaping fiber or fibered material

Definitions

  • glass filaments have extremely high strength characteristics as well as highly desirable flexing characteristics which make them of particular advantage for many uses and applications as reinforcing agents. Such fibers, however, have a weakness to surface abrasion which reduces their ability to withstand wear to the extent that it eliminates the possibility of their application for many uses in which the strength and flexibility of the filaments would be highly desirable.
  • Another object of the present invention is to provide a novel method and means for applying metal on glass filaments without disrupting or deleteriously affecting the desired physical characteristics of the filaments.
  • Still another object of the present invention is to provide an efiicient and economical means for applying metal to glass filaments which is adapted to functional association with conventional filament-forming means to provide a continuous and direct metal-coated fiber-forming process.
  • Still another object of the invention is to provide means for applying metal to glass filaments adapted to continuous processes and requiring little care and attention to effect the desired degree of coating.
  • a further object of the invention is to provide means for applying metal to glass filaments on a continuous basis controllable to provide a predetermined linear and peripheral uniform coating.
  • a feature of the invention is that it permits the application of metal coatings to glass fibers at a very rapid rate.
  • Another feature lies in the fact that this invention is readily adapted to permitting application of metal coatings to glass filaments during the process of forming them.
  • the application of metal to glass filaments in accordance with the above objects and features is accomplished in the present instance by pulling or drawing the filaments through an accumulation of molten metal such as 2,772,518 Patented Dec. 4, 1956 ice a globule or bead of such metal.
  • the amp paratus is arranged so as to permit drawing of filaments through such metal in vertical paths which facilitates adapting such coating operations to conventional filament-forming means.
  • Figure l is a somewhat schematic side elevational view of apparatus of the present invention for forming metalcoated glass filaments
  • Figure 2 is a partially broken away front elevational view of the apparatus shown in Figure 1;
  • Figure 3 is a front elevational view in part of the applicator of Figures 1 and 2;
  • Figure 4 is a side elevational view in cross-section as taken on the line 4-4 of Figure 3;
  • Figure 5 is a schematic side elevational view of apparatus incorporating modifications over the apparatus of Figures 1 and 2 for adjustably associating the applicator and filaments with each other;
  • Figure 6 is a front elevational view in part of apparatus similar to that of Figures 1 and 2 showing another manner in which collected filaments may be pulled to effect rapid production of coated filaments.
  • Figures 1 and 2 show a suitable glass-melting tank 10 having a multipleorifice feeder or bushing 11 from which a plurality of glass filaments 12 are drawn downward to a metal-coating portion 14 of the metal-applicating; unit 13.
  • the feeder orifices are preferably arranged in one or two rows so that the streams of glass drawn from the feeder are all substantially in the same plane.
  • the applicator 13 has a container portion which is lined with a high-temperature resistant material 19, such as graphite, which will withstand the temperatures of molten metal 17 held therein without appreciable deterioration.
  • the lining is surrounded by a heating means, such as an electrical resistance heater or an induction coil, the conductors 18 of which are embedded within an electrical-insulation layer 20, such as refractory cement or silica fibers.
  • the entire lining and heater element are encased in a refractory material 21 which promotes the retention of heat within the container portion to maintain the metal 17' in molten condition.
  • the heater unit is provided with external terminals for connection to a power source and may be of a type which will melt down the metal intro, quizd into the container portion or may be of a type which merely provides heat to retain the metal in its molten condition after being melted down and introduced in molten form from an outside source.
  • a channel 22 is provided within the container portion providing a path between the main body of the molten metal 17 and the face of the metal-coating portion 14 for supply of molten metal to the coating face.
  • The, metal flows from orifices 25 at the face to form separate beads or globules of metal 23 for individually coating each of the filaments '12.
  • each of the orifices 25 are arranged to be disposed at the base of a groove 24 in which a globule 23 is at least partially disposed upon emission from its orifice 25.
  • the sides of each groove 24 guide the associated filament through the globule and also act in part to suspend the globule in proper position for full envelop meat of the filament.
  • Th width o thegr -m y be made of such dimensions as to wipe excesses of metal from the coated filament.
  • each .groove 24 are vertically aligned in registry with ?the filaments .12. 'If desired, however, each .groove may :be arranged :inalignment with the straight line path between the orifice :of its associated filament and the gathering -member '28.
  • each of the orifices-25 is made sufii'ciently small that the globule of metal 23 emitted therefrom has a surface tension developed therein which provides sufficient retaining force to' prevent free flowof the molten metal from the container portion and to suspend the globule in the space of its groove without external support.
  • the surface tension in the globule 23 permits the applicator .to be made operable substantially independently of the head of the molten metal 17 over the range operating heads determined by its size.
  • 'As an example 'of relative dimensions of the anetalfeeding parts of the applicator portion 14, the channel 22 which. supplies the metal for the globules 23, has a vertical dimension in the order of 7 inch while the orifices 25 have dimensions approximating .010" diameter.
  • the grooves 24 have a width dimension also about .010 for filaments in the range of .0005 in diameter or smaller.
  • the force of drawing the filaments 12 from the feeder 11 and through their respective globules of metal 23 is provided by a drive motor 26 which also draws the filaments through a filament-gathering member 28 and Winds the filaments in strand form on a collet-supported forming tube 27.
  • the gathering member 28 is grooved to direct sizing fluid introduced through a tube 29 from an outside source to the metal-coated filaments.
  • the size may be any of a number of size materials such as those set out inU. S. Patent No. 2,234,986, issued March 18, 1941, or a materialsuch as molybdenum disult'ide which provides metal surfaces with a film of low frictional character when subjected to high pressures.
  • sizing materials on strands serve to provide an adhering property between filaments to promote their integral association in strand form and also act to lubricate the "filaments and promote their being used Without detrimental wearing effect on metal coatings which have occasion to rub against each other.
  • the applicator be adjustaibly movable in a vertical direction along the length of the filaments where their temperatures gradually decrease from the point of emission from the feeder, and a temperature can be selected for most effective coating. with metal to .the thickness desired.
  • the entire applicator is mounted on a platform 30 pivotally supported on "a horizontally movremember 31.
  • the platform 30 is pi-voted on-a pin 32 which is axially aligned-withthe-center or the'row of orifices 25, thereby permitting ready leveling of the orifices with the horizontal.
  • the member 31 is made adjustably movable in a horizontal direction by adaptingan adjusting screw 33 and a pair of .slidable guide'rods 342theret0.
  • the screw and guide nods are associated withavertically adjustablesupp'ort member 35.
  • Adjustment of the applicator with respect to ,thefilaments may also .be accomplished by rnoving the filaments rather than the applicator.
  • This is illustrated in FigureS whereinanadjusting bar 45 is .usedto move the filaments.
  • filaments 42 are drawn from a bushingor feeder 41' over a coating ,portion 44 of the applicator 43 andthrough a gathering member 46 bya forming tube 48 driven by a winder 49.
  • 'Sizing'material is introduced to the-coated filaments in a conventional manner such as from a tube 47 directed to the gathering member 46.
  • the filaments When it is desired to move the filaments from their respective applicator grooves, they are merely pushed away therefrom by moving the bar 45 into contact therewith and exerting a force thereon until the filaments become disengaged from the grooves and are moved to the position shown in dotted lines. 7
  • the'bar 45 may also be provided with spaced grooves for the filaments, thus facilitating alignment of the filaments outside of the applicator grooves and also facilitating ease of reinsertion of the filaments in the applicator grooves in whichthey areto be coated.
  • Figure6 illustrates an alternate manner in which filaments gathered in strand form may be drawnand collected.
  • the wheel-type pullers have the advantage that they can pull strands at the extremely high rates of speed to which the present inventionis adapted.
  • a multiplicity of coated filaments '52 are'drawn through a gathering member 56 where sizing is applied and strand is "formed.
  • the pulling force is provided by the pulling wheels 53a and 53b which are driven by a suitable common "drive through. gear means or a pair of individual drives suchas motors synchronized by connection with each other through the pulling Wheels themselves.
  • the strand moving at a highrate of speed . is collected in'toa bundle 50 in the container 59 which has an openin'g conveniently disposed to receive'the strand as it is emitted from the pulling wheels.
  • the container "59 is made rotatable to facilitate forming the bundle 60 into a doughnut shape under the forces of rotation.
  • the method of producing continuous metal-coated glass fibers which comprises attenuating continuous glass fibers from molten streams of glass, heating metal to be coated thereon to a temperature above its melting point but below a temperature damaging to the glass fibers, feeding the molten metal to globules thereof suspended in horizontal projecting relation from a supply source, maintaining said globule in size equilibrium and drawing the glass fibers while hot due to their residual heat of formation through the molten metal globules to apply a coat of metal to the fibers.
  • the method of coating a glass filament with metal comprising suspending a globule of molten metal in a given position under its own surface tension, passing a continuous filament through said globule at a temperature compatible to receive a coating of said metal, and supplying molten metal for said globule to maintain it in size equilibrium by replenishing molten metal removed from said globule in coating said filament.
  • the method of coating glass filaments with metal comprising supplying molten metal to an orifice at a temperature such that a quantity of the metal is suspended therefrom and is prevented from freely flowing due to its own surface tension, guiding a continuous glass filament through said suspended metal at a temperature compatible to cause said filament to receive a coating thereof, and replenishing the molten metal removed from said suspended quantity of metal to maintain it in equilibrium for continuous coating of filaments drawn therethrough.
  • the method of coating a continuous glass filament with metal comprising supporting a molten globule of metal in a given position under its own surface tension, passing a continuous filament through said globule in a generally vertical path through said globule to receive a coating of said metal, and replenishing the metal removed from said globule to maintain it in equilibrium for continuous coating of filaments.
  • the method of coating glass filaments with metal comprising moving a continuous filament axially through a generally vertical path between guide surfaces, supplying molten metal to a position in the path of movement of said filament between said surfaces and suspending said metal by its own surface tension between said surfaces, passing said fiber through said suspended metal for a coating of said metal, and replenishing the molten metal removed from said suspended metal to maintain it in equilibrium for continuous coating of filaments drawn therethrough.
  • the method of coating glass filaments with metal comprising suspending a quantity of molten metal by its own surface tension from a source of the molten metal, passing a continuous filament in a generally vertical path through said suspended metal to receive a coating of said metal, and replenishing the molten metal removed from said suspended metal to maintain it in. equilibrium for continuous coating of filaments drawn therethrough.
  • the method of producing a metal-coated glass fiber which comprises flowing a stream of glass from a source of molten glass, attenuating a continuous glass fiber from said stream, suspending a globule of molten metal in the path of said fiber by its own surface tension, moving said fiber through said suspended globule for a coating thereof, and replenishing the molten metal removed from said globule to maintain it in size equilibrium for continuous coating of said fiber.
  • the method of producing a strand of metal-coated glass fibers which comprises flowing streams of glass from a source of molten glass, attenuating continuous glass fibers from said streams, forming globules of molten metal at orifices connected to a common supply of said metal, said globules of metal being formed to such size that the metal of each is suspended and blocked from freely flowing by its own surface tension at their respective orifices, guiding a separate glass fiber in a generally vertical path through each of said globules for a coating of said metal, gathering said fibers into a strand after being coated, and replenishing the molten metal removed from said globules to maintain them in size equilibrium for continuous coating of said fibers.
  • a method as in claim 8 wherein a plurality of glass fibers are formed and a plurality of globules of molten metal are formed, and wherein each of said fibers are passed through an individual globule to provide a coating thereon, and then gathering the fibers to form a strand.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

Dec. 4, 1956 H. B. WHITEHURST ET AL 2,
METHOD OF COATING GLASS FILAMENTS WITH METAL Filed Nov. 10, 1952 2 Sheets-Sheet l /4 20 I :fimi.
INVENTORS Dec. 4, 1956 H. B. WHITEHURST ETAL 2,772,513
METHOD OF COATING GLASS FILAMENTS WITH METAL Filed Nov. 10,1952 2 Sheets-Sheet 2 Zl/ MM ATTORNEY:
United States Patent METHOD OF COATING GLASS FILAMENTS WITH NIETAL Harry B. Whitehurst, Granville, and William H. Otto, Newark, Ohio, assignors to Owens-Coming Fiberglas Corporation, a corporation of Delaware Application November 10, 1952, Serial No. 319,724 Claims. (Cl. 49-77) This invention relates to metal coating of filaments or fibers, and more particularly to methods and means for applying metal coatings to continuous glass filaments.
It is well known that glass filaments have extremely high strength characteristics as well as highly desirable flexing characteristics which make them of particular advantage for many uses and applications as reinforcing agents. Such fibers, however, have a weakness to surface abrasion which reduces their ability to withstand wear to the extent that it eliminates the possibility of their application for many uses in which the strength and flexibility of the filaments would be highly desirable. The coating of glass filaments with metals, such as copper, zinc, aluminum, silver, or alloys thereof, it has been found, is highly successful in providing protection against abrasion, but difiiculty has been experienced in applying the metal to such filaments at a high rate of speed and with uniformity so as to make ot economically feasible to produce them in mass production.
It is therefore a principal object of the present invention to provide a new method and means for applying metal to glass filaments which permits economical production of coated filaments at a high rate of speed and at the same time providing coating uniformity which assures positive securement of the metal to the filaments and the desired degree of coating of the individual filaments by the metal along their length.
Another object of the present invention is to provide a novel method and means for applying metal on glass filaments without disrupting or deleteriously affecting the desired physical characteristics of the filaments.
Still another object of the present invention is to provide an efiicient and economical means for applying metal to glass filaments which is adapted to functional association with conventional filament-forming means to provide a continuous and direct metal-coated fiber-forming process.
Still another object of the invention is to provide means for applying metal to glass filaments adapted to continuous processes and requiring little care and attention to effect the desired degree of coating.
A further object of the invention is to provide means for applying metal to glass filaments on a continuous basis controllable to provide a predetermined linear and peripheral uniform coating.
A feature of the invention is that it permits the application of metal coatings to glass fibers at a very rapid rate.
Another feature lies in the fact that this invention is readily adapted to permitting application of metal coatings to glass filaments during the process of forming them.
. The application of metal to glass filaments in accordance with the above objects and features is accomplished in the present instance by pulling or drawing the filaments through an accumulation of molten metal such as 2,772,518 Patented Dec. 4, 1956 ice a globule or bead of such metal. In particular, the amp paratus is arranged so as to permit drawing of filaments through such metal in vertical paths which facilitates adapting such coating operations to conventional filament-forming means.
Other objects and features which we believe to be characteristic of our invention are set forth with particularity in the appended claims. Our invention, however, both in organization and manner of construction together with further objects and advantages thereof may be best understood by reference to the following description taken in connection with the accompanying drawings, in which:
Figure l is a somewhat schematic side elevational view of apparatus of the present invention for forming metalcoated glass filaments;
Figure 2 is a partially broken away front elevational view of the apparatus shown in Figure 1;
Figure 3 is a front elevational view in part of the applicator of Figures 1 and 2;
Figure 4 is a side elevational view in cross-section as taken on the line 4-4 of Figure 3;
Figure 5 is a schematic side elevational view of apparatus incorporating modifications over the apparatus of Figures 1 and 2 for adjustably associating the applicator and filaments with each other; and
Figure 6 is a front elevational view in part of apparatus similar to that of Figures 1 and 2 showing another manner in which collected filaments may be pulled to effect rapid production of coated filaments.
Turning to the drawings in detail, Figures 1 and 2 show a suitable glass-melting tank 10 having a multipleorifice feeder or bushing 11 from which a plurality of glass filaments 12 are drawn downward to a metal-coating portion 14 of the metal-applicating; unit 13. The feeder orifices are preferably arranged in one or two rows so that the streams of glass drawn from the feeder are all substantially in the same plane.
As shown in Figures 3 and 4, the applicator 13 has a container portion which is lined with a high-temperature resistant material 19, such as graphite, which will withstand the temperatures of molten metal 17 held therein without appreciable deterioration. The lining is surrounded by a heating means, such as an electrical resistance heater or an induction coil, the conductors 18 of which are embedded within an electrical-insulation layer 20, such as refractory cement or silica fibers. The entire lining and heater element are encased in a refractory material 21 which promotes the retention of heat within the container portion to maintain the metal 17' in molten condition. The heater unit is provided with external terminals for connection to a power source and may be of a type which will melt down the metal intro, duced into the container portion or may be of a type which merely provides heat to retain the metal in its molten condition after being melted down and introduced in molten form from an outside source.
A channel 22 is provided within the container portion providing a path between the main body of the molten metal 17 and the face of the metal-coating portion 14 for supply of molten metal to the coating face. The, metal flows from orifices 25 at the face to form separate beads or globules of metal 23 for individually coating each of the filaments '12. To assure that the filaments 12 are properly directed through their respective globules 23, each of the orifices 25 are arranged to be disposed at the base of a groove 24 in which a globule 23 is at least partially disposed upon emission from its orifice 25. The sides of each groove 24 guide the associated filament through the globule and also act in part to suspend the globule in proper position for full envelop meat of the filament. Th width o thegr -m y be made of such dimensions as to wipe excesses of metal from the coated filament.
As shown in'the drawings, the .grooves 24 are vertically aligned in registry with ?the filaments .12. 'If desired, however, each .groove may :be arranged :inalignment with the straight line path between the orifice :of its associated filament and the gathering -member '28. In
' most instances, however, thegathering of filaments .ex-
tends over such an appreciable distance afterzlea-ving the grooves and is a-gathering together from so relatively small a dimensional distribution of filaments that the grooves whensoaligned with the filament paths, .forall practical purposes, also correspond-;to the vertical.
,Each of the orifices-25 is made sufii'ciently small that the globule of metal 23 emitted therefrom has a surface tension developed therein which provides sufficient retaining force to' prevent free flowof the molten metal from the container portion and to suspend the globule in the space of its groove without external support. In this respect, the surface tension in the globule 23 permits the applicator .to be made operable substantially independently of the head of the molten metal 17 over the range operating heads determined by its size. Thus, one of the variables involved in filamenhcoating operations is eliminated to reduce the care and attention required to coat filaments on a mass production basis. The fact that the globules 23, because of their surface tension, can be suspended without external support permits unobstructed passage of filaments through them in vertical paths. This feature is particularly of advantage inthat it lends itself to locating the globules anywhere along the length of the filaments upon emission from the feeder.
'As an example 'of relative dimensions of the anetalfeeding parts of the applicator portion 14, the channel 22 which. supplies the metal for the globules 23, has a vertical dimension in the order of 7 inch while the orifices 25 have dimensions approximating .010" diameter. The grooves 24 have a width dimension also about .010 for filaments in the range of .0005 in diameter or smaller.
The force of drawing the filaments 12 from the feeder 11 and through their respective globules of metal 23 is provided by a drive motor 26 which also draws the filaments through a filament-gathering member 28 and Winds the filaments in strand form on a collet-supported forming tube 27. The gathering member 28 is grooved to direct sizing fluid introduced through a tube 29 from an outside source to the metal-coated filaments. The size may be any of a number of size materials such as those set out inU. S. Patent No. 2,234,986, issued March 18, 1941, or a materialsuch as molybdenum disult'ide which provides metal surfaces with a film of low frictional character when subjected to high pressures. It should 'be noted that sizing materials on strands serve to provide an adhering property between filaments to promote their integral association in strand form and also act to lubricate the "filaments and promote their being used Without detrimental wearing effect on metal coatings which have occasion to rub against each other.
It has been found that passing aglass filament through agiven metal applies a coating thereto of thickness depending to a great extent upon the temperature of the metal. 'In general, the higher the temperature of the given metal, the lower is its surface tension and the greater its ability to flow about the filament it is to coat. The lowerthe viscosity and surface tension of the metal, however, the less is its natural tendency to build up thickly on the filament passing therethrough. Thus, it can be generally stated that the lower ter'nperatries of pp... t nn at man ef ect reat c a nsth ckm Itha also been found thatan excess of metal at given temperature causes the formation of beads on the coating surface, "which for most applications would be undesirable. In view .of .these operating variables, ..-it becomes apparent that it is highly desirable that the applicator be adjustaibly movable in a vertical direction along the length of the filaments where their temperatures gradually decrease from the point of emission from the feeder, and a temperature can be selected for most effective coating. with metal to .the thickness desired.
To facilitate alignment of thefapplicator 13"wi th the filaments 12, the entire applicator is mounted on a platform 30 pivotally supported on "a horizontally movremember 31. The platform 30 is pi-voted on-a pin 32 which is axially aligned-withthe-center or the'row of orifices 25, thereby permitting ready leveling of the orifices with the horizontal.
To permit movement-of the appli'cator for engagement with the filaments and removal therefrom, the member 31 is made adjustably movable in a horizontal direction by adaptingan adjusting screw 33 and a pair of .slidable guide'rods 342theret0. The screw and guide nods are associated withavertically adjustablesupp'ort member 35. By reason of the applicator portion 14 projecting outward :from the front of its casing, theentireapplicator .can-.be:r.ead.ily moved verticallyinto close proximity with the feeder 11 with an accurate degree of adjustment by means of a horizontal adjustingscrew 36 associated with amain support member 37 which'is adapted to being mounted in a position generally close to that pdesired. Thus, by proper proportioning of the casing, the applicator can be adjustably positioned even up to a-po-in't immediately under the feeder where filaments are at their highest temperature and lowest viscosity.
Adjustment of the applicator with respect to ,thefilaments may also .be accomplished by rnoving the filaments rather than the applicator. This is illustrated in FigureS whereinanadjusting bar 45 is .usedto move the filaments. In this illustration, filaments 42 are drawn from a bushingor feeder 41' over a coating ,portion 44 of the applicator 43 andthrough a gathering member 46 bya forming tube 48 driven by a winder 49. 'Sizing'material is introduced to the-coated filaments in a conventional manner such as from a tube 47 directed to the gathering member 46.
When it is desired to move the filaments from their respective applicator grooves, they are merely pushed away therefrom by moving the bar 45 into contact therewith and exerting a force thereon until the filaments become disengaged from the grooves and are moved to the position shown in dotted lines. 7 If desired, the'bar 45 may also be provided with spaced grooves for the filaments, thus facilitating alignment of the filaments outside of the applicator grooves and also facilitating ease of reinsertion of the filaments in the applicator grooves in whichthey areto be coated.
Figure6 illustrates an alternate manner in which filaments gathered in strand form may be drawnand collected. A'pair of pulling wheels 53a'and 58b of the type disclosed anddescribed in Drummond .et al. application,
'SerQNo. 300,748, filed on July 24, 1952frnay be used in place of thedriven forming tubeshown in the foregoing figures. The wheel-type pullers have the advantage that they can pull strands at the extremely high rates of speed to which the present inventionis adapted. Asshown in Figure 6 a multiplicity of coated filaments '52 are'drawn through a gathering member 56 where sizing is applied and strand is "formed. The pulling force is provided by the pulling wheels 53a and 53b which are driven by a suitable common "drive through. gear means or a pair of individual drives suchas motors synchronized by connection with each other through the pulling Wheels themselves. e
The strand moving at a highrate of speed .is collected in'toa bundle 50 in the container 59 which has an openin'g conveniently disposed to receive'the strand as it is emitted from the pulling wheels. The container "59 is made rotatable to facilitate forming the bundle 60 into a doughnut shape under the forces of rotation.
Although the apparatus in each of the illustrations herein shown and described, gather and collect coated filaments in strand form, it will be readily recognized that the nature of the invention is such that the filaments may also be collected individually for applications where conditions dictate the need for single metal-coated filaments.
While we have shown certain particular forms of our invention, it will be understood that we do not wish to be limited thereto since many modifications may be made within the concepts of the invention, and we therefore contemplate by the appended claims to cover all such modifications as fall within the true spirit and scope of our invention.
We claim:
1. The method of producing continuous metal-coated glass fibers which comprises attenuating continuous glass fibers from molten streams of glass, heating metal to be coated thereon to a temperature above its melting point but below a temperature damaging to the glass fibers, feeding the molten metal to globules thereof suspended in horizontal projecting relation from a supply source, maintaining said globule in size equilibrium and drawing the glass fibers while hot due to their residual heat of formation through the molten metal globules to apply a coat of metal to the fibers.
2. The method of coating a glass filament with metal comprising suspending a globule of molten metal in a given position under its own surface tension, passing a continuous filament through said globule at a temperature compatible to receive a coating of said metal, and supplying molten metal for said globule to maintain it in size equilibrium by replenishing molten metal removed from said globule in coating said filament.
3. The method of coating glass filaments with metal comprising supplying molten metal to an orifice at a temperature such that a quantity of the metal is suspended therefrom and is prevented from freely flowing due to its own surface tension, guiding a continuous glass filament through said suspended metal at a temperature compatible to cause said filament to receive a coating thereof, and replenishing the molten metal removed from said suspended quantity of metal to maintain it in equilibrium for continuous coating of filaments drawn therethrough.
4. The method of coating continuous glass filaments with metal comprising forming globules of molten metal suspended and blocked from freely flowing by the surface tension of the metal at orifices connected to a common supply of said metal, guiding continuous glass filaments in vertical paths past each of said orifices respectively, feeding a sufiicient amount of said metal from the common supply through said orifices to maintain said globules sufficiently large while suspended by their own surface tension about said filaments to apply a metal coating thereto.
5. The method of coating a continuous glass filament with metal comprising supporting a molten globule of metal in a given position under its own surface tension, passing a continuous filament through said globule in a generally vertical path through said globule to receive a coating of said metal, and replenishing the metal removed from said globule to maintain it in equilibrium for continuous coating of filaments.
6. The method of coating glass filaments with metal comprising moving a continuous filament axially through a generally vertical path between guide surfaces, supplying molten metal to a position in the path of movement of said filament between said surfaces and suspending said metal by its own surface tension between said surfaces, passing said fiber through said suspended metal for a coating of said metal, and replenishing the molten metal removed from said suspended metal to maintain it in equilibrium for continuous coating of filaments drawn therethrough.
7. The method of coating glass filaments with metal comprising suspending a quantity of molten metal by its own surface tension from a source of the molten metal, passing a continuous filament in a generally vertical path through said suspended metal to receive a coating of said metal, and replenishing the molten metal removed from said suspended metal to maintain it in. equilibrium for continuous coating of filaments drawn therethrough.
8. The method of producing a metal-coated glass fiber which comprises flowing a stream of glass from a source of molten glass, attenuating a continuous glass fiber from said stream, suspending a globule of molten metal in the path of said fiber by its own surface tension, moving said fiber through said suspended globule for a coating thereof, and replenishing the molten metal removed from said globule to maintain it in size equilibrium for continuous coating of said fiber.
9. The method of producing a strand of metal-coated glass fibers which comprises flowing streams of glass from a source of molten glass, attenuating continuous glass fibers from said streams, forming globules of molten metal at orifices connected to a common supply of said metal, said globules of metal being formed to such size that the metal of each is suspended and blocked from freely flowing by its own surface tension at their respective orifices, guiding a separate glass fiber in a generally vertical path through each of said globules for a coating of said metal, gathering said fibers into a strand after being coated, and replenishing the molten metal removed from said globules to maintain them in size equilibrium for continuous coating of said fibers.
10. A method as in claim 8 wherein a plurality of glass fibers are formed and a plurality of globules of molten metal are formed, and wherein each of said fibers are passed through an individual globule to provide a coating thereon, and then gathering the fibers to form a strand.
References Cited in the file of this patent UNITED STATES PATENTS 1,934,796 Friederick Nov. 14, 1933 2,272,588 Simison Feb. 10, 1942 2,373,078 Kleist Apr. 3, 1945 2,531,571 Hyde Nov. 28, 1950 2,562,500 Lunt et al. July 31, 1951 2,616,165 Brennan Nov. 4, 1952

Claims (1)

  1. 2. THE METHOD OF COATING A GLASS FILAMENT WITH METAL COMPRISING SUSPENDING A GLOBULE OF MOLTEN METAL IN A GIVEN POSITION UNDER ITS OWN SURFACE TENSION, PASSING A CONTINUOUS FILAMENT THROUGH SAID GLOBULE AT A TEMPERATURE COMPATIBLE TO RECEIVE A COATING OF SAID METAL, AND SUPPLYING MOLTEN METAL FOR SAID GLOBULE TO MAINTAIN IT IN SIZE EQUILIBRIUM BY REPLENISHING MOLTEN METAL REMOVED FROM SAID GLOBULE IN COATING SAID FILAMENT.
US319724A 1952-11-10 1952-11-10 Method of coating glass filaments with metal Expired - Lifetime US2772518A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NL85676D NL85676C (en) 1952-11-10
US791291D USB791291I5 (en) 1952-11-10
BE524157D BE524157A (en) 1952-11-10
US319724A US2772518A (en) 1952-11-10 1952-11-10 Method of coating glass filaments with metal
US322598A US2963739A (en) 1952-11-10 1952-11-26 Method of applying metal to glas filaments and apparatus therefor
FR1092604D FR1092604A (en) 1952-11-10 1953-11-06 Application of a metallic coating on glass filaments
CH334251D CH334251A (en) 1952-11-10 1953-11-09 Process for the production of coated glass threads and device for carrying out the process
GB30973/53A GB745279A (en) 1952-11-10 1953-11-09 Improvements in or relating to method and apparatus for making metal-coated glass filaments
DEO3275A DE1000972B (en) 1952-11-10 1953-11-09 Method and device for covering glass threads with a metal covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US319724A US2772518A (en) 1952-11-10 1952-11-10 Method of coating glass filaments with metal

Publications (1)

Publication Number Publication Date
US2772518A true US2772518A (en) 1956-12-04

Family

ID=23243413

Family Applications (1)

Application Number Title Priority Date Filing Date
US319724A Expired - Lifetime US2772518A (en) 1952-11-10 1952-11-10 Method of coating glass filaments with metal

Country Status (1)

Country Link
US (1) US2772518A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835221A (en) * 1953-05-28 1958-05-20 Owens Corning Fiberglass Corp Apparatus for coating fibrous glass with molten metal
US2856893A (en) * 1956-09-17 1958-10-21 Sperry Rand Corp Tinning apparatus
US2880552A (en) * 1954-08-16 1959-04-07 Owens Corning Fiberglass Corp Heat treatment of metal-coated glass fibers
US2909151A (en) * 1954-08-02 1959-10-20 Goodrich Co B F Apparatus for metalizing filaments of glass
US2914419A (en) * 1953-08-03 1959-11-24 Armco Steel Corp Method and apparatus for continuously coating a metal strand-like article with molten metal
US2915806A (en) * 1953-11-09 1959-12-08 Owens Corning Fiberglass Corp Metal coated glass fiber combinations
US2916347A (en) * 1954-08-04 1959-12-08 Owens Corning Fiberglass Corp Production of coated glass fibers
US2920981A (en) * 1954-03-30 1960-01-12 Owens Corning Fiberglass Corp Metal coated fibers and treatments therefor
US2934458A (en) * 1953-05-21 1960-04-26 Goodrich Co B F Method for coating filaments of glass
US2953849A (en) * 1956-08-27 1960-09-27 Owens Corning Fiberglass Corp Reinforcement of metal
US2976177A (en) * 1957-04-15 1961-03-21 Owens Corning Fiberglass Corp Method and means for coating of filaments
US2977929A (en) * 1955-01-03 1961-04-04 Owens Corning Fiberglass Corp Metal applicator for filamentary material
US2980956A (en) * 1953-12-21 1961-04-25 Owens Corning Fiberglass Corp Metal applicators for glass filaments
US3010146A (en) * 1957-09-11 1961-11-28 Owens Corning Fiberglass Corp Method and apparatus for producing mineral fibers
US3019515A (en) * 1953-11-10 1962-02-06 Owens Corning Fiberglass Corp Metal coated glass fibers
US3021564A (en) * 1956-12-28 1962-02-20 Owens Corning Fiberglass Corp Production of fibers in intimate association with metal
US3038248A (en) * 1954-11-04 1962-06-12 Kremer Henry Strengthening of metal
US3041202A (en) * 1954-03-30 1962-06-26 Owens Corning Fiberglass Corp Metal coated fibers and treatments therefor
US3047383A (en) * 1955-12-27 1962-07-31 Owens Corning Fiberglass Corp Polyphase materials
US3091561A (en) * 1957-09-11 1963-05-28 Owens Corning Fiberglass Corp Metalized flattened glass strand and method of manufacturing
US3164457A (en) * 1960-12-08 1965-01-05 Pittsburgh Plate Glass Co Fiber producing bushing
US3193364A (en) * 1960-05-20 1965-07-06 American Optical Corp Method of making electronic devices
US3231459A (en) * 1957-09-11 1966-01-25 Owens Corning Fiberglass Corp Attenuated mineral filaments
US3259479A (en) * 1957-12-30 1966-07-05 Owens Corning Fiberglass Corp Method of making curly composite fibers
US3268312A (en) * 1965-06-17 1966-08-23 Owens Corning Fiberglass Corp Method of making coated glass fiber combinations
US3310455A (en) * 1957-09-11 1967-03-21 Owens Corning Fiberglass Corp Mat of ribbon shaped mineral fibers having a reflective coating
US3347208A (en) * 1962-10-29 1967-10-17 Rolls Royce Nozzles
US3661117A (en) * 1969-12-03 1972-05-09 Stanford Research Inst Apparatus for depositing thin lines
US3901016A (en) * 1974-06-17 1975-08-26 Owens Corning Fiberglass Corp Method of making electric conductor
US3998183A (en) * 1975-03-12 1976-12-21 Owens-Corning Fiberglas Corporation Coating material applicator
US4042360A (en) * 1975-03-12 1977-08-16 Owens-Corning Fiberglas Corporation Production of inorganic fibers with inorganic cores
US4071340A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Apparatus for forming glass fibers
US4071339A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Method of forming glass fibers
US4071342A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Apparatus for forming glass fibers
US4071341A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Apparatus for forming glass fibers
US4109610A (en) * 1976-12-20 1978-08-29 Owens-Corning Fiberglas Corporation Textile size applicator with a temperature controlling fluid
FR2383140A1 (en) * 1977-03-08 1978-10-06 Ppg Industries Inc Glass fibre forming apparatus - with gathering shoe connected to air cylinder and piston for moving waste filaments out of contact with size applicator
US4192663A (en) * 1978-08-29 1980-03-11 Owens-Corning Fiberglas Corporation Apparatus for coating glass fibers
US4904052A (en) * 1987-04-28 1990-02-27 Hughes Aircraft Company Polarization preserving optical fiber and method of manufacturing
US6136245A (en) * 1994-12-15 2000-10-24 Ason Engineering, Inc. Method for producing non-woven webs
US10780656B2 (en) 2015-10-30 2020-09-22 Compagnie Generale Des Etablissments Michelin Device for impregnation and curing of continuous fibers with resin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1934796A (en) * 1929-05-23 1933-11-14 Aceta Gmbh Apparatus for moistening threads
US2272588A (en) * 1937-07-31 1942-02-10 Owens Corning Fiberglass Corp Coating for fibrous glass strands
US2373078A (en) * 1943-02-16 1945-04-03 Owens Corning Fiberglass Corp Guide for glass and the like fibers
US2531571A (en) * 1945-04-21 1950-11-28 Owens Corning Fiberglass Corp Manufacture of glass yarn
US2562500A (en) * 1947-05-27 1951-07-31 Noma Electric Corp Inking device for marking the surface of electrical conductors
US2616165A (en) * 1947-01-18 1952-11-04 Everett D Mccurdy Electrode for electrolytic devices and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1934796A (en) * 1929-05-23 1933-11-14 Aceta Gmbh Apparatus for moistening threads
US2272588A (en) * 1937-07-31 1942-02-10 Owens Corning Fiberglass Corp Coating for fibrous glass strands
US2373078A (en) * 1943-02-16 1945-04-03 Owens Corning Fiberglass Corp Guide for glass and the like fibers
US2531571A (en) * 1945-04-21 1950-11-28 Owens Corning Fiberglass Corp Manufacture of glass yarn
US2616165A (en) * 1947-01-18 1952-11-04 Everett D Mccurdy Electrode for electrolytic devices and methods of making same
US2562500A (en) * 1947-05-27 1951-07-31 Noma Electric Corp Inking device for marking the surface of electrical conductors

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2934458A (en) * 1953-05-21 1960-04-26 Goodrich Co B F Method for coating filaments of glass
US2835221A (en) * 1953-05-28 1958-05-20 Owens Corning Fiberglass Corp Apparatus for coating fibrous glass with molten metal
US2914419A (en) * 1953-08-03 1959-11-24 Armco Steel Corp Method and apparatus for continuously coating a metal strand-like article with molten metal
US2915806A (en) * 1953-11-09 1959-12-08 Owens Corning Fiberglass Corp Metal coated glass fiber combinations
US3019515A (en) * 1953-11-10 1962-02-06 Owens Corning Fiberglass Corp Metal coated glass fibers
US2980956A (en) * 1953-12-21 1961-04-25 Owens Corning Fiberglass Corp Metal applicators for glass filaments
US3041202A (en) * 1954-03-30 1962-06-26 Owens Corning Fiberglass Corp Metal coated fibers and treatments therefor
US2920981A (en) * 1954-03-30 1960-01-12 Owens Corning Fiberglass Corp Metal coated fibers and treatments therefor
US2909151A (en) * 1954-08-02 1959-10-20 Goodrich Co B F Apparatus for metalizing filaments of glass
US2916347A (en) * 1954-08-04 1959-12-08 Owens Corning Fiberglass Corp Production of coated glass fibers
US2880552A (en) * 1954-08-16 1959-04-07 Owens Corning Fiberglass Corp Heat treatment of metal-coated glass fibers
US3038248A (en) * 1954-11-04 1962-06-12 Kremer Henry Strengthening of metal
US2977929A (en) * 1955-01-03 1961-04-04 Owens Corning Fiberglass Corp Metal applicator for filamentary material
US3047383A (en) * 1955-12-27 1962-07-31 Owens Corning Fiberglass Corp Polyphase materials
US2953849A (en) * 1956-08-27 1960-09-27 Owens Corning Fiberglass Corp Reinforcement of metal
US2856893A (en) * 1956-09-17 1958-10-21 Sperry Rand Corp Tinning apparatus
US3021564A (en) * 1956-12-28 1962-02-20 Owens Corning Fiberglass Corp Production of fibers in intimate association with metal
US2976177A (en) * 1957-04-15 1961-03-21 Owens Corning Fiberglass Corp Method and means for coating of filaments
US3010146A (en) * 1957-09-11 1961-11-28 Owens Corning Fiberglass Corp Method and apparatus for producing mineral fibers
US3091561A (en) * 1957-09-11 1963-05-28 Owens Corning Fiberglass Corp Metalized flattened glass strand and method of manufacturing
US3310455A (en) * 1957-09-11 1967-03-21 Owens Corning Fiberglass Corp Mat of ribbon shaped mineral fibers having a reflective coating
US3231459A (en) * 1957-09-11 1966-01-25 Owens Corning Fiberglass Corp Attenuated mineral filaments
US3259479A (en) * 1957-12-30 1966-07-05 Owens Corning Fiberglass Corp Method of making curly composite fibers
US3193364A (en) * 1960-05-20 1965-07-06 American Optical Corp Method of making electronic devices
US3164457A (en) * 1960-12-08 1965-01-05 Pittsburgh Plate Glass Co Fiber producing bushing
US3347208A (en) * 1962-10-29 1967-10-17 Rolls Royce Nozzles
US3268312A (en) * 1965-06-17 1966-08-23 Owens Corning Fiberglass Corp Method of making coated glass fiber combinations
US3661117A (en) * 1969-12-03 1972-05-09 Stanford Research Inst Apparatus for depositing thin lines
US3901016A (en) * 1974-06-17 1975-08-26 Owens Corning Fiberglass Corp Method of making electric conductor
US3998183A (en) * 1975-03-12 1976-12-21 Owens-Corning Fiberglas Corporation Coating material applicator
US4042360A (en) * 1975-03-12 1977-08-16 Owens-Corning Fiberglas Corporation Production of inorganic fibers with inorganic cores
US4109610A (en) * 1976-12-20 1978-08-29 Owens-Corning Fiberglas Corporation Textile size applicator with a temperature controlling fluid
US4071342A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Apparatus for forming glass fibers
US4071339A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Method of forming glass fibers
US4071341A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Apparatus for forming glass fibers
US4071340A (en) * 1977-03-08 1978-01-31 Ppg Industries, Inc. Apparatus for forming glass fibers
FR2383140A1 (en) * 1977-03-08 1978-10-06 Ppg Industries Inc Glass fibre forming apparatus - with gathering shoe connected to air cylinder and piston for moving waste filaments out of contact with size applicator
US4192663A (en) * 1978-08-29 1980-03-11 Owens-Corning Fiberglas Corporation Apparatus for coating glass fibers
US4904052A (en) * 1987-04-28 1990-02-27 Hughes Aircraft Company Polarization preserving optical fiber and method of manufacturing
US6136245A (en) * 1994-12-15 2000-10-24 Ason Engineering, Inc. Method for producing non-woven webs
US10780656B2 (en) 2015-10-30 2020-09-22 Compagnie Generale Des Etablissments Michelin Device for impregnation and curing of continuous fibers with resin

Similar Documents

Publication Publication Date Title
US2772518A (en) Method of coating glass filaments with metal
US2963739A (en) Method of applying metal to glas filaments and apparatus therefor
US2234986A (en) Mechanically drawing fibers
US2272588A (en) Coating for fibrous glass strands
US2976177A (en) Method and means for coating of filaments
US3134704A (en) Method of and apparatus for multiple forming and winding of glass and resin filaments
US3829301A (en) Method for preventing flooding of glass fiber bushings
US2934458A (en) Method for coating filaments of glass
US3294503A (en) Apparatus for producing fine continuous filaments
US2782563A (en) Method and means for producing metal-coated glass fibers
US2291289A (en) Apparatus for making siliceous fibers
US2482071A (en) Method for producing fibers
US2835221A (en) Apparatus for coating fibrous glass with molten metal
US2980956A (en) Metal applicators for glass filaments
US3475147A (en) Method and apparatus for processing heat-softened material
US3791172A (en) Apparatus for making a glass or the like coated wire
US2377772A (en) Apparatus for the production of glass fibers
US2861393A (en) Production of coated-glass fibers
US3254978A (en) Method and apparatus for forming fibers
US3076324A (en) Production of coated fibers
US2909151A (en) Apparatus for metalizing filaments of glass
US2928716A (en) Method of producing glass fibers with metal coatings
US2895789A (en) Method for producing coated glass fibers
US3758329A (en) Tsoftenable material method of coating metal glass or synthetic resin filaments with a hea
US2916347A (en) Production of coated glass fibers