US2678729A - Automatically operative magnetic separator - Google Patents

Automatically operative magnetic separator Download PDF

Info

Publication number
US2678729A
US2678729A US251578A US25157851A US2678729A US 2678729 A US2678729 A US 2678729A US 251578 A US251578 A US 251578A US 25157851 A US25157851 A US 25157851A US 2678729 A US2678729 A US 2678729A
Authority
US
United States
Prior art keywords
drum
magnetic
guide discs
separator
discs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US251578A
Inventor
Spodig Heinrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2678729A publication Critical patent/US2678729A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks

Definitions

  • This invention relates to an automatically operative magnetic separator for flow media of the fluid or of the gaseous or mixed type.
  • the flow medium may consist of colloidal suspensions or mixtures of non-magnetic substances, such as sand, silica, fine metals with fine magnetizable components, for instance iron, iron oxides and the like.
  • the flow media to be separated such as liquids, are entered into a casing provided with a rotatable magnet; the flow media pass the lower part of the roller and are discharged from the casing, the rotatable magnet intended to separate the magnetizable particles from the flow, which are discharged by means of a stripper and the like.
  • FIGS. 1-5 illustrate vertical sectional views of separator casings equipped in conformity with various modifications of the invention
  • Figs. 6, '7 show side views of a separating plant
  • Fig. 8 is a plan view thereof.
  • the magnetic separator shown in Fig. 1 comprises an outer casing i, which is divided by a wall .2 into a larger operating chamber and a smaller secondary or entrance chamber 5, the flow medium to be treated being indicated by arrows.
  • a bottom opening 3 is provided in wall 2; the charge to be purified passes through this opening from chamber 5 into the lower section of the main chamber 4; after separation in this chamber 4, it is discharged through opening 6.
  • a cover I! is provided at the top of casing 4.
  • a cylindrical magnetic separator drum is rotatably mounted in the walls 2 and 8 of easing l by means of journals 1.
  • This drum is composed of alternate annular magnets 9 and ferromagnetic guide discs I! in such a manner that the annular magnets or magnet rings 9 bear on both sides of the guide discs It with the same polarity N-N or S-S. Therefore, at the periphery of the ferromagnetic guide discs It a field of doubly strong polarity results, which short-circuits itself via N-S at the surface of the cylindrical drums. Accordingly at the periphery of the ferromagnetic guide discs l0 and on the entire circumference of the drum, an uninterrupted, outwardly directed, homogeneous magnetic field results.
  • the spaces l i between the ferromagnetic guide discs may be filled with non-magnetic materials, such as brass, copper, or aluminum, to produce a completely smooth surface of the drum.
  • the annular magnets 9 and the ferromagnetic guide discs iii are mounted on a non-magnetic shaft l2, which may be replaced by a hollow spindle.
  • the annular magnets 9 may also be composed of individual segmental bodies of any desired shape and they may have angular, oval or other shapes serving the same purpose as the rings 9.
  • bar-shaped projections l3 shaped in conformity with the contours of the drum A are spacedly provided in the lower portion of main chamber 4 at right angles to the direction of the material flow in such a manner that a narrow gap is created therebetween and the drum A. In this manner, the flow medium entering into 4 is forced to pass across the bars l3 and to flow directly along the periphery of the drum A through places where the magnetic field has its maximum separating capacity.
  • the length of the drum and accordingly the number of magnetic stages and the number of bars l3 depend upon the requirements of the individual cases of application.
  • air gaps H are provided between the ferromagnetic guide discs IS.
  • a spacing sleeve M of non-magnetic material tightly seals the magnetic drum body at a certain distance from the periphery of the guide discs It], so that a type of rake drum is formed.
  • the guide bars 13 project in this case into the magnetic fields between two ferromagnetic guide discs I0, so that a labyrinth-like separating effect is attained, which is still more effective than the one of the previously described embodiment; this is due to the fact that the particles to be separated are brought nearer to or into the strong magnetic fields of the individual drum stages.
  • FIG. 3 A further embodiment of the invention is illustrated in Fig. 3.
  • the arrangement of the annular magnets or magnet rings 9 and the guide discs I is different from those described, in so far as the second, the fourth and further intermediary guide discs [5 are reduced in size and enclosed by the spacing sleeve 1 4, which latter may be also omitted.
  • drum A Still another embodiment of drum A is illustrated in Fig. 4.
  • the thickness of the inner sections of the guide discs I6 is increased relative to the annular magnets 9 in order to enlarge the width of the magnetic field stages.
  • This arrangement basically corresponds to that shown in Fig. 2, where the magnetic fields at the periphery of the ferromagnetic guide discs ID are outwardly short-circuited via NS.
  • the projecting guide bars l3 are disposed between ferromagnetic guide disc I 0 and annular disc l6.
  • three main separator stages result, of which each is divided into two sub-stages.
  • the number of the three stages may, of course, be increased, or within one stage, a plurality of ferromagnetic annular guide discs I1 may be provided, whereby the labyrinth-like action is further increased.
  • the magnetic drum A may also be constructed from a combination of the previously described embodiment, as shown in Fig. 5.
  • the here shown arrangement has the advantage that in the first stage, a large percentage a gear connection I9.
  • chute 20 This chute is preferably shaped to correspond to the dimensions and the length of the separator drum.
  • a magnetic separator for flow media an outer tubular casing, a non-magnetic outer drum, a permanently magnetic horizontal sepsaid casing to rotatably support said separator drum, a lateral inlet chamber for said flow media and a bottom passage in said casing for the conduct of said flow media from said inlet chamher into the bottom space between said magnetic drum and said casing, a plurality of ribs upwardly projecting from the bottom of said drum into the entire range of the magnetic fields produced by said permanently magnetic separator drum, said ribs extending in a direction parallel to said guide discs, an outlet for said flow media located at the end of said drum opposite said inlet chamber, said drum being composed of a first and a second portion, the first portion being adjacently located to said inlet chamber and being composed of annular magnets and circular ferromagnetic guide discs having a larger diameter than said annular magnets, the second portion of said drum being composed of annular magnets having a smaller radius than the annular magnets of said first portion of said separator
  • the inner portion of the ferromagnetic circular guide discs of the second portion of said separator drum being thicknessincreased relative to the outer portions of said guide discs.
  • said ferromagnetic guide discs being disposed between said magnets projecting circumferentially beyond the latter, a concentric sleeve of a non-magnetic material spacedly surrounding a part of the annular magnets and fastened to the projecting parts of the adjacent guide discs, additional guide discs between the residual ferromagnetic guide discs ending short of said annular magnets and being fastened to said residual guide discs.
  • annular conductor discs fastened to said nonmagnetic outer drum and substantially corresponding in shape to the outer portions of the ferromagnetic guide discs.

Description

May 18, 1 5 H. SPODIG AUTOMATICALLY OPERATIVE MAGNETIC SEPARATOR 5 Sheets-Sheet 1 Filed Opt. 16, 1951 A U N m n6 H afl W1 H M VI [m/enfar: #s/h 412: M001 4 E f/1W A-rro ay.
May 18, 1954 spoo s 2,678,729
AUTOMATICALLY OPERATIVE MAGNETIC SEPARATOR Filed 001.. 16, 1951 I5 Sheets-Sheet 2 Inn/avian y 8, 1954 H. SPODIG AUTOMATICALLY OPERATIVE MAGNETIC SEPARATOR Filed Oct. 16, 1951 3 Sheets-Sheet 3 6 Iv g M v NB v 3 V! m L IYIY\YII\\I s Inventor": H m/Rica yam/(2 Patented May 18,1954
2,67 8,729 AUTOMATICALLY OPERATIVE MAGNETIC SEP Heinrich Spodig, Dortmund-Wambel, Germany Application October 16, 1951, Serial No. 251,578
Claims priority, application Germany December 11, 1950 Claims. 1
This invention relates to an automatically operative magnetic separator for flow media of the fluid or of the gaseous or mixed type.
The flow medium may consist of colloidal suspensions or mixtures of non-magnetic substances, such as sand, silica, fine metals with fine magnetizable components, for instance iron, iron oxides and the like.
Automatically operative separator and filter plants based on the use of rolleror disc-shaped permanent magnets are known. In these known installations, use is made of rotatable magnets and interrupted or non-homogeneous fields of force.
The flow media to be separated, such as liquids, are entered into a casing provided with a rotatable magnet; the flow media pass the lower part of the roller and are discharged from the casing, the rotatable magnet intended to separate the magnetizable particles from the flow, which are discharged by means of a stripper and the like.
These known magnetic purifiers and separators do not operate satisfactorily, since a large portion of both the magnetizable and non-magnetizable particles are not separated from the material and particularly liquid flows.
In order to improve the efficiency of these known magnetic separators, they have been combined with mechanical filters; the latter, however, were very rapidly clogged; as a consequence, the flow of the liquid media was dammed in the separators, consequently, it overfiowed and caused innundations.
It is the object of the invention to eliminate the above referred to drawbacks of the hitherto customary magnetic separators for fluid and gaseous flow media.
It is a particularly important object of the invention to secure a steady unimpeded flow of the media to be magnetically separated through the separators and the casings, which accommodate the same.
It is another object of the invention to prevent the clogging of the flow media in the separator casings and to eliminate the flooding thereof, if liquid flow media are treated.
It is a further object of the invention to insure a reliable and complete operative contact of the flow media to be magnetically separated with the separator roller or discs.
It is another object of the invention to prevent the reentanglement of separated portions of the treated flow media with fresh or partly treated portions of the charge.
It is also an object of the invention to effectuate a smooth unimpeded passage of the flow media through the separator and to effect at the same time a complete separation of the magnetizable and unmagnetic particles.
With these and other objects in view which will become apparent as this specification proceeds, the invention will now be described in the following with reference to several preferred embodiments thereof, without however, in any way restricting the same thereto and with reference to the accompanying drawings illustrating these preferred embodiments.
In the drawings Figs. 1-5 illustrate vertical sectional views of separator casings equipped in conformity with various modifications of the invention;
Figs. 6, '7 show side views of a separating plant; and
Fig. 8 is a plan view thereof.
The magnetic separator shown in Fig. 1 comprises an outer casing i, which is divided by a wall .2 into a larger operating chamber and a smaller secondary or entrance chamber 5, the flow medium to be treated being indicated by arrows.
A bottom opening 3 is provided in wall 2; the charge to be purified passes through this opening from chamber 5 into the lower section of the main chamber 4; after separation in this chamber 4, it is discharged through opening 6. A cover I! is provided at the top of casing 4.
A cylindrical magnetic separator drum is rotatably mounted in the walls 2 and 8 of easing l by means of journals 1. This drum is composed of alternate annular magnets 9 and ferromagnetic guide discs I!) in such a manner that the annular magnets or magnet rings 9 bear on both sides of the guide discs It with the same polarity N-N or S-S. Therefore, at the periphery of the ferromagnetic guide discs It a field of doubly strong polarity results, which short-circuits itself via N-S at the surface of the cylindrical drums. Accordingly at the periphery of the ferromagnetic guide discs l0 and on the entire circumference of the drum, an uninterrupted, outwardly directed, homogeneous magnetic field results.
The spaces l i between the ferromagnetic guide discs It may be filled with non-magnetic materials, such as brass, copper, or aluminum, to produce a completely smooth surface of the drum. The annular magnets 9 and the ferromagnetic guide discs iii are mounted on a non-magnetic shaft l2, which may be replaced by a hollow spindle.
' the main chamber The annular magnets 9 may also be composed of individual segmental bodies of any desired shape and they may have angular, oval or other shapes serving the same purpose as the rings 9.
In order to conduct the flow media to be separated into an optimum reaction range of drum A, bar-shaped projections l3 shaped in conformity with the contours of the drum A are spacedly provided in the lower portion of main chamber 4 at right angles to the direction of the material flow in such a manner that a narrow gap is created therebetween and the drum A. In this manner, the flow medium entering into 4 is forced to pass across the bars l3 and to flow directly along the periphery of the drum A through places where the magnetic field has its maximum separating capacity.
The length of the drum and accordingly the number of magnetic stages and the number of bars l3 depend upon the requirements of the individual cases of application.
In the embodiment shown in Fig. 2 and in contradistinction to the above described modification of the invention, air gaps H are provided between the ferromagnetic guide discs IS.
A spacing sleeve M of non-magnetic material tightly seals the magnetic drum body at a certain distance from the periphery of the guide discs It], so that a type of rake drum is formed. The guide bars 13 project in this case into the magnetic fields between two ferromagnetic guide discs I0, so that a labyrinth-like separating effect is attained, which is still more effective than the one of the previously described embodiment; this is due to the fact that the particles to be separated are brought nearer to or into the strong magnetic fields of the individual drum stages.
A further embodiment of the invention is illustrated in Fig. 3.
Here the arrangement of the annular magnets or magnet rings 9 and the guide discs I is different from those described, in so far as the second, the fourth and further intermediary guide discs [5 are reduced in size and enclosed by the spacing sleeve 1 4, which latter may be also omitted.
Due to the fact that the size-reduced guide discs I 5 are located between the guide discs in, which have a larger diameter than the magnet rings 9, a particularly strong magnetic field results at the tip of the guide discs l5, which has the tendency to short-circuit itself in the interior of the drum towards the guide discs H) with the creation of corresponding counter-polarity. In this manner, in the space between the guide discs a powerful magnetic suction field is directly and inwardly created of the circumference of the drum, while on the guide discs 10 themselves, in contradistinction to the magnetic drum of Figs. 1 and 2, no outwardly active magnetic field exists. The guide bars 13 extend into the spaces between the guide discs 10 so that the flow medium to be separated is directly con ducted into the powerful suction fields near the center discs l5.
Still another embodiment of drum A is illustrated in Fig. 4.
Here, the thickness of the inner sections of the guide discs I6 is increased relative to the annular magnets 9 in order to enlarge the width of the magnetic field stages.
This arrangement basically corresponds to that shown in Fig. 2, where the magnetic fields at the periphery of the ferromagnetic guide discs ID are outwardly short-circuited via NS.
the magnetic In order to create a high-powered magnetic field of limited extension in the interior between the ferromagnetic guide discs I 0, additional ferromagnetic annular guide discs I6 are disposed between two ferromagnetic guide discs ID, which guide discs in contradistinction to the discs I 0 are not in direct contact with the magnet rings 9.
In conformity with this arrangement, the force lines which otherwise flow outwardly via N-S from the periphery of the ferromagnetic guide discs I, are forced to pass through the path of least resistance from pole to pole in the interior of the drum and between the ferromagnetic guide discs H] by way of the ferromagnetic guide ring discs I 6.
In this manner, a precisely limited and concentrated magnetic field is created in the inte rior of the drum A, whereby the separating action is greatly increased and locally limited.
The projecting guide bars l3 are disposed between ferromagnetic guide disc I 0 and annular disc l6. In the shown modification, three main separator stages result, of which each is divided into two sub-stages.
The number of the three stages may, of course, be increased, or within one stage, a plurality of ferromagnetic annular guide discs I1 may be provided, whereby the labyrinth-like action is further increased.
The magnetic drum A may also be constructed from a combination of the previously described embodiment, as shown in Fig. 5.
Here in the first stage of the separator, the embodiment of Fig. 3 and in the following three stages, the one of Fig. 4 is installed in the individual stages.
It is, of course, possible to also select other combinations than the one just described, if this appears to be desirable.
The here shown arrangement has the advantage that in the first stage, a large percentage a gear connection I9.
The particles magnetically separated from the flow medium are recovered by the rotating drum and discharged by way of chute 20; this chute is preferably shaped to correspond to the dimensions and the length of the separator drum.
invention described herein.
Having thus described the invention, what I claim as new and desire to be secured by Letters Patent, is as follows.
1. In a magnetic separator for flow media an outer tubular casing, a non-magnetic outer drum, a permanently magnetic horizontal sepsaid casing to rotatably support said separator drum, a lateral inlet chamber for said flow media and a bottom passage in said casing for the conduct of said flow media from said inlet chamher into the bottom space between said magnetic drum and said casing, a plurality of ribs upwardly projecting from the bottom of said drum into the entire range of the magnetic fields produced by said permanently magnetic separator drum, said ribs extending in a direction parallel to said guide discs, an outlet for said flow media located at the end of said drum opposite said inlet chamber, said drum being composed of a first and a second portion, the first portion being adjacently located to said inlet chamber and being composed of annular magnets and circular ferromagnetic guide discs having a larger diameter than said annular magnets, the second portion of said drum being composed of annular magnets having a smaller radius than the annular magnets of said first portion of said separator drum, the guide discs extending in a parallel direction to said ribs into said flow media, the ferromagnetic guide discs being disposed between said annular magnets in such a manner that the latter alternately bear against said guide discs on both sides thereof with the same polarity.
2. In a magnetic separator for fiow media according to claim 1, the inner portion of the ferromagnetic circular guide discs of the second portion of said separator drum being thicknessincreased relative to the outer portions of said guide discs.
3. In a magnetic separator according to claim 1, said ferromagnetic guide discs being disposed between said magnets projecting circumferentially beyond the latter, a concentric sleeve of a non-magnetic material spacedly surrounding a part of the annular magnets and fastened to the projecting parts of the adjacent guide discs, additional guide discs between the residual ferromagnetic guide discs ending short of said annular magnets and being fastened to said residual guide discs.
4. In a magnetic separator according to claim 1, annular conductor discs fastened to said nonmagnetic outer drum and substantially corresponding in shape to the outer portions of the ferromagnetic guide discs.
5. In a magnetic separator drum according to claim 1, the ribs located in the bottom portion of the same being spaced in the flow direction of the treating media at a gradually reduced mutual distance.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 467,645 Richards Jan. 26, 1892 792,776 Kavanaugh June 20, 1905 1,136,215 Dings et al Apr. 20, 1915 1,148,990 Rogers Aug. 3, 1915 1,527,070 Peck, Jr. Feb. 17, 1925 2,149,764 Frei Mar. 7, 1939 2,466,839 Caldwell Apr. 12, 1949 UNITED STATES PATENTS Number Country Date 194,107 Great Britain Mar. 8, 1923
US251578A 1950-12-12 1951-10-16 Automatically operative magnetic separator Expired - Lifetime US2678729A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES21226A DE847882C (en) 1950-12-12 1950-12-12 Magnetic separators, in particular for cleaning liquids and slurries

Publications (1)

Publication Number Publication Date
US2678729A true US2678729A (en) 1954-05-18

Family

ID=7476369

Family Applications (1)

Application Number Title Priority Date Filing Date
US251578A Expired - Lifetime US2678729A (en) 1950-12-12 1951-10-16 Automatically operative magnetic separator

Country Status (8)

Country Link
US (1) US2678729A (en)
BE (1) BE503996A (en)
CH (1) CH291990A (en)
DE (1) DE847882C (en)
DK (1) DK80781C (en)
FR (1) FR1044774A (en)
GB (1) GB696929A (en)
NL (1) NL84420C (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760638A (en) * 1954-05-06 1956-08-28 Phillips Petroleum Co Magnetic separator
US2772778A (en) * 1954-04-16 1956-12-04 Indiana Commercial Filters Cor Universal magnetic clarifier
US2800230A (en) * 1953-07-15 1957-07-23 Jean Thoma Magnetic separators
US2804207A (en) * 1953-08-10 1957-08-27 Jeffrey Mfg Co Material separator and improved material supporting and guide means therefor
US2825464A (en) * 1954-01-22 1958-03-04 Packard Water Conditioners Inc Water treatment device
US2832471A (en) * 1956-06-08 1958-04-29 Erzbergbau Salzgitter Ag Magnetic separator
US2834359A (en) * 1954-08-04 1958-05-13 Detrex Chem Ind Cleaning apparatus
US2849636A (en) * 1952-01-04 1958-08-26 Philips Corp Magnetic electron lens
US2901108A (en) * 1955-12-12 1959-08-25 Spodig Heinrich Magnetic separator
US2947921A (en) * 1957-02-25 1960-08-02 Brown & Sharpe Mfg Fine grid permanent magnetic chuck
US2992735A (en) * 1957-11-20 1961-07-18 Indiana General Corp Magnetic attractor
US3206655A (en) * 1954-04-22 1965-09-14 Philips Corp Magnet system comprising two structurally identical parts
US3231789A (en) * 1956-08-24 1966-01-25 Walker O S Co Inc Permanent magnet chuck
US3325009A (en) * 1964-04-09 1967-06-13 Botstiber Magnetic filter with signalling means
US3355024A (en) * 1964-02-03 1967-11-28 Philips Corp Magnetic filter
US3376529A (en) * 1965-06-02 1968-04-02 Miyata Saburo Magnet assembly for filtering
US3389794A (en) * 1965-04-12 1968-06-25 Miyata Saburo Magnetic separator
US3481471A (en) * 1967-09-19 1969-12-02 Heinrich Spodig Magnetic separator
US3498455A (en) * 1968-01-19 1970-03-03 Ditch Magnets Inc Ditch magnet
US3650698A (en) * 1969-12-04 1972-03-21 Technicon Corp Apparatus for the automatic determination of the coagulation, aggregation and or flocculation, or the like, rates of fluids, and novel reaction intensifying agent for use therewith
US4025433A (en) * 1976-01-22 1977-05-24 Barnes Drill Co. Magnetic separating apparatus
US4146479A (en) * 1977-07-19 1979-03-27 Brown Merritt J Magnetic water conditioner
US4216092A (en) * 1978-07-24 1980-08-05 Hydromagnetics, Inc. Coaxial hydromagnetic device for hydraulic circuits containing calcium and magnesium ions
US4229389A (en) * 1979-03-16 1980-10-21 Thompson Marine Corporation Gas diffuser, aerator, or sparger apparatus
US4248707A (en) * 1979-03-16 1981-02-03 Thompson Marine Corporation Gas diffuser, aerator, or sparger method
WO1981001112A1 (en) * 1979-10-29 1981-04-30 Fjeldsend As Olaf Apparatus for magnetic treatment of a flowing liquid
US4662314A (en) * 1985-09-25 1987-05-05 Mor-Flo Industries, Inc. Magnetic water conditioning device
US4693812A (en) * 1983-03-11 1987-09-15 Raytheon Company Magnetic drum separator
US4728419A (en) * 1982-12-17 1988-03-01 Bronislaw Grun Magnetic roll-type separator
US5932108A (en) * 1993-09-07 1999-08-03 Brunsting; William J. Magnetic filter assembly
US5979957A (en) * 1996-09-23 1999-11-09 Michael L Baxter Rolling magnetic rake for collecting nails and other debris from a surface
US20070175811A1 (en) * 2006-01-30 2007-08-02 Liu Chih C Filter for drinking water
EP2121162A1 (en) * 2007-02-22 2009-11-25 Roger M. Simonson Magnetic filter and magnetic filtering assembly
US20110168607A1 (en) * 2008-09-18 2011-07-14 Ries Guenter Separating device for separating a mixture of magnetizable and non-magnetizable particles present in a suspension which are conducted in a separating channel
US20120325728A1 (en) * 2010-03-03 2012-12-27 Werner Hartmann Separating device for separating a mixture
US20130015106A1 (en) * 2010-03-23 2013-01-17 Lins Guenter Device and method for magnetic separation of a fluid
CN104841550A (en) * 2015-05-28 2015-08-19 张宝祥 Tailings resource recovery technology
CN104984815A (en) * 2015-05-28 2015-10-21 张宝祥 Wet type ore dressing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1068410B (en) * 1959-11-05 zugil Filter with rotating magnetic roller
DE976484C (en) * 1951-04-03 1963-10-03 Faudi Feinbau G M B H Standing magnetic filter
DE1111759B (en) * 1954-01-20 1961-07-27 Hans Thoma Dr Ing Magnetic filter for large amounts of liquid
DE1179662B (en) * 1960-02-16 1964-10-15 Deutsche Edelstahlwerke Ag Device for cleaning fluids from ferromagnetic particles
GB1129516A (en) * 1965-10-26 1968-10-09 M E L Equipment Co Ltd Improvements in or relating to magnetic filters
GB2202765B (en) * 1987-03-11 1991-03-06 Liff Ind Ltd Improvements in and relating to water conditioning
GB2249501B (en) * 1990-08-10 1994-06-22 Reid Andrew John Ker Magnetic separators
CN111229455B (en) * 2020-02-28 2022-01-18 东台市华裕机械配件有限公司 Buffering separation type nonferrous metal sorting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US467645A (en) * 1892-01-26 Magnetic separator
US792776A (en) * 1904-04-15 1905-06-20 Elwin C Kavanaugh Magnetic separator.
US1136215A (en) * 1911-08-07 1915-04-20 Dings Electro Magnetic Separator Co Magnetic separator.
US1148990A (en) * 1914-02-24 1915-08-03 Manly C Rogers Oil filtering or purifying device.
GB194107A (en) * 1922-02-08 1923-03-08 Frederick Brereton Holt Improvements relating to oil strainers or separators
US1527070A (en) * 1923-10-03 1925-02-17 Jr Orrin B Peck Magnetic centrifugal separator
US2149764A (en) * 1937-06-10 1939-03-07 Bendix Aviat Corp Magnetic filter
US2466839A (en) * 1944-06-17 1949-04-12 Barnes Drill Co Magnetic separator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US467645A (en) * 1892-01-26 Magnetic separator
US792776A (en) * 1904-04-15 1905-06-20 Elwin C Kavanaugh Magnetic separator.
US1136215A (en) * 1911-08-07 1915-04-20 Dings Electro Magnetic Separator Co Magnetic separator.
US1148990A (en) * 1914-02-24 1915-08-03 Manly C Rogers Oil filtering or purifying device.
GB194107A (en) * 1922-02-08 1923-03-08 Frederick Brereton Holt Improvements relating to oil strainers or separators
US1527070A (en) * 1923-10-03 1925-02-17 Jr Orrin B Peck Magnetic centrifugal separator
US2149764A (en) * 1937-06-10 1939-03-07 Bendix Aviat Corp Magnetic filter
US2466839A (en) * 1944-06-17 1949-04-12 Barnes Drill Co Magnetic separator

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849636A (en) * 1952-01-04 1958-08-26 Philips Corp Magnetic electron lens
US2800230A (en) * 1953-07-15 1957-07-23 Jean Thoma Magnetic separators
US2804207A (en) * 1953-08-10 1957-08-27 Jeffrey Mfg Co Material separator and improved material supporting and guide means therefor
US2825464A (en) * 1954-01-22 1958-03-04 Packard Water Conditioners Inc Water treatment device
US2772778A (en) * 1954-04-16 1956-12-04 Indiana Commercial Filters Cor Universal magnetic clarifier
US3206655A (en) * 1954-04-22 1965-09-14 Philips Corp Magnet system comprising two structurally identical parts
US2760638A (en) * 1954-05-06 1956-08-28 Phillips Petroleum Co Magnetic separator
US2834359A (en) * 1954-08-04 1958-05-13 Detrex Chem Ind Cleaning apparatus
US2901108A (en) * 1955-12-12 1959-08-25 Spodig Heinrich Magnetic separator
US2832471A (en) * 1956-06-08 1958-04-29 Erzbergbau Salzgitter Ag Magnetic separator
US3231789A (en) * 1956-08-24 1966-01-25 Walker O S Co Inc Permanent magnet chuck
US2947921A (en) * 1957-02-25 1960-08-02 Brown & Sharpe Mfg Fine grid permanent magnetic chuck
US2992735A (en) * 1957-11-20 1961-07-18 Indiana General Corp Magnetic attractor
US3355024A (en) * 1964-02-03 1967-11-28 Philips Corp Magnetic filter
US3325009A (en) * 1964-04-09 1967-06-13 Botstiber Magnetic filter with signalling means
US3389794A (en) * 1965-04-12 1968-06-25 Miyata Saburo Magnetic separator
US3376529A (en) * 1965-06-02 1968-04-02 Miyata Saburo Magnet assembly for filtering
US3481471A (en) * 1967-09-19 1969-12-02 Heinrich Spodig Magnetic separator
US3498455A (en) * 1968-01-19 1970-03-03 Ditch Magnets Inc Ditch magnet
US3650698A (en) * 1969-12-04 1972-03-21 Technicon Corp Apparatus for the automatic determination of the coagulation, aggregation and or flocculation, or the like, rates of fluids, and novel reaction intensifying agent for use therewith
US4025433A (en) * 1976-01-22 1977-05-24 Barnes Drill Co. Magnetic separating apparatus
US4146479A (en) * 1977-07-19 1979-03-27 Brown Merritt J Magnetic water conditioner
US4216092A (en) * 1978-07-24 1980-08-05 Hydromagnetics, Inc. Coaxial hydromagnetic device for hydraulic circuits containing calcium and magnesium ions
US4229389A (en) * 1979-03-16 1980-10-21 Thompson Marine Corporation Gas diffuser, aerator, or sparger apparatus
US4248707A (en) * 1979-03-16 1981-02-03 Thompson Marine Corporation Gas diffuser, aerator, or sparger method
WO1981001112A1 (en) * 1979-10-29 1981-04-30 Fjeldsend As Olaf Apparatus for magnetic treatment of a flowing liquid
US4390423A (en) * 1979-10-29 1983-06-28 Olaf Fjeldsend A/S Apparatus for magnetic treatment of a flowing liquid
DE3049991C2 (en) * 1979-10-29 1990-10-04 Olaf Fjeldsend A/S, Sandefjord, No
US4728419A (en) * 1982-12-17 1988-03-01 Bronislaw Grun Magnetic roll-type separator
US4693812A (en) * 1983-03-11 1987-09-15 Raytheon Company Magnetic drum separator
US4662314A (en) * 1985-09-25 1987-05-05 Mor-Flo Industries, Inc. Magnetic water conditioning device
US5932108A (en) * 1993-09-07 1999-08-03 Brunsting; William J. Magnetic filter assembly
US5979957A (en) * 1996-09-23 1999-11-09 Michael L Baxter Rolling magnetic rake for collecting nails and other debris from a surface
US20070175811A1 (en) * 2006-01-30 2007-08-02 Liu Chih C Filter for drinking water
US7517451B2 (en) * 2006-01-30 2009-04-14 Chih Chou Liu Filter for drinking water
EP2121162A1 (en) * 2007-02-22 2009-11-25 Roger M. Simonson Magnetic filter and magnetic filtering assembly
US20100294706A1 (en) * 2007-02-22 2010-11-25 Simonson Roger M Magnetic filter and magnetic filtering assembly
EP2121162A4 (en) * 2007-02-22 2011-03-02 Roger M Simonson Magnetic filter and magnetic filtering assembly
AU2008217488B2 (en) * 2007-02-22 2012-07-19 Roger M. Simonson Magnetic filter and magnetic filtering assembly
US20110168607A1 (en) * 2008-09-18 2011-07-14 Ries Guenter Separating device for separating a mixture of magnetizable and non-magnetizable particles present in a suspension which are conducted in a separating channel
US8684185B2 (en) * 2008-09-18 2014-04-01 Siemens Aktiengesellschaft Separating device for separating a mixture of magnetizable and non-magnetizable particles present in a suspension which are conducted in a separating channel
US20120325728A1 (en) * 2010-03-03 2012-12-27 Werner Hartmann Separating device for separating a mixture
US9126206B2 (en) * 2010-03-03 2015-09-08 Siemens Aktiengesellschaft Separating device for separating a mixture
US20130015106A1 (en) * 2010-03-23 2013-01-17 Lins Guenter Device and method for magnetic separation of a fluid
US8844730B2 (en) * 2010-03-23 2014-09-30 Siemens Aktiengesellschaft Device and method for magnetic separation of a fluid
CN104841550A (en) * 2015-05-28 2015-08-19 张宝祥 Tailings resource recovery technology
CN104984815A (en) * 2015-05-28 2015-10-21 张宝祥 Wet type ore dressing method

Also Published As

Publication number Publication date
DK80781C (en) 1956-04-03
NL84420C (en)
GB696929A (en) 1953-09-09
DE847882C (en) 1952-08-28
FR1044774A (en) 1953-11-20
BE503996A (en)
CH291990A (en) 1953-07-31

Similar Documents

Publication Publication Date Title
US2678729A (en) Automatically operative magnetic separator
US3875061A (en) Centrifugal separator with field effect separation
US3489280A (en) Magnetic separator having field shaping poles
EP1616627B1 (en) High gradient magnetic separator
US2430157A (en) Magnetic separator for removing finely divided magnetic material from liquids
US3873448A (en) Magnetic separator
EP0108808B1 (en) Apparatus and method employing magnetic fluid for separating particles
US3830367A (en) High intensity wet magnetic separators
US4961841A (en) Apparatus and method employing magnetic fluids for separating particles
US1425366A (en) Magnetic strainer apparatus for separating solids from liquids
CN102580845A (en) Magnetic medium rod and magnetic separator
JPS587344B2 (en) Kiyojikaishikijisenki
US3959145A (en) Magnetic separator with scraper means
US2992737A (en) Method and means for variation of magnetic strength of permanent magnetic drums
US3849301A (en) Magnetic separator
US1529970A (en) Method of and apparatus for the magnetic separation of materials
US1948080A (en) Magnetic ore separator for wet and other operations
US2771995A (en) Magnetic separator
US2992736A (en) Magnetic separator
US2834470A (en) Means for magnetically separating solid magnetic particles from a fluid current
US3389794A (en) Magnetic separator
US2188517A (en) Magnetic separator
US1068453A (en) Magnetic separator.
CA1090295A (en) Vertical rotor-type high intensity wet magnetic separator with countercurrent flushing
GB2074472A (en) Electro-permanent magnetic wet drum separator