US2547061A - Multiple gap velocity modulation tube - Google Patents

Multiple gap velocity modulation tube Download PDF

Info

Publication number
US2547061A
US2547061A US772623A US77262347A US2547061A US 2547061 A US2547061 A US 2547061A US 772623 A US772623 A US 772623A US 77262347 A US77262347 A US 77262347A US 2547061 A US2547061 A US 2547061A
Authority
US
United States
Prior art keywords
resonator
gap
velocity
gaps
beam path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US772623A
Inventor
Touraton Emile
Zwobada Rene
Gratzmuller Anne-Marie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Standard Electric Corp
Original Assignee
International Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Standard Electric Corp filed Critical International Standard Electric Corp
Application granted granted Critical
Publication of US2547061A publication Critical patent/US2547061A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
    • H01J25/12Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator with pencil-like electron stream in the axis of the resonators

Definitions

  • Electrode E1 has a shape and a potential suitable for effecting a desired spreading or the electron beam.
  • the power furnished to the beam is U2 'ILVE TMZUZ R which is n1 times -greater than when multiple gaps are used.
  • the power given up by the beam to the cavity is mm2 times greater than if the beam was braked only once by the high frequency -eld.
  • the gain, when used as an amplifier, is accordingly multiplied by nmz.
  • This device may also be used in a frequency multiplier tube.
  • the output voltage U2, ci a resonator excited by an electron stream velocity modulated by an input resonator and bunched in a drift space varies with the distance along th-e path of the stream at which the output resonator is excited by the stream. This variation is in accordance with the Bessel function or" the fundamental component of the modulated current.
  • s is the distance from the modulation space or gap to the catching space at which the output voltage U2 is excited in the output resonator
  • vo is the mean velocity of the electron in the drift space of distance s
  • U1 is the modulation voltage
  • U0 is the potential of the electrode E1 about the drift space.
  • the gaps are grouped in such a way as to correspond to points situated in the vicinity of the maximum of the Bessel function.
  • a velocity modulation electron discharge device comprising a source of an electron beam and a collector electrode deiining a beam path, a cavity resonator disposed about said beam path adjacent said source for velocity modulating electrons in the beam, said modulating resonator including a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the beam therethrough, said masses defining therebetween a plurality of gaps along the beam path for permitting an eiectromagnetic field developed in said resonator to velocity modulate the electrons in the beam successively at each said gap, and a cavity resonator disposed about said beam path adjacent :aid collector electrode for extracting ultra high frequency energy from the velocity-modulated electron beam, said extracting resonator being provided with gap for permitting the electron beam to supply energy to an electromagnetic field developed in said extracting resonator.
  • energy extracting cavity resonator comprises a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the electron beam therethrough, said masses defining therebetween a plurality of gaps along said beam path for permitting an electromagnetic rleld developed in said resonator to eX- tract energy from the electrons in the beam successively at each said gap.
  • a velocity modulation electron discharge device comprising a source of an electron beam and a collector electrode defining a beam path, a cavity resonator disposed about said beam path adjacent said source for velocity modulating electrons in the beam, and a cavity resonator disposed about said beam path adjacent said collector electrode for extracting ultra high frequency energy from the velocity-modulated electron beam, said extracting resonator including a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the beam therethrough, said masses defining a plurality of gaps along the beam path for permitting the velocity-modulated electron beam to supply energy to an electromagnetic eld developed in said resonator successively at each said gap.
  • a velocity modulation electron discharge device comprising an electron beam source and a collector electrode defining a beam path, a cavity resonator disposed about said beam path adjacent said beam source for velocity modulating electrons in said beam, and a cavity resonator disposed about said beam path adjacent said collector electrode for extracting energy from the velocity modulated electron beam, each of said cavity resonators having means for communication with said electron path, one of said resonators including a Wave-guide section with masses spaced apart along the beam path inside ⁇ said guide and supported alternately on opposite sides of said guide, said masses having apertures for passage of the beam therethrough.

Landscapes

  • Microwave Tubes (AREA)

Description

April 3, 1951 E. TOURATON ET AL MULTIPLE GAP VELOCITY MODULATION TUBES Filed sept. 8, 1947 @Zig I.
5 Sheets-Sheet 1 April 3, 1951 E. 'rouRAToN ET AL 2,547,061
MULTIPLE GAP VELOCITY MODULATION TUBES Filed Sept. 8, 1947 3 Sheets-Sheet 2 INVENTORS EMILE A. Tol/RATON RENE zwoBAoA BY ANNE -MAf?/E GFATSMULLEI? ATTO R N EY April 3, 1951 E. ToURAToN ETAI. 2,547,061
MULTIPLE GAP VELOCITY MODULATION TUBES Filed Sept. 8, 1947 3 Sheets-Sheet 5 The transit channels T1 and T2 in resonator R1, and Ts and T4 in resonator R2, are shown in the form of two truncated conic portions disposed as in the drawing, although use may be made of electrodes of Very different shapes acccrding to the various uses to which the invention is applied, the shape oi the electrodes being only dependent on the condition that they must effect the convergence of the electron beam at the level of the gaps a, b, c and d, e, f.
In order to facilitate the obtaining of this convergence, it is possible to provide electrodes I2, i3, it, i5, io, E'I, i8, i9, that are dimensioned and disposed so as to improve the desired convergence effect.
Electrode E1 has a shape and a potential suitable for effecting a desired spreading or the electron beam.
The mode of operation of devices of this kind is as follows:
During the iirst modulation, when cylindrical cavity resonator R1 comes into resonance, two successive gaps such as a and b are subjected at a given moment to two unidirectional voltages, and the transit time of the electrons from one gap to the next one is a multiple of a period; this results in the effects of the high frequency eld being additive.
On the other hand, in the variant of the guide of rectangular section shown in Fig. 2, two alternating voltages of opposite directions exist at a given moment in two successive gaps, and one same mass m is equipotential, since it is integral with one same face of the guide, and the transit time of the electrons from one gap to the next is then an odd multiple of a half period.
If R is the resistance at the terminals of a modulation space, U the nig-. frequency voltage at the terminals of this space, and n1 the number of gaps, the power furnished to the beam is U2 'ILVE TMZUZ R which is n1 times -greater than when multiple gaps are used.
At the output end, if rr is the resistance at the terminals of a gap, z' the value of the fundamental component of the alternating current, and n2 the number of gaps, the power given up by the beam to the cavity is mm2 times greater than if the beam was braked only once by the high frequency -eld. The gain, when used as an amplifier, is accordingly multiplied by nmz.
This device may also be used in a frequency multiplier tube.
High voltages have been employed, because the number of gaps that it is possible to use is limited by the transit time of the electrons from the first gap to the last one, and accordingly by the speed of travel, which is itself dependent on the voltage.
If, indeed, upon excitation, the distance between the end gaps is too great, the bunching eiected by the modulation in the rst gap begins to have effect, and the alternating component of the thus obtained current acts on the subsequent gaps. This results in a variation of the impedance at the terminals of the last gap, but this is partially corrected by the shape of the gap and of the transit channel in the cavity.
In the catching space, the number of gaps employed is limited by the fact that they must be located at points along the electron beam path where transfer of ultra high frequency energy from the bea-rn to the field in the resonator will be a maximum. The output voltage U2, ci a resonator excited by an electron stream velocity modulated by an input resonator and bunched in a drift space varies with the distance along th-e path of the stream at which the output resonator is excited by the stream. This variation is in accordance with the Bessel function or" the fundamental component of the modulated current.
w8 U1 Jl 2U() Uu In this expression zu is the pulsation of the fundamental component,
s is the distance from the modulation space or gap to the catching space at which the output voltage U2 is excited in the output resonator,
vo is the mean velocity of the electron in the drift space of distance s,
U1 is the modulation voltage,
U0 is the potential of the electrode E1 about the drift space.
The gaps are grouped in such a way as to correspond to points situated in the vicinity of the maximum of the Bessel function.
While we have described above the principles of our invention in connection with specic apparatus, it is to be clearly understood that this description is made only bj Way of example and not as a limitation on the scope of our invention.
We claim:
l. A velocity modulation electron discharge device comprising a source of an electron beam and a collector electrode deiining a beam path, a cavity resonator disposed about said beam path adjacent said source for velocity modulating electrons in the beam, said modulating resonator including a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the beam therethrough, said masses defining therebetween a plurality of gaps along the beam path for permitting an eiectromagnetic field developed in said resonator to velocity modulate the electrons in the beam successively at each said gap, and a cavity resonator disposed about said beam path adjacent :aid collector electrode for extracting ultra high frequency energy from the velocity-modulated electron beam, said extracting resonator being provided with gap for permitting the electron beam to supply energy to an electromagnetic field developed in said extracting resonator.
2. An electron discharge device according to claim i in which energy extracting cavity resonator comprises a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the electron beam therethrough, said masses defining therebetween a plurality of gaps along said beam path for permitting an electromagnetic rleld developed in said resonator to eX- tract energy from the electrons in the beam successively at each said gap.
3. A device as set forth in claim 1 in which the said masses are equal in length in the direction of the beam path whereby the transit time of the electrons from one gap to the next is adjusted to be an odd multiple of a half period of the operating frequency.
4. A velocity modulation electron discharge device comprising a source of an electron beam and a collector electrode defining a beam path, a cavity resonator disposed about said beam path adjacent said source for velocity modulating electrons in the beam, and a cavity resonator disposed about said beam path adjacent said collector electrode for extracting ultra high frequency energy from the velocity-modulated electron beam, said extracting resonator including a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the beam therethrough, said masses defining a plurality of gaps along the beam path for permitting the velocity-modulated electron beam to supply energy to an electromagnetic eld developed in said resonator successively at each said gap.
5. A velocity modulation electron discharge device comprising an electron beam source and a collector electrode defining a beam path, a cavity resonator disposed about said beam path adjacent said beam source for velocity modulating electrons in said beam, and a cavity resonator disposed about said beam path adjacent said collector electrode for extracting energy from the velocity modulated electron beam, each of said cavity resonators having means for communication with said electron path, one of said resonators including a Wave-guide section with masses spaced apart along the beam path inside {said guide and supported alternately on opposite sides of said guide, said masses having apertures for passage of the beam therethrough.
6. An electron discharge device according to claim 5, wherein said waveguide section is rectangular in cross-section and said masses are of parallelepiped shape.
EMILE TOURATON. RENE ZWOBADA. ANNE-MARIE GRATZMULLER.
REFERENCES CITED The following references are of record in the iile of this patent:
UNITED STATES PATENTS Number Name Date 2,190,515 Hahn Feb. 13, 1940 2,284,751 Linder June 2, 1942 2,401,945 Linder June 11, 1946 2,405,175 Anderson et al Aug. 6, 1946 2,422,695 McRae June 24, 1947
US772623A 1945-12-17 1947-09-08 Multiple gap velocity modulation tube Expired - Lifetime US2547061A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR922150T 1945-12-17

Publications (1)

Publication Number Publication Date
US2547061A true US2547061A (en) 1951-04-03

Family

ID=9437814

Family Applications (1)

Application Number Title Priority Date Filing Date
US772623A Expired - Lifetime US2547061A (en) 1945-12-17 1947-09-08 Multiple gap velocity modulation tube

Country Status (3)

Country Link
US (1) US2547061A (en)
BE (1) BE481272A (en)
FR (1) FR922150A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754448A (en) * 1950-06-21 1956-07-10 Hartford Nat Bank & Trust Co Velocity modulation tube of the kind comprising a drift space
US2758245A (en) * 1950-12-14 1956-08-07 Varian Associates Beam type electronic tube
US2857549A (en) * 1952-08-01 1958-10-21 Int Standard Electric Corp Electron velocity modulation tubes
US2918599A (en) * 1953-02-27 1959-12-22 Int Standard Electric Corp Electron velocity modulation tubes
US2974252A (en) * 1957-11-25 1961-03-07 Bell Telephone Labor Inc Low noise amplifier
US3012170A (en) * 1958-08-29 1961-12-05 Eitel Mccullough Inc Charged particle beam modulating means and method
US3043986A (en) * 1956-03-16 1962-07-10 Commissariat Energie Atomique Particle accelerators
US3067359A (en) * 1958-05-05 1962-12-04 Commissariat Energie Atomique Structure for linear ion accelerators
US3076117A (en) * 1959-04-27 1963-01-29 Gen Electric Parametric energy converter
US3107313A (en) * 1959-10-30 1963-10-15 Johann R Hechtel Velocity modulated electron tube with cathode means providing plural electron streams
US3274430A (en) * 1963-08-01 1966-09-20 Massachusetts Inst Technology Biased-gap klystron
US3392300A (en) * 1964-11-12 1968-07-09 Thomson Houston Comp Francaise Hollow-beam electron gun with a control electrode
DE1290634B (en) * 1961-03-07 1969-03-13 Siemens Ag Electron beam tube with speed modulation
US4284923A (en) * 1978-11-23 1981-08-18 Commissariat A L'energie Atomique Ion beam buncher--debuncher
US4594530A (en) * 1983-05-20 1986-06-10 Cgr Mev Accelerating self-focusing cavity for charged particles
US5038077A (en) * 1989-01-31 1991-08-06 The United States Of American As Represented By The Secretary Of The Navy Gyroklystron device having multi-slot bunching cavities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2190515A (en) * 1938-07-15 1940-02-13 Gen Electric Ultra short wave device
US2284751A (en) * 1939-08-31 1942-06-02 Rca Corp Resonant cavity device
US2401945A (en) * 1941-03-27 1946-06-11 Rca Corp Frequency multiplier
US2405175A (en) * 1941-04-04 1946-08-06 Bell Telephone Labor Inc Ultra high frequency oscillator
US2422695A (en) * 1943-05-07 1947-06-24 Bell Telephone Labor Inc Suppression of parasitic oscillations in high-frequency devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2190515A (en) * 1938-07-15 1940-02-13 Gen Electric Ultra short wave device
US2284751A (en) * 1939-08-31 1942-06-02 Rca Corp Resonant cavity device
US2401945A (en) * 1941-03-27 1946-06-11 Rca Corp Frequency multiplier
US2405175A (en) * 1941-04-04 1946-08-06 Bell Telephone Labor Inc Ultra high frequency oscillator
US2422695A (en) * 1943-05-07 1947-06-24 Bell Telephone Labor Inc Suppression of parasitic oscillations in high-frequency devices

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754448A (en) * 1950-06-21 1956-07-10 Hartford Nat Bank & Trust Co Velocity modulation tube of the kind comprising a drift space
US2758245A (en) * 1950-12-14 1956-08-07 Varian Associates Beam type electronic tube
US2857549A (en) * 1952-08-01 1958-10-21 Int Standard Electric Corp Electron velocity modulation tubes
US2918599A (en) * 1953-02-27 1959-12-22 Int Standard Electric Corp Electron velocity modulation tubes
US3043986A (en) * 1956-03-16 1962-07-10 Commissariat Energie Atomique Particle accelerators
US2974252A (en) * 1957-11-25 1961-03-07 Bell Telephone Labor Inc Low noise amplifier
US3067359A (en) * 1958-05-05 1962-12-04 Commissariat Energie Atomique Structure for linear ion accelerators
US3012170A (en) * 1958-08-29 1961-12-05 Eitel Mccullough Inc Charged particle beam modulating means and method
US3076117A (en) * 1959-04-27 1963-01-29 Gen Electric Parametric energy converter
US3107313A (en) * 1959-10-30 1963-10-15 Johann R Hechtel Velocity modulated electron tube with cathode means providing plural electron streams
DE1290634B (en) * 1961-03-07 1969-03-13 Siemens Ag Electron beam tube with speed modulation
US3274430A (en) * 1963-08-01 1966-09-20 Massachusetts Inst Technology Biased-gap klystron
US3392300A (en) * 1964-11-12 1968-07-09 Thomson Houston Comp Francaise Hollow-beam electron gun with a control electrode
US4284923A (en) * 1978-11-23 1981-08-18 Commissariat A L'energie Atomique Ion beam buncher--debuncher
US4594530A (en) * 1983-05-20 1986-06-10 Cgr Mev Accelerating self-focusing cavity for charged particles
US5038077A (en) * 1989-01-31 1991-08-06 The United States Of American As Represented By The Secretary Of The Navy Gyroklystron device having multi-slot bunching cavities

Also Published As

Publication number Publication date
FR922150A (en) 1947-05-30
BE481272A (en)

Similar Documents

Publication Publication Date Title
US2547061A (en) Multiple gap velocity modulation tube
US2672572A (en) Traveling wave tube
US2222901A (en) Ultra-short-wave device
US2566087A (en) Tube of the magnetron type for ultra-short waves
US2595698A (en) Electron discharge device and associated circuit
US2622158A (en) Microwave amplifier
US2405611A (en) Electron beam amplifier
US2891191A (en) Backward wave tube
US2455269A (en) Velocity variation apparatus
GB592493A (en) Improvements in ultra high frequency discharge devices
US2762948A (en) Space charge wave amplifiers
US2439387A (en) Electronic tuning control
US2605444A (en) Multichannel frequency selector and amplifier
US2329780A (en) Electron discharge device
GB832172A (en) Improvements in or relating to parametric amplification of space charge waves
US3227959A (en) Crossed fields electron beam parametric amplifier
US2920229A (en) Traveling wave velocity modulation devices
US2855537A (en) Electron beam focusing
GB634703A (en) Electron discharge devices
US2307693A (en) Frequency multiplier
US3252104A (en) D.c. quadrupole structure for parametric amplifier
GB1155673A (en) Crossed-Field Reentrant Stream Tandem Slow-Wave Circuit Tube
US2222898A (en) High-frequency apparatus
US3158779A (en) Traveling-wave electronic microwave interaction guide devices
US2444434A (en) Velocity modulation discharge tube apparatus