US2455229A - Transposition bracket - Google Patents

Transposition bracket Download PDF

Info

Publication number
US2455229A
US2455229A US734816A US73481647A US2455229A US 2455229 A US2455229 A US 2455229A US 734816 A US734816 A US 734816A US 73481647 A US73481647 A US 73481647A US 2455229 A US2455229 A US 2455229A
Authority
US
United States
Prior art keywords
bracket
clevises
insulators
reaches
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US734816A
Inventor
Case Rogers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRANSADEAN ASSOCIATES Inc
Original Assignee
TRANSADEAN ASSOCIATES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRANSADEAN ASSOCIATES Inc filed Critical TRANSADEAN ASSOCIATES Inc
Priority to US734816A priority Critical patent/US2455229A/en
Application granted granted Critical
Publication of US2455229A publication Critical patent/US2455229A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • H04B3/34Reducing cross-talk, e.g. by compensating by systematic interconnection of lengths of cable during laying; by addition of balancing components to cable during laying

Definitions

  • Ads WMM7 Jagger Case Patented Nov. 30, 1948 TRANSPOSITION BRACKET Rogers Case, Orange, N. J., assignor .to Transadcan Associates, Inc., New York,'N. Y., acorporation of Delaware Application March 14, 1947,, Serial N o. 734,81-6
  • This invention relates to wire-transposing and resistance-balancing devices applicable to parallel paired wires to reverse their position relatively to each other at spaced intervals, and specifically to a wire-transposing bracket adapted to be mounted on the cross arm of a line pole or on other appropriate supporting structure.
  • Objects of my invention are to provide a wiretransposing bracket for fixed mounting in which the insulators forming elements of the bracket are firmly and adequately supported against the thrust of the line wires; to provide a transposing bracket in which line wires trained on the insulators of the bracket readily may be brought into adequately tightened condition without exercising special pains and short, without deforming or otherwise injuring the mounting pins of the insulators, and while preserving the intendedspacing of the crossed wires as defined by the relative spacing of the wire-receiving grooves of the insulators.
  • Another object of my invention is to provide a wire-transposing bracket of the indicated sort which has structurally a high order of firmness, strength and durability.
  • Another object of my invention is to provide a wire-transposing bracketin which the structural form of the bracket frame and the structural .form and size of the insulators are so correlated as to give a desired spacing of the crossed wires and to accommodate to the use of insulators of small size and relativelysimple spool-form.
  • the insulators are mounted for free rotation and without threading on insulator pins which are supported in balanced relation at both ends of the insulator.
  • tightening the crossed line wires there is no tendency to run the insulators either upwardly .or' downwardly on their mounting structure, but on the contrary the 'free rotation of the insulators permits tightening of the wires by a. simple longitudinal pull without altering the spacing between wire-receiving grooves of the insulators and without tending .to injure either the insulators or the adequately supported insulator-carrying pins of the bracket assembly.
  • the support for the insulator pins is provided by insta'lrlng them clevises opening outwardly of the frame structure of the bracket, and a desired spacing between the wire-receiving grooves of the insulators is "obtained ,by relatively offsetting the clevises iorv the pins on which the insulators are rotatably mounted. Also in the preferred construction of my transposition bracket the organization of the frame structure is such that there are no bolts, rivets or other connecting elements to work loose or to be sheared in service.
  • Fig. I is a plan view of my transposition bracket viewing the bracket and a cross arm on which it is mounted with the cross arm running transversely of the sheet.
  • Fig. II is .an elevation of one end of the bracket looking. upwardly of the sheet.
  • Fig. III is an elevation of the opposite end of the bracket looking downwardly of the sheet.
  • Fig'I-V is a broken plan view of a bracket identical in structure with the bracket shown in Fig. I but viewed with the cross arm running vertically of the-sheet.
  • Fig. V is anelevation of one side of the bracket looking upwardly of the sheet.
  • Fig. VI is an elevation of the other side of the bracket looking downwardly of the sheet.
  • the vrrame structure of my bracket is a one-piece casting of suitable metal and preferably is a casting of one of the light metals such as aluminum, or aluminum alloy, magnesium or magnesium alloy. Unless it should under special circumstances .be desirable otherwise to arrange the insulators of the bracket, they are in approximately rectangular arrangement in plan and the shape or thebracket is conformable to such ar- 3 rangement.
  • the frame structure of the bracket comprises end reaches I and 2 and side reaches 3 and I arranged to provide clevises 5, 6, I and 8 in which are mounted respectively insulators 9, I0, I I and I2. As shown, particularly in Figs.
  • the base of the bracket is provided by the lowermost portions 3a and 4a of the side reaches 3 and 4 respectively; and the bracket is shown as mounted on a cross arm It by means of bolts I I passed through suitable matching bolt holes in the side reaches 3 and I of the bracket and through the cross arm I3. As shown, these bolts have heads I5 and carry nuts I6 and washers II to bear against the under surface of the cross arm.
  • clevices 5, 6, 'I and 8 of the bracket frame open outwardly of the frame at the corners of the frame structure.
  • the clevises are formed primarily as portions of the end reaches I and 2 of the frame but blend structurally with side reaches 3 and 4.
  • clevis 5 which is a high clevis, is formed with a lower fork 5a depressed slightly below the plane of the median region Ia of the reach and upper fork 5b is connected with median region Ia. by an inclined leg 50.
  • clevis I which is a low clevis has its upper fork 'Ib deflected upwardly from median portion I a of end reach I and its lower fork Ia is connected with median reach Ia by inclined leg 10.
  • the wire-receiving grooves 9a of insulator 9 and Ila of insulator II are spaced equidistantly above and below the median region Ia of the reach and this vertical spacing of the wire-receiving grooves and wires trained on them is modified by the downward defiection of fork 5a of clevis 5 and the upward deflection of fork 1b of clevis I.
  • clevis 6 which is a high clevis arranged diagnally across the frame from clevis 5 has its forks 6a and 6b and connecting leg 60 arranged identically with corresponding elements of clevis with respect to each other and the associated median region 2a of their end reach 2.
  • clevis 8 which is a low clevis lying diagonally of the frame from low clevis I has its forks 8a and 8b and connecting leg 80 arranged identically with the corresponding elements of clevis 1 with respect to each other and to the associated median region 2a of their end reach 2.
  • side reach 3 which extends transversely between end reaches I' and 2 and side reach 4 which also extends transversely between end reaches I and 2 have, as noted, ap proximately plane lower, or base, regions 3a and 4d at which the bracket as a whole is attached to cross arm I3 or other supporting structure as by bolts l4.
  • From base region 3a of side reach 3 leg 32) extends upwardly to and blends with the lower fork 6a of clevis Ii and an inclined leg extends a shorter distance upwardly to and blends with the lower fork Id of clevis I.
  • inclined leg 41) of clevis 4 extends upwardly to and blends with the lower fork 5a of clevis 5 and inclined leg 40 extends upwardly a shorter distance and blends with the lower fork 8a of clevis 8. It will be seen that the longer legs 31) and db and the shorter legs 3c-and 4c of the side reaches 3 and 4 are staggered relatively in the frame structure.
  • All of the insulators 9, I 0, II and I2 are primarily of spool-form, having respectively the wire-receiving grooves 9a, Illa, I Ia and [2a, noted above.
  • These insulators may be made of glass, porcelain, hard rubber, fiber or plastic composition or any other material having suitable physical properties and adequate electrical resistance.
  • each of the insulators is freely rotatable on an insulator pin I8 which passes through both forks of the clevis and which has a head I8a resting on the upper surface of the upper fork and a portion Iilb extended below the under surface of the lower fork.
  • a cotter pin I9 secures the insulator pin against misplacement, and other suitable securing means such as a nut and washer might equivalently be used.
  • paired wires are shown in transposed relation on the bracket with wire A trained on diagonally opposed low insulators "I and 8 and wire B trained on diagonally opposed high insulators 5 and 6.
  • the wires A and B cross each other Within the bounds of the bracket, with a vertical spacing determined by the vertical spacing between the wire-receiving grooves 9a and I Id of the high insulators and the wire-receiving grooves Illa and I2a of the low insulators.
  • the rotation of the insulators in their free, unthreaded mounting on the pins obviates the necessity for easing the wires along in their trained relation with the insulators.
  • the mounting being unthreaded there is no tendency for the drag of the wires to run the insulators upwardly or downwardly and thus to impair accurate spacing between the wires trained on the upper and lower insulators.
  • insulators even though of spool-form cannot satisfactorily be made rotatable in a transposition bracket unless the pins on which they are mounted are supported beyond both ends of the insulators. This support is provided by the clevises of my bracket. With support for the insulator pins, the rotatable insulators need not be of the height and Weight of the insulators commonly used to support the insulator pin above the wire-receiving groove of the insulator and to counterbalance the thrust of the wire as transmitted to the pin. It is thus possible to use small spool-form insulators, which are in fact peculiarly adapted to mounting on clevis-supported pins.
  • bracket frame desirably is, as shown, a onepiececasting in which the forks of the clevises' blend w'ith the reaches :of the frame to give a firm, strong structure integrated without-the use of bolts, rivets or other pieces susceptible of sheering or working loose.
  • bracket frame in the embodiment of my invention herein illustrated and described is a one-piece casting, as is most desirable, it is tobe understood that certain aspects of my invention remain even though the integration of the bracket frame be otherwise obtained. Also it is "to *be understood that other modifications in the form and arrangement of the -bracket elements may be made within the bounds of my invention as defined in the appended claims.
  • a frame structure for a wire-transposing bracket adapted for fixed mounting on a supporting structure, said frame being integrally cast from a light metal selected from the group consisting of magnesium, aluminum, and their alloys and having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length each blended into the lower fork of one of four insulator-mounting clevises, the longer and shorter legs of the two transverse reaches being staggered relatively in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each with each lower fork blended with an up wardly extended leg of a transverse reach and with their upper forks arranged each in vertical alignment with one of the said lower forks, to provide four outwardly open insulator-mounting clevises arranged in diagonal pairs with the clevises of one said pair at a different level above the base of the bracket than the other said pair.
  • a wire-transposing bracket for fixed mounting on a supporting structure formed as a frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended divergently upward from the base portion of each transverse reach, the longer and shorter legs of the two transverse reaches being etal selected from relatively staggered in the frame-structure, two reaches extended between :the said transverse reaches and terminally forked .to provide four outwardly open insulator-mounting clevises, ithe lower fork of each said clevis being joined with one of the two said legs upwardly divergent'from the base portion of one of the said transverse reaches, the-said clevises being arranged in diagonal pairs with the clevises of one said .pair at a higher level a'bove the base of the bracket than the other .said pair, and spool-form insulators rotatably mounted :in said clevises with the'zwirereceiving groove
  • a frame structure for a wire-transposing bracket forfixed mounting on a supporting-structure having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended 'divergently upward from the base portion of each transverse reach,
  • the longer and shorter legs of the two transverse reaches being relatively staggered inthe frame structure-two reaches extended between the said transverse reaches and terminally forked to provide four outwardly open insulator-mounting clevises, the lower fork of each said 'clevis being joined with one of the two said legs upwardly divergent from the base portion-of one of the said transverse reaches, the said clevises being arranged in diagonal 'pairswith'the clevises'ofone said pair at a higher level above 'the'ba-se 0f the bracket than the other said pair.
  • a frame structure for a wire-transposing bracket adapted-for fixed mountingon asu-ppor-ting structure said frame being integrally cast from :a light metal selected from the group consisting-of magnesium, aluminum,and their alloys and having two tranverse reacheswit'h lower regions providing a base for engagement with the supporting structure and two legs of unequal length each blended into the lower fork of one of four insulator-mounting clevises, the longer and shorter legs of the two transverse reaches being staggered relatively in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each with each lower fork blended with an upwardly extended leg of a transverse reach and with their upper forks arranged each in vertical alignment with one of the said lower forks, to provide four outwardly open insulatormounting clevises arranged in diagonal pairs with the clevises of one said pair at a different level than the clevises of the other said pair, the lower fork of
  • a wire-transposing bracket adapted for fixed mounting on a supporting structure, said bracket being integrally cast from a light metal selected from the group consisting of magnesium, aluminum, and their alloys and having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length each blended into the lower fork of one of four insulator-mounting clevises, the longer and shorter legs of the two transverse reaches being staggered relatively in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each with each lower fork blended with an upwardly extended leg of a transverse reach and with their upper forks arranged each in vertical alignment with one of the said lower forks, to provide four outwardly open insulator-mounting clevises arranged in diagonal pairs with the clevises of one said pair at a difierent level than the clevises of the other said pair, the lower fork of each of the high clevises being deflected downward
  • a wire-transposing bracket for fixed mounting on a supporting structure formed as a frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended divergently upward from the base portion of each transverse reach, the longer and shorter legs of the two transverse reaches being relatively staggered in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each to provide four outwardly open insulatormounting clevises arranged in diagonal pairs with the clevises of one pair at a higher level above the base of the bracket than the other said pair, the lower fork of each of the high clevises being deflected downwardly and the upper fork of each of the low clevises being deflected upwardly with respect to a common median plane to modify the relative spacing between the high and low clevises, and spool-form insulators rotatably mounted in said clevises with the wire-receiving grooves of the
  • a frame structure for a wire-transposing bracket adapted for fixed mounting on a supporting structure, said frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended divergently upward from the base portion of each transverse reach, the longer and shorter legs of the two transverse reaches being relatively staggered in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each to provide four outwardly open insulator-mounting clevises, the lower fork of each said clevis being joined with one of the two said legs upwardly divergent from the base portion of one of the said transverse reaches, the said clevises being arranged in diagonal pairs with the clevises of one said pair at a higher level above the base of the bracket than the other said pair and with the lower fork of each of the high clevises deflected downwardly and the higher fork of each of the low clevises upwardly deflected with respect to a

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Insulators (AREA)

Description

Nov. 30, 1948. R. CASE TRANSPOSITION BRACKET 2 Sheets-Sheet 1 Filed March 14, 1947 'INVENTOR. V Byers (2136 17 mwmwnzz/fi I 14% Worn 27 Nov. 30, 1948. RCASE 2,455,229
TRANSPOSITION BRACKET Fild March 14, 1947 2 Sheets-Sheet 2 INVENTOR;
Ads WMM7 Jagger: Case Patented Nov. 30, 1948 TRANSPOSITION BRACKET Rogers Case, Orange, N. J., assignor .to Transadcan Associates, Inc., New York,'N. Y., acorporation of Delaware Application March 14, 1947,, Serial N o. 734,81-6
8 Claims. 1
This invention relates to wire-transposing and resistance-balancing devices applicable to parallel paired wires to reverse their position relatively to each other at spaced intervals, and specifically to a wire-transposing bracket adapted to be mounted on the cross arm of a line pole or on other appropriate supporting structure.
Objects of my invention are to provide a wiretransposing bracket for fixed mounting in which the insulators forming elements of the bracket are firmly and adequately supported against the thrust of the line wires; to provide a transposing bracket in which line wires trained on the insulators of the bracket readily may be brought into adequately tightened condition without exercising special pains and short, without deforming or otherwise injuring the mounting pins of the insulators, and while preserving the intendedspacing of the crossed wires as defined by the relative spacing of the wire-receiving grooves of the insulators.
Another object of my invention is to provide a wire-transposing bracket of the indicated sort which has structurally a high order of firmness, strength and durability.
Another object of my invention is to provide a wire-transposing bracketin which the structural form of the bracket frame and the structural .form and size of the insulators are so correlated as to give a desired spacing of the crossed wires and to accommodate to the use of insulators of small size and relativelysimple spool-form.
In previous structures in which the line Wires have been trained at the cross arms of line poles ov-erinsulators threaded on .cobs, or on sleeves of lead or the like surrounding the insulator pins, the tightening of the transposed wires has been a troublesome and laborious operation. With such insulator mountings tightening of the transposed wires tends to rotate two of the insulators in one direction and the other twoinsulators in an opposite direction. This rotation serves to run two of the insulators upwardly of the insulator pins and to run the other two insulators downwardly on the pins. In any event this destroys the desired vertical spacing between the line wires. It .also tends to loosen or even to remove those insulators which are so rotated onthe pins to which they are threaded as to run them upwardly on those .pins and tends actually to crack those vinsulators in which a downward pressure is exerted by their rotation. In tightening the line wires at the poles after they have been trained on the insulators it has therefore been necessary to have a 'linesman on each pole, carefully to ease the wires along the insulators so that the insulators are not rotated on their threaded mountings. Obviously such duty consumes'the time and effort of a great number of linesmen.
In the transposition bracket of my invention the insulators are mounted for free rotation and without threading on insulator pins which are supported in balanced relation at both ends of the insulator. In tightening the crossed line wires there is no tendency to run the insulators either upwardly .or' downwardly on their mounting structure, but on the contrary the 'free rotation of the insulators permits tightening of the wires by a. simple longitudinal pull without altering the spacing between wire-receiving grooves of the insulators and without tending .to injure either the insulators or the adequately supported insulator-carrying pins of the bracket assembly. The support for the insulator pins is provided by insta'lrlng them clevises opening outwardly of the frame structure of the bracket, and a desired spacing between the wire-receiving grooves of the insulators is "obtained ,by relatively offsetting the clevises iorv the pins on which the insulators are rotatably mounted. Also in the preferred construction of my transposition bracket the organization of the frame structure is such that there are no bolts, rivets or other connecting elements to work loose or to be sheared in service.
In the accompanying drawings:
Fig. I is a plan view of my transposition bracket viewing the bracket and a cross arm on which it is mounted with the cross arm running transversely of the sheet.
Fig. II is .an elevation of one end of the bracket looking. upwardly of the sheet.
Fig. III is an elevation of the opposite end of the bracket looking downwardly of the sheet.
Fig'I-V is a broken plan view of a bracket identical in structure with the bracket shown in Fig. I but viewed with the cross arm running vertically of the-sheet.
Fig. V is anelevation of one side of the bracket looking upwardly of the sheet.
Fig. VI is an elevation of the other side of the bracket looking downwardly of the sheet.
As shown,.the vrrame structure of my bracket is a one-piece casting of suitable metal and preferably is a casting of one of the light metals such as aluminum, or aluminum alloy, magnesium or magnesium alloy. Unless it should under special circumstances .be desirable otherwise to arrange the insulators of the bracket, they are in approximately rectangular arrangement in plan and the shape or thebracket is conformable to such ar- 3 rangement. Primarily considered, the frame structure of the bracket comprises end reaches I and 2 and side reaches 3 and I arranged to provide clevises 5, 6, I and 8 in which are mounted respectively insulators 9, I0, I I and I2. As shown, particularly in Figs. IV, V and VI of the drawings, the base of the bracket is provided by the lowermost portions 3a and 4a of the side reaches 3 and 4 respectively; and the bracket is shown as mounted on a cross arm It by means of bolts I I passed through suitable matching bolt holes in the side reaches 3 and I of the bracket and through the cross arm I3. As shown, these bolts have heads I5 and carry nuts I6 and washers II to bear against the under surface of the cross arm.
All four clevices 5, 6, 'I and 8 of the bracket frame open outwardly of the frame at the corners of the frame structure. When formed as a one piece casting, as shown, the clevises are formed primarily as portions of the end reaches I and 2 of the frame but blend structurally with side reaches 3 and 4. Thus, taking first end reach I of the frame (as shown in Fig. II), clevis 5, which is a high clevis, is formed with a lower fork 5a depressed slightly below the plane of the median region Ia of the reach and upper fork 5b is connected with median region Ia. by an inclined leg 50.
Reversely, clevis I which is a low clevis has its upper fork 'Ib deflected upwardly from median portion I a of end reach I and its lower fork Ia is connected with median reach Ia by inclined leg 10. As appears in Fig. II, the wire-receiving grooves 9a of insulator 9 and Ila of insulator II are spaced equidistantly above and below the median region Ia of the reach and this vertical spacing of the wire-receiving grooves and wires trained on them is modified by the downward defiection of fork 5a of clevis 5 and the upward deflection of fork 1b of clevis I.
In the other end reach 2 (as shown in Fig. III) clevis 6, which is a high clevis arranged diagnally across the frame from clevis 5, has its forks 6a and 6b and connecting leg 60 arranged identically with corresponding elements of clevis with respect to each other and the associated median region 2a of their end reach 2. Similarly clevis 8 which is a low clevis lying diagonally of the frame from low clevis I has its forks 8a and 8b and connecting leg 80 arranged identically with the corresponding elements of clevis 1 with respect to each other and to the associated median region 2a of their end reach 2.
Referring now more particularly to Figs. IV, V and VI of the drawings, side reach 3 which extends transversely between end reaches I' and 2 and side reach 4 which also extends transversely between end reaches I and 2 have, as noted, ap proximately plane lower, or base, regions 3a and 4d at which the bracket as a whole is attached to cross arm I3 or other supporting structure as by bolts l4. From base region 3a of side reach 3 leg 32) extends upwardly to and blends with the lower fork 6a of clevis Ii and an inclined leg extends a shorter distance upwardly to and blends with the lower fork Id of clevis I. Similarly inclined leg 41) of clevis 4 extends upwardly to and blends with the lower fork 5a of clevis 5 and inclined leg 40 extends upwardly a shorter distance and blends with the lower fork 8a of clevis 8. It will be seen that the longer legs 31) and db and the shorter legs 3c-and 4c of the side reaches 3 and 4 are staggered relatively in the frame structure.
All of the insulators 9, I 0, II and I2 are primarily of spool-form, having respectively the wire-receiving grooves 9a, Illa, I Ia and [2a, noted above. These insulators may be made of glass, porcelain, hard rubber, fiber or plastic composition or any other material having suitable physical properties and adequate electrical resistance. As shown, each of the insulators is freely rotatable on an insulator pin I8 which passes through both forks of the clevis and which has a head I8a resting on the upper surface of the upper fork and a portion Iilb extended below the under surface of the lower fork. As shown, a cotter pin I9 secures the insulator pin against misplacement, and other suitable securing means such as a nut and washer might equivalently be used.
Referring to Fig. I of the drawings, paired wires are shown in transposed relation on the bracket with wire A trained on diagonally opposed low insulators "I and 8 and wire B trained on diagonally opposed high insulators 5 and 6. In this relation the wires A and B cross each other Within the bounds of the bracket, with a vertical spacing determined by the vertical spacing between the wire-receiving grooves 9a and I Id of the high insulators and the wire-receiving grooves Illa and I2a of the low insulators. In tightening the transposed wires, the rotation of the insulators in their free, unthreaded mounting on the pins obviates the necessity for easing the wires along in their trained relation with the insulators. The mounting being unthreaded, there is no tendency for the drag of the wires to run the insulators upwardly or downwardly and thus to impair accurate spacing between the wires trained on the upper and lower insulators.
I have found that insulators, even though of spool-form cannot satisfactorily be made rotatable in a transposition bracket unless the pins on which they are mounted are supported beyond both ends of the insulators. This support is provided by the clevises of my bracket. With support for the insulator pins, the rotatable insulators need not be of the height and Weight of the insulators commonly used to support the insulator pin above the wire-receiving groove of the insulator and to counterbalance the thrust of the wire as transmitted to the pin. It is thus possible to use small spool-form insulators, which are in fact peculiarly adapted to mounting on clevis-supported pins. With this mounting of the insulators in clevises of the bracket frame, it is possible to modify the spacing of the crossed wires within the bounds of the bracket by the relative vertical spacing of the clevises. Thus the offset relation of the lower forks of the clevises of the high diagonal pair and the upper forks of the clevises of the low diagonal pair with respect to a median plane, modifies the relative positioning of the open insulator-receiving spaces between the forks of the high and low clevises respectively. By this structure, insulators of a desired form and with a desired positioning of their wire-receiving grooves may be used without causing an awkwardly great vertical spacing of the bracket frame. This arrangement, by modifying the spacingbetween the wire-receiving grooves of the insulators gives accommodation to the positioning of the insulators with their wire-receiving grooves spaced on opposite sides of a common median plane. Because the insulators are mounted in the clevises, the wires trained on the insulators in their wirereceiving grooves are confined within the clevises. There is therefore no likelihood that there will be a floater, that is an upwardly escaped wire, if an insulator sh ul b br ken in. service.
5 "In its structure the bracket frame desirably is, as shown, a onepiececasting in which the forks of the clevises' blend w'ith the reaches :of the frame to give a firm, strong structure integrated without-the use of bolts, rivets or other pieces susceptible of sheering or working loose.
While the bracket frame in the embodiment of my invention herein illustrated and described is a one-piece casting, as is most desirable, it is tobe understood that certain aspects of my invention remain even though the integration of the bracket frame be otherwise obtained. Also it is "to *be understood that other modifications in the form and arrangement of the -bracket elements may be made within the bounds of my invention as defined in the appended claims.
Lclaim as my invention:
1; A wire-transposing bracket for fixed mounting on a supporting structure-comprising a frame integrally-cast from light the group consisting of magnesium, aluminum, and their alloys and having two transverse reaches with lower regions providing :a base for engagement with the supporting structure and two legs of unequal length and included inthe lower forks of fourclevises'the longer and shorter legs of the-two transverse reaches being staggered relatively in the frame structure, two reaches ext-ended between the said transverse :rea-ohes and terminally forked at both ends :of each with each tlower fork blended with an upwardly extended leg of a transv rse reach and with their'upper forks arranged in vertical alignment with the said lower forks, to provide four outwardly open insulator-mounting clevises in diagonal pairs with the clevises of one diagonal pair at a different level than the clevises of the other diagonal pair, and spool-form insulators rotatably mounted in said clevises with the wirereceiving grooves of one diagonal pair at a different level than the wire-receiving groovesofthe other diagonal pair for the relative spacing .of wires-trained respectively on thesaid diagonally arranged pairs of insulators and crossed within the bounds of the frame.
2. A frame structure for a wire-transposing bracket adapted for fixed mounting on a supporting structure, said frame being integrally cast from a light metal selected from the group consisting of magnesium, aluminum, and their alloys and having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length each blended into the lower fork of one of four insulator-mounting clevises, the longer and shorter legs of the two transverse reaches being staggered relatively in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each with each lower fork blended with an up wardly extended leg of a transverse reach and with their upper forks arranged each in vertical alignment with one of the said lower forks, to provide four outwardly open insulator-mounting clevises arranged in diagonal pairs with the clevises of one said pair at a different level above the base of the bracket than the other said pair.
3. A wire-transposing bracket for fixed mounting on a supporting structure formed as a frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended divergently upward from the base portion of each transverse reach, the longer and shorter legs of the two transverse reaches being etal selected from relatively staggered in the frame-structure, two reaches extended between :the said transverse reaches and terminally forked .to provide four outwardly open insulator-mounting clevises, ithe lower fork of each said clevis being joined with one of the two said legs upwardly divergent'from the base portion of one of the said transverse reaches, the-said clevises being arranged in diagonal pairs with the clevises of one said .pair at a higher level a'bove the base of the bracket than the other .said pair, and spool-form insulators rotatably mounted :in said clevises with the'zwirereceiving grooves of one diagonal pair at a different level than the wire-receiving groovesuof the other-diagonal pair for the relative spacing of wires trained respectively on the said diagonally arranged pairs of insulators and crossed within the-bounds o'f the bracket frame.
4. A frame structure for a wire-transposing bracket forfixed mounting on a supporting-structure, :said frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended 'divergently upward from the base portion of each transverse reach,
the longer and shorter legs of the two transverse reaches being relatively staggered inthe frame structure-two reaches extended between the said transverse reaches and terminally forked to provide four outwardly open insulator-mounting clevises, the lower fork of each said 'clevis being joined with one of the two said legs upwardly divergent from the base portion-of one of the said transverse reaches, the said clevises being arranged in diagonal 'pairswith'the clevises'ofone said pair at a higher level above 'the'ba-se 0f the bracket than the other said pair.
.5. :A frame structure for a wire-transposing bracket adapted-for fixed mountingon asu-ppor-ting structure, said frame being integrally cast from :a light metal selected from the group consisting-of magnesium, aluminum,and their alloys and having two tranverse reacheswit'h lower regions providing a base for engagement with the supporting structure and two legs of unequal length each blended into the lower fork of one of four insulator-mounting clevises, the longer and shorter legs of the two transverse reaches being staggered relatively in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each with each lower fork blended with an upwardly extended leg of a transverse reach and with their upper forks arranged each in vertical alignment with one of the said lower forks, to provide four outwardly open insulatormounting clevises arranged in diagonal pairs with the clevises of one said pair at a different level than the clevises of the other said pair, the lower fork of each of the high clevises being deflected downwardly and the upper fork of each of the low clevises being deflected upwardly with respect to a common median plane to modify the relative spacing between the high and low clevises.
6. A wire-transposing bracket adapted for fixed mounting on a supporting structure, said bracket being integrally cast from a light metal selected from the group consisting of magnesium, aluminum, and their alloys and having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length each blended into the lower fork of one of four insulator-mounting clevises, the longer and shorter legs of the two transverse reaches being staggered relatively in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each with each lower fork blended with an upwardly extended leg of a transverse reach and with their upper forks arranged each in vertical alignment with one of the said lower forks, to provide four outwardly open insulator-mounting clevises arranged in diagonal pairs with the clevises of one said pair at a difierent level than the clevises of the other said pair, the lower fork of each of the high clevises being deflected downwardly and the upper fork of each of the low clevises being deflected upwardly with respect to a common median plane to modify the relative spacing between the high and low clevises, and spool-form insulators mounted in said clevises with the wire-receiving grooves of the diagonal pairs of said insulators spaced by the relative position of the said high and low clevises for the relative spacing of wires trained respectively on the said diagonally arranged pairs of insulators and crossed within the bounds of the bracket frame.
7. A wire-transposing bracket for fixed mounting on a supporting structure formed as a frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended divergently upward from the base portion of each transverse reach, the longer and shorter legs of the two transverse reaches being relatively staggered in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each to provide four outwardly open insulatormounting clevises arranged in diagonal pairs with the clevises of one pair at a higher level above the base of the bracket than the other said pair, the lower fork of each of the high clevises being deflected downwardly and the upper fork of each of the low clevises being deflected upwardly with respect to a common median plane to modify the relative spacing between the high and low clevises, and spool-form insulators rotatably mounted in said clevises with the wire-receiving grooves of the diagonal pairs of said insulators spaced by the relative position of the said high and low clevises for the relative spacing of wires trained respectively on the said diagonally arranged pairs of insulators and crossed within the bounds of the bracket frame.
8. A frame structure for a wire-transposing bracket adapted for fixed mounting on a supporting structure, said frame having two transverse reaches with lower regions providing a base for engagement with the supporting structure and two legs of unequal length extended divergently upward from the base portion of each transverse reach, the longer and shorter legs of the two transverse reaches being relatively staggered in the frame structure, and two reaches extended between the said transverse reaches and terminally forked at both ends of each to provide four outwardly open insulator-mounting clevises, the lower fork of each said clevis being joined with one of the two said legs upwardly divergent from the base portion of one of the said transverse reaches, the said clevises being arranged in diagonal pairs with the clevises of one said pair at a higher level above the base of the bracket than the other said pair and with the lower fork of each of the high clevises deflected downwardly and the higher fork of each of the low clevises upwardly deflected with respect to a common median plane to modify the relative spacing between the high and low clevises.
ROGERS CASE.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 889,884 Strong June 2, 1908 2,299,960 Brewster et a1 Oct. 27, 1942 2,356,750 Case Aug. 29, 194A
US734816A 1947-03-14 1947-03-14 Transposition bracket Expired - Lifetime US2455229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US734816A US2455229A (en) 1947-03-14 1947-03-14 Transposition bracket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US734816A US2455229A (en) 1947-03-14 1947-03-14 Transposition bracket

Publications (1)

Publication Number Publication Date
US2455229A true US2455229A (en) 1948-11-30

Family

ID=24953186

Family Applications (1)

Application Number Title Priority Date Filing Date
US734816A Expired - Lifetime US2455229A (en) 1947-03-14 1947-03-14 Transposition bracket

Country Status (1)

Country Link
US (1) US2455229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717274A (en) * 1951-06-21 1955-09-06 Transandean Associates Inc Transposition bracket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US889884A (en) * 1906-06-09 1908-06-02 Solomon E Bronson Insulator.
US2299960A (en) * 1940-12-02 1942-10-27 Truman P Brewster Bracket and method of transposing wires
US2356750A (en) * 1943-02-09 1944-08-29 Case Rogers Wire-transposing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US889884A (en) * 1906-06-09 1908-06-02 Solomon E Bronson Insulator.
US2299960A (en) * 1940-12-02 1942-10-27 Truman P Brewster Bracket and method of transposing wires
US2356750A (en) * 1943-02-09 1944-08-29 Case Rogers Wire-transposing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717274A (en) * 1951-06-21 1955-09-06 Transandean Associates Inc Transposition bracket

Similar Documents

Publication Publication Date Title
US2455229A (en) Transposition bracket
US1865134A (en) Pole top bracket
US2705121A (en) Pole top band
US2311486A (en) Conductor-insulator clamp
US1898677A (en) Supporting and securing means for electric cables
US2455228A (en) Transposition bracket
US2526917A (en) Line wire spacer
US3837623A (en) Helicopter bundle block
US2613913A (en) Strain carrier for twin strings of insulators
US2437593A (en) Reinforced wire-contacting insulator assembly
US1891920A (en) Electrical connecting device
US3428283A (en) Adjustable spacer assembly
US2303999A (en) Bus-bar mounting
US3139482A (en) Cable spreader
US1840362A (en) Transposition bracket for insulators
US1728522A (en) Insulator for high-voltage systems
US2018532A (en) Insulator bracket
US4093183A (en) Unitary grounding assembly for bundle conductor stringing blocks
US2455227A (en) Wire transposing device
US2704795A (en) Load fuses for electric power lines
US2338435A (en) Gain fixture for poles
US2436789A (en) Wire-transposing device
US2255531A (en) Insulated bracket
US3165284A (en) Multiple conductor support
US2628805A (en) Insulator support