US2439219A - Apparatus for transmitting intense vibrations for performing work - Google Patents

Apparatus for transmitting intense vibrations for performing work Download PDF

Info

Publication number
US2439219A
US2439219A US539585A US53958544A US2439219A US 2439219 A US2439219 A US 2439219A US 539585 A US539585 A US 539585A US 53958544 A US53958544 A US 53958544A US 2439219 A US2439219 A US 2439219A
Authority
US
United States
Prior art keywords
pads
resilient
vibration
vibratory
flexible material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US539585A
Inventor
John C O'connor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US539585A priority Critical patent/US2439219A/en
Application granted granted Critical
Publication of US2439219A publication Critical patent/US2439219A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/087Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould
    • B28B1/0873Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould the mould being placed on vibrating or jolting supports, e.g. moulding tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/40Clamping arrangements where clamping parts are received in recesses of elements to be connected
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/33Transverse rod to spaced plate surfaces
    • Y10T403/335Retainer utilizes or abuts plural plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/45Flexibly connected rigid members

Definitions

  • This invention relates to vibratory apparatus and in particular to the means employed to connect the resilient members to the base and to the part to be vibrated.
  • Another object is to provide a mounting arrangement for the resilient member of a vibratory apparatus which will accommodate large amplitude of vibration without a material shortening of its useful life.
  • Another object is to provide a mounting for the resilient member of a vibratory apparatus which will allow a certain amount of freedom of the resilient member without introducing frictional losses which would result in destructive heating.
  • a still further object is to provide, in an ap paratus employing a straight beam or bar as the resilient member, a mounting for the resilient member which while preventing a transverse deflection oliers little restraint to a longitudinal motion produced by the bending of the beam.
  • Figure I is a side view, partly in section, of a vibratory structure.
  • Figure II is an end elevation of the structure shown in Figure I.
  • Figure III is a perspective view of a wooden resilient member with the stress relieving members in place before assembly into the vibratory structure.
  • Figure IV is a perspective view of a resilient metallic bar with the stress relieving members attached.
  • the local stresses in a resilient member employed as the spring in a vibratory apparatus are relieved by inserting pads of a universally flexible material such as rubber between the resilient member or spring and the mounting clamps. Further, to prevent any scufling between the spring and the flexible material which may occur due to the longitudinal movement of the spring the flexible material is adhesively bonded to both the spring and the adjacent surfaces of the clamping members.
  • the bonding of the flexible material to the clamping surfaces and to the spring offers the added advantage that small variations in tuning of the spring may be obtained by varying the clamping pressure. If one attempts to get this adjustment when the flexible material is not bonded it merely squeezes out of the space without materially changing the frequency. Also when the material so squeezes out higher stresses are produced at the edges of the clamps and these higher stresses soon lead to'failure of the flexible material. By adhesively bonding the flexible material to both the spring and the clamp this squeezing out is prevented and no local stresses are allowed to develop.
  • a base H3 is provided with pedestals H and I2 at its ends and an electromagnet l3 intermediate its ends.
  • a vibratory member M to which may be attached a platform of a compacting machine, a mold box, a portion of a conveyor, or in fact any structure to be vibrated is carried on 3 a resilient beam or spring I 5 which may be made of wood, metal or a combination of wood and metal.
  • Each end of the beam I5 is carried on a stress relieving mounting comprising pads [6 of a universally flexible material such as rubber supported by backing strips IT.
  • This assembly is clamped to the top of the pedestal II by a clamping bar l8 held in place by stud bolts l9 anchored in the pedestal II.
  • the flexible pads l6 are adhesively bonded to the adjacent surfaces of the beam l5 and to the backing strips H.
  • the clamping bar I8 is pulled down until the flexible material bulges out slightly from between the beam l5 and the backing strips I! but not enough to squeeze the material out adjacent the surfaces of the beam I5 and the backing strips ll.
  • the vibratory member l4 and an armature cooperating with the electromagnet l3 are on opposite sides of the beam l5 and are connected by bolts 2
  • flexible pads 22, bonded to the beam [5 and to backing strips 23, are interposed between the beam [5 and the vibratory member M on the one side and the armature 20 on the other side.
  • the sole purpose of bonding the backing strips I1 and 23 to the flexible pads l6 and 22 is to allow the structure to be disassembled without destroying the bond between the pressure transmitting surfaces and the flexible pads. These backing strips may be omitted and the pads l6 and 22 bonded directly to the adjacent clamping surfaces without loss of operating efficiency.
  • Figure III shows the beam I5 and the resilient pads I6 and 22 with their backing strips I! and 23 attached thereto. It will be noticed that the flexible pads in their unstressed state are rectangular parallelepipeds while after they are assembled in the machine and stressed they tend to become barrel shaped.
  • Figure IV shows a metallic beam 24 equippe with flexible pads Mia and 22a and backing strip-s Ila and 23a.
  • This beam may be substituted for the wooden beam l5 in those applications where a large amplitude vibration is not used.
  • a choice of one material in preference to another is dictated by the desired amplitude of vibration, the allowable weight of the structure, and the cost. It has been found in general that selected wood, for a given weight, is stronger than steel and allows a higher amplitude of vibration. With either material, in order to relieve stresses in the resilient beam at its clamping points, it is necessary to use a flexible material and in order to secure reasonable life of the flexible material it is 4 necessary to bond the flexible material to the adjacent surfaces. By so bonding the material the allowable limit on the amplitude of vibration is set by the bending stresses in the resilient beam alone. I
  • a resilient subassembly for the vibratory system consisting of a beam adapted to vibrate transversely to its length, and pads of universally flexible material bonded to the beam and interposed between the beam and its support.
  • a mass to be vibrated in combination, a frame, a resilient subassembly for supporting the mass from the frame, means for generating vibratory force, the mass and the resilient subassembly forming a resonant vibratory system having a natural frequency substantially equal to the frequency of the vibratory force, the resilient subassembly consisting of a beam and pads of a universally flexible material adhesively bonded to the beam and interposed between the beam and the frame.
  • a mass to be vibrated in combination, a mass to be vibrated, a frame, a resilient subassembly cooperating with the mass to form a tuned Vibratory system for supporting the mass from the frame, means for inducing vibration of the mass on the resilient subassembly, the subassembly consisting of a beam adapted to vibrate transversely to its length and pads of resilient material adhesively bonded to the beam and interposed between the beam and the remainder of the vibratory system.
  • a resilient subassembly supporting the mass from the frame and forming with the mass a vibratory system, means for exciting resonant vibration of the system, the resilient subassembly being adapted to withstand high amplitudes of vibration and consisting of a beam vibrating transversely to its length and pads of universally flexible material bonded to the beam and interposed between the beam and its supports, the pads serving to distribute the forces applied to the beam to prevent localized high intensity stresses without materially altering the resonant frequency of the vibratory system.
  • a beam that is vibrated transversely of its length at amplitudes sufficient to destructively heat rubber clamping pads frictionally engaging the beam, and pads of flexible material adhesively bonded to the beam and interposed between the beam and clamps holding the beam, whereby the frictional energy loss and heating of the pads is reduced without reduction in the amplitude of vibration of the beam.
  • a beam that is vibrated transversely of its length at amplitudes sufficient to destructively heat rubber clamping pads frictionaliy engaging the beam, and pads of rubber adhesively bonded to the beam and interposed between the beam and clamps holding the beam,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Jigging Conveyors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

A RCH ROO SUBSTITUTE FOR MISSING XR J. C. O'CONNOR L APPARATUS FOR TRANSMITTING INTENSE VIBRATIONS FOR PERFORMING woax CROSS REFERENCE I April 6, 1948.
Filed June 9, 1944 ATTORNEYS Patented Apr. 6, 1948 APPARATUS FOR TRANSMITTING INTENSE VIBRATION S FOR PERFORMING WORK v John C. OConnor, Dayton, Ohio Application June 9, 1944, Serial No. 539,585
6 Claims.
This invention relates to vibratory apparatus and in particular to the means employed to connect the resilient members to the base and to the part to be vibrated.
Many industrial operations are performed by vibrators. For example in the manufacture of concrete blocks wet concrete is placed in a mold and the mold is severely vibrated to compact the material and to secure intimate contact between the ingredients. Many conveyors employ a vibrating trough and many screening operations employ a vibrated screen. In these and similar applications one dificult problem is to provide a satisfactory mounting arrangement between the base structure, the vibrated part and the resilient members connecting these parts. If the resilient members or springs are clamped tightly to the base or the vibrated member, high local stresses are set up at the junction which lead to early failure of the spring. Likewise, if the resilient members are loosely mounted the resulting play or backlash allows destructive wear to occur between the parts. Thus it is diflicult to design a mounting for the resilient member of a vibratory apparatus which will simultaneously permit large amplitude vibration and long life of the resilient member.
It is an object of this invention to provide a mounting arrangement for the resilient member of a vibratory apparatus which minimizes local stresses in the member and thus contributes materially to the life of the resilient member.
Another object is to provide a mounting arrangement for the resilient member of a vibratory apparatus which will accommodate large amplitude of vibration without a material shortening of its useful life.
Another object is to provide a mounting for the resilient member of a vibratory apparatus which will allow a certain amount of freedom of the resilient member without introducing frictional losses which would result in destructive heating.
A still further object is to provide, in an ap paratus employing a straight beam or bar as the resilient member, a mounting for the resilient member which while preventing a transverse deflection oliers little restraint to a longitudinal motion produced by the bending of the beam.
These and other objects and advantages are apparent from the following description in which reference is made to the accompanying drawings.
In the drawings:
Figure I is a side view, partly in section, of a vibratory structure.
Figure II is an end elevation of the structure shown in Figure I.
Figure III is a perspective view of a wooden resilient member with the stress relieving members in place before assembly into the vibratory structure.
Figure IV is a perspective view of a resilient metallic bar with the stress relieving members attached.
These specific drawings are intended to illustrate a preferred form of the invention Without defining the scope of the invention.
According to the invention the local stresses in a resilient member employed as the spring in a vibratory apparatus are relieved by inserting pads of a universally flexible material such as rubber between the resilient member or spring and the mounting clamps. Further, to prevent any scufling between the spring and the flexible material which may occur due to the longitudinal movement of the spring the flexible material is adhesively bonded to both the spring and the adjacent surfaces of the clamping members.
It has been found when the flexible material is not bonded that a scufiing or sliding motion occurs between the spring and the pads and the friction resulting therefrom generates sufficient heat to melt the flexible material and thus to destroy its serviceability. The adhesive bonding prevents this relative motion between the surfaces by distributing the relative movement throughout the flexible material so that no portion is stressed beyond its elastic limit and consequently little heat is generated.
The bonding of the flexible material to the clamping surfaces and to the spring offers the added advantage that small variations in tuning of the spring may be obtained by varying the clamping pressure. If one attempts to get this adjustment when the flexible material is not bonded it merely squeezes out of the space without materially changing the frequency. Also when the material so squeezes out higher stresses are produced at the edges of the clamps and these higher stresses soon lead to'failure of the flexible material. By adhesively bonding the flexible material to both the spring and the clamp this squeezing out is prevented and no local stresses are allowed to develop.
In the specific examples shown in the. drawings a base H3 is provided with pedestals H and I2 at its ends and an electromagnet l3 intermediate its ends. A vibratory member M to which may be attached a platform of a compacting machine, a mold box, a portion of a conveyor, or in fact any structure to be vibrated is carried on 3 a resilient beam or spring I 5 which may be made of wood, metal or a combination of wood and metal.
Each end of the beam I5 is carried on a stress relieving mounting comprising pads [6 of a universally flexible material such as rubber supported by backing strips IT. This assembly is clamped to the top of the pedestal II by a clamping bar l8 held in place by stud bolts l9 anchored in the pedestal II. The flexible pads l6 are adhesively bonded to the adjacent surfaces of the beam l5 and to the backing strips H. The clamping bar I8 is pulled down until the flexible material bulges out slightly from between the beam l5 and the backing strips I! but not enough to squeeze the material out adjacent the surfaces of the beam I5 and the backing strips ll.
The vibratory member l4 and an armature cooperating with the electromagnet l3 are on opposite sides of the beam l5 and are connected by bolts 2| thus clamping the beam l5 between them. To prevent local stresses being generated in the beam l5 at the edges of the vibratory member l4 and the armature 20 flexible pads 22, bonded to the beam [5 and to backing strips 23, are interposed between the beam [5 and the vibratory member M on the one side and the armature 20 on the other side. The sole purpose of bonding the backing strips I1 and 23 to the flexible pads l6 and 22 is to allow the structure to be disassembled without destroying the bond between the pressure transmitting surfaces and the flexible pads. These backing strips may be omitted and the pads l6 and 22 bonded directly to the adjacent clamping surfaces without loss of operating efficiency.
While rubber or similar materials have been used in similar structures as a spring it is used here in the form of a stress reliever and does not materially contribute to the resiliency of the beam 15 in determining the natural frequency of the vibration. Its chief purpose is to allow the relative longitudinal motion between the beam l5 and the pedestals H and i2 which accompanies a transverse deflection of the mid point of the beam. If such motion were not allowed the beam would be stressed in tension as well as bending as it is deflected and the tension forces would be of such magnitude as to cause slipping between the beam and'the clamps. The provision of the flexible pads l6 accommodates this motion without subjecting the beam to the high tensile stresses.
Figure III shows the beam I5 and the resilient pads I6 and 22 with their backing strips I! and 23 attached thereto. It will be noticed that the flexible pads in their unstressed state are rectangular parallelepipeds while after they are assembled in the machine and stressed they tend to become barrel shaped.
Figure IV shows a metallic beam 24 equippe with flexible pads Mia and 22a and backing strip-s Ila and 23a. This beam may be substituted for the wooden beam l5 in those applications where a large amplitude vibration is not used. A choice of one material in preference to another is dictated by the desired amplitude of vibration, the allowable weight of the structure, and the cost. It has been found in general that selected wood, for a given weight, is stronger than steel and allows a higher amplitude of vibration. With either material, in order to relieve stresses in the resilient beam at its clamping points, it is necessary to use a flexible material and in order to secure reasonable life of the flexible material it is 4 necessary to bond the flexible material to the adjacent surfaces. By so bonding the material the allowable limit on the amplitude of vibration is set by the bending stresses in the resilient beam alone. I
Since, in the prior art constructions without the 1. In apparatus for performing work by vibration employing a tuned vibratory system, a resilient subassembly for the vibratory system consisting of a beam adapted to vibrate transversely to its length, and pads of universally flexible material bonded to the beam and interposed between the beam and its support.
2. In apparatus for performing work by vibration, in combination, a mass to be vibrated, a frame, a resilient subassembly for supporting the mass from the frame, means for generating vibratory force, the mass and the resilient subassembly forming a resonant vibratory system having a natural frequency substantially equal to the frequency of the vibratory force, the resilient subassembly consisting of a beam and pads of a universally flexible material adhesively bonded to the beam and interposed between the beam and the frame.
3. In apparatus for performing work by vibration, in combination, a mass to be vibrated, a frame, a resilient subassembly cooperating with the mass to form a tuned Vibratory system for supporting the mass from the frame, means for inducing vibration of the mass on the resilient subassembly, the subassembly consisting of a beam adapted to vibrate transversely to its length and pads of resilient material adhesively bonded to the beam and interposed between the beam and the remainder of the vibratory system.
4. In apparatus for performing work by vibration, in combination, a mass to be vibrated, a"
frame, a resilient subassembly supporting the mass from the frame and forming with the mass a vibratory system, means for exciting resonant vibration of the system, the resilient subassembly being adapted to withstand high amplitudes of vibration and consisting of a beam vibrating transversely to its length and pads of universally flexible material bonded to the beam and interposed between the beam and its supports, the pads serving to distribute the forces applied to the beam to prevent localized high intensity stresses without materially altering the resonant frequency of the vibratory system.
5. In apparatus for performing work by vibration employing a tuned vibratory system, in combination, a beam that is vibrated transversely of its length at amplitudes sufficient to destructively heat rubber clamping pads frictionally engaging the beam, and pads of flexible material adhesively bonded to the beam and interposed between the beam and clamps holding the beam, whereby the frictional energy loss and heating of the pads is reduced without reduction in the amplitude of vibration of the beam.
6. In apparatus for performing work by vibration employing a tuned vibratory system, in combination, a beam that is vibrated transversely of its length at amplitudes sufficient to destructively heat rubber clamping pads frictionaliy engaging the beam, and pads of rubber adhesively bonded to the beam and interposed between the beam and clamps holding the beam,
whereby the frictional energy loss and heating of the pads is reduced without reduction in the amplitude of vibration of the beam.
JOHN C. O'CONNOR.
REFERENCES CITED The following references are of record in the 11m of this patent:
Number 10 Number
US539585A 1944-06-09 1944-06-09 Apparatus for transmitting intense vibrations for performing work Expired - Lifetime US2439219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US539585A US2439219A (en) 1944-06-09 1944-06-09 Apparatus for transmitting intense vibrations for performing work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US539585A US2439219A (en) 1944-06-09 1944-06-09 Apparatus for transmitting intense vibrations for performing work

Publications (1)

Publication Number Publication Date
US2439219A true US2439219A (en) 1948-04-06

Family

ID=24151854

Family Applications (1)

Application Number Title Priority Date Filing Date
US539585A Expired - Lifetime US2439219A (en) 1944-06-09 1944-06-09 Apparatus for transmitting intense vibrations for performing work

Country Status (1)

Country Link
US (1) US2439219A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669447A (en) * 1950-01-31 1954-02-16 O Connor Patent Company Apparatus for transmitting intense vibrations for performing work
US2734138A (en) * 1956-02-07 oravec
US3155853A (en) * 1960-12-30 1964-11-03 Link Belt Co Aluminum leaf spring spacer
US3252332A (en) * 1962-09-04 1966-05-24 Gisholt Corp Seismically mounted apparatus
US3318139A (en) * 1964-09-15 1967-05-09 Textron Electronics Inc Multi-degree-of-freedom force transmitting structure
US3326038A (en) * 1964-06-11 1967-06-20 Schloss Fred Testing apparatus
US3345525A (en) * 1967-10-03 Adjustable electric magnetic vibrator
US3513690A (en) * 1967-08-18 1970-05-26 Univ Washington Method and apparatus for non-destructive testing of beams
US3590800A (en) * 1969-01-07 1971-07-06 Edward D Lewis Jr Machine for cleaning frangible material from solid objects
US4008797A (en) * 1975-08-14 1977-02-22 West Virginia Armature Co., Inc. Mining machine conveyor with deflectible boom
US5117925A (en) * 1990-01-12 1992-06-02 White John L Shock absorbing apparatus and method for a vibratory pile driving machine
US5165205A (en) * 1987-06-24 1992-11-24 Research Development Corporation Of Japan Device for vibrating materials to be ground
US5522536A (en) * 1994-10-14 1996-06-04 Harnischfeger Corporation Apparatus and method for mounting machinery
WO1998026863A1 (en) * 1996-12-15 1998-06-25 Vibtec Engineering Ltd. Vibratory adapter
US20110033310A1 (en) * 2008-11-04 2011-02-10 Askari Badre-Alam Electromagnetic inertial actuator
US9957684B2 (en) 2015-12-11 2018-05-01 American Piledriving Equipment, Inc. Systems and methods for installing pile structures in permafrost
US10308354B2 (en) 2011-02-04 2019-06-04 Lord Corporation Rotary wing aircraft vibration control system with resonant inertial actuators
US10392871B2 (en) 2015-11-18 2019-08-27 American Piledriving Equipment, Inc. Earth boring systems and methods with integral debris removal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1526882A (en) * 1922-11-03 1925-02-17 Benjamin Platt Hanger for motors
GB313871A (en) * 1928-06-18 1929-09-26 Excelsiorwerk Metallwarenfabri Improvements in the mounting of motors in talking machines
US1872767A (en) * 1930-02-24 1932-08-23 Chrysler Corp Motor mounting
US1948452A (en) * 1933-10-11 1934-02-20 Walter H Young Vibratory electric motor
US2187617A (en) * 1936-09-30 1940-01-16 Robert E Fogg Machine for flocking
US2380622A (en) * 1945-07-31 Electromagnetic vibrator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380622A (en) * 1945-07-31 Electromagnetic vibrator
US1526882A (en) * 1922-11-03 1925-02-17 Benjamin Platt Hanger for motors
GB313871A (en) * 1928-06-18 1929-09-26 Excelsiorwerk Metallwarenfabri Improvements in the mounting of motors in talking machines
US1872767A (en) * 1930-02-24 1932-08-23 Chrysler Corp Motor mounting
US1948452A (en) * 1933-10-11 1934-02-20 Walter H Young Vibratory electric motor
US2187617A (en) * 1936-09-30 1940-01-16 Robert E Fogg Machine for flocking

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734138A (en) * 1956-02-07 oravec
US3345525A (en) * 1967-10-03 Adjustable electric magnetic vibrator
US2669447A (en) * 1950-01-31 1954-02-16 O Connor Patent Company Apparatus for transmitting intense vibrations for performing work
US3155853A (en) * 1960-12-30 1964-11-03 Link Belt Co Aluminum leaf spring spacer
US3252332A (en) * 1962-09-04 1966-05-24 Gisholt Corp Seismically mounted apparatus
US3326038A (en) * 1964-06-11 1967-06-20 Schloss Fred Testing apparatus
US3318139A (en) * 1964-09-15 1967-05-09 Textron Electronics Inc Multi-degree-of-freedom force transmitting structure
US3513690A (en) * 1967-08-18 1970-05-26 Univ Washington Method and apparatus for non-destructive testing of beams
US3590800A (en) * 1969-01-07 1971-07-06 Edward D Lewis Jr Machine for cleaning frangible material from solid objects
US4008797A (en) * 1975-08-14 1977-02-22 West Virginia Armature Co., Inc. Mining machine conveyor with deflectible boom
US5165205A (en) * 1987-06-24 1992-11-24 Research Development Corporation Of Japan Device for vibrating materials to be ground
US5117925A (en) * 1990-01-12 1992-06-02 White John L Shock absorbing apparatus and method for a vibratory pile driving machine
US5522536A (en) * 1994-10-14 1996-06-04 Harnischfeger Corporation Apparatus and method for mounting machinery
AU693907B2 (en) * 1994-10-14 1998-07-09 Harnischfeger Technologies, Inc. Apparatus and method for mounting machinery
WO1998026863A1 (en) * 1996-12-15 1998-06-25 Vibtec Engineering Ltd. Vibratory adapter
US6250792B1 (en) 1996-12-15 2001-06-26 Vibtec Engineering Ltd. Integrated vibratory adapter device for providing multi-frequency oscillation of a vibratable working unit
US20110033310A1 (en) * 2008-11-04 2011-02-10 Askari Badre-Alam Electromagnetic inertial actuator
US20110209958A1 (en) * 2008-11-04 2011-09-01 Askari Badre-Alam Resonant inertial force generator having stable natural frequency
US9404549B2 (en) 2008-11-04 2016-08-02 Lord Corporation Electromagnetic inertial actuator
US10308354B2 (en) 2011-02-04 2019-06-04 Lord Corporation Rotary wing aircraft vibration control system with resonant inertial actuators
US10543911B2 (en) 2011-02-04 2020-01-28 Lord Corporation Rotary wing aircraft vibration control system with resonant inertial actuators
US10392871B2 (en) 2015-11-18 2019-08-27 American Piledriving Equipment, Inc. Earth boring systems and methods with integral debris removal
US9957684B2 (en) 2015-12-11 2018-05-01 American Piledriving Equipment, Inc. Systems and methods for installing pile structures in permafrost

Similar Documents

Publication Publication Date Title
US2439219A (en) Apparatus for transmitting intense vibrations for performing work
US3752380A (en) Vibratory welding apparatus
JPS61127938A (en) Elastic engine mount
US5101132A (en) Linear ultrasonic motor
DE3069388D1 (en) Vibrating beam force transducer
US4436364A (en) Piezoelectric apparatus for producing rotary oscillation of a mirror
EP0198649A3 (en) Vibration damped apparatus
JP3412648B2 (en) Ultrasonic motor
ATE1261T1 (en) PIEZOELECTRICAL TRANSDUCER ELEMENT FOR INSTALLATION IN PRESSURE, FORCE OR ACCELERATION TRANSDUCERS.
US3155853A (en) Aluminum leaf spring spacer
US5143222A (en) Sieving apparatus
US4135599A (en) Base plate and earth coupling assembly for shear-wave transducers
US3628071A (en) Mechanical amplitude transformer
US2220164A (en) Device for producing vibrations
KR100227959B1 (en) Embedded unit in a concrete foundation
JPH0351210A (en) Piezoelectric drive type carrier device
US2914313A (en) Resilient mount for conveyors and the like
US2995347A (en) Vibrator and diaphragm assembly
JPS6258883A (en) Drive device
US2935177A (en) Composite steel and glass fiber spring
GB1030448A (en) Apparatus for press-fitting two members
SU1733158A1 (en) Method of straightening workpieces
US4074154A (en) Electromagnetic vibrator with improved spring mounts
JPH0866780A (en) Bent spring support body for vibrating device
JPH0544328Y2 (en)