US2426318A - Inhibiting corrosion - Google Patents

Inhibiting corrosion Download PDF

Info

Publication number
US2426318A
US2426318A US628678A US62867845A US2426318A US 2426318 A US2426318 A US 2426318A US 628678 A US628678 A US 628678A US 62867845 A US62867845 A US 62867845A US 2426318 A US2426318 A US 2426318A
Authority
US
United States
Prior art keywords
formaldehyde
corrosion
well
sulfide
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US628678A
Inventor
Paul L Menaul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanolind Oil and Gas Co
Original Assignee
Stanolind Oil and Gas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanolind Oil and Gas Co filed Critical Stanolind Oil and Gas Co
Priority to US628678A priority Critical patent/US2426318A/en
Application granted granted Critical
Publication of US2426318A publication Critical patent/US2426318A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1857Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/927Well cleaning fluid
    • Y10S507/932Cleaning sulfur deposits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/939Corrosion inhibitor

Definitions

  • This invention relates to a method of inhibiting the corrosive action of natural gas and oil containing soluble sulfides. More particularly, the invention relates to means for inhibiting the rapid corrosion of well tubing and/or pump rods which has heretofore occurred in producing wells where the well fiuid contains both brine and hydrogen sulfide.
  • Crude oil containing soluble sulfides is produced in the major producing areas of the United States, and corrosion of oil field equipment is especially severe in areas where brines are produced with sour crudes.
  • These corrosive sulfide brines include alkali sulfides, alkaline earth metal sulfides, and/or acid sulfides such as hydrogen sulfide.
  • Hydrogen sulfide is very soluble in water and brine, causing the brines to become very corrosive to iron and steel equipment due to the active formation of iron sulfide.
  • Hydrogen sulfide corrosion will take place in both acidic sulfide brines and in alkaline sulfide brines with pH below 9. This range embraces virtually all natural brines, since most sulfide brines are acidic within the range of about pH 4.5 to pH 7, those of pH above 7 being uncommon.
  • the production is so corrosive that, after the tubing has been in use for a relatively shorttime, it has been necessary to pull the tubing once a week to inspect for failure.
  • One object of this invention is to provide a means for inhibiting the attack of ferrous metals by sour crudes containing brine. Another object is that of providing a class of ma terials for preventing chemical attack of metals by well fluids which is' efiective in both its liquid and vapor phases. A further object of this invention is to provide an effective inhibitor for use in treating produced well fiuids before they enter the well tubing. Still another object is to provide a protective film on metal surfaces.
  • an inhibiting substance as, for example, an aldehyde, and preferably formaldehyde
  • an inhibiting substance is introduced into the producing well, for example between the casing and tubing.
  • Various methods of introducing the inhibitor may be used, but in each case the inhibitor is supplied to the fluids being produced and is carried upwardly through the tubing.
  • Panels of mild steel were cleaned of mill scale and smoothed with the finest grade of emery cloth. These panels were dried and weighed and then suspended in the sulfide brine on glass hooks. After immersion for a known time, the panel was removed from the brine, washed quickly in a 1% hydrochloric acid solution, wiped free of corrosion products with a soft cloth, washed with distilled water, dipped in alcohol, dried rapidly and reweighed. The panels that had been immersed in the formaldehyde-treated brine retained a tarnished-like appearance after being cleaned with dilute hydrochloric acid solution. The weight loss was assumed to be due to hydrogen sulfide corrosion.
  • the invention has been used extensively in field tests, and for these tests oil wells where the subsurface equipment had shown severe corrosion conditions were chosen in three different oil fields. Although the laboratory tests indicated excellent inhibition of sulfide corrosion, the field results were even better.
  • Technical grade formaldehyde sometime referred to as formalin which consists of a 40% aqueous solution of formaldehyde, was injected down the casing at a rate of between about 1 and about 2 quarts per day with the wells being produced through the tubing.
  • formaldehyde when the well is subject to being pumped for example, formaldehyde can be stored in a tank or drum of suitable capacity supported at a sufficient height to permit gravity drainage of the formaldehyde into a small measuring container, usually of Z-quart capacity.
  • a small measuring container usually of Z-quart capacity.
  • the 55-gallon formaldehyde container may conveniently serve as the storage container, in which case piping connections are made to the bottom end of the drum.
  • the measuring container is filled with formaldehyde from the storage drum and then permitted to drain from the measuring container into the annulus between tubing and casing.
  • the batch injection of formaldehyde daily does not adversely affect the efilciency of the treatment, particularly in wells where the fluid level is substantially above the pump suction, and generally offers advantages over continuous injection as regards cost and maintenance of injection equipment. Howoff, continuous introduction of chemical is preferred.
  • Well Number 2 was subject to frequent rod breaks, there having been 33 rod breaks in the seventeen months preceding the test. Likewise, there had been severe ball and seat corrosion. The well produces 45 barrels of water per day. Just prior to the test, 500 feet of new rods were run in at between the 1100 and 1600 feet level, the section where the most frequent rod breaks had occurred. The injection of formaldehyde down the casing was then begun and continued for five months. At the end of the test, these rods were pulled, and when the 500-foot section of new rods, the ball, seat, and pump were inspected for evidence of corrosion no evidence of corrosion could be detected. The monthly cost of protection during the test was only a small fraction of the monthly cost of the thirty-three pulling jobs and replacements during the seventeen months preceding the test.
  • a third well producing barrels of water per day had prior to the use of the inhibitor required frequent pulling and the well had not operated longer than eight weeks between pulling jobs when balls and seats and joints of tubing and rods were replaced.
  • one quart of formaldehyde was injected daily through a half-inch tube extending to the fluid level in the annulus between the tubing and easing.
  • inexpensive "lin pipe had been run for tubing and used pump rods installed.
  • P. P. M preferably more than about 50 P. P. M. of aldehyde based upon the brine produced, is ordinarily required for protection. Ordinarily not more than 100 P, P. M. will be required. Typically about one quart of U. S. P. formaldehyde (formalin) per 100 barrels of water produced gives adequate inhibitions. Further beneficial results are obtained in some cases by employing larger proportions initiall and decreasing with time the proportion of inhibitor used in subsequent'treatments.
  • the treatment may be applied to crude and product pipe lines, refining equipment, and storage tanks where attack can be expected.
  • the sour hydrocarbons in pipe lines and storage tanks usually carry only a small percentage of water and a proportionally small amount of inhibitor may be effective.
  • the inhibitor may b introduced into the vapor space and, in general, a, vaporizable material should be used, In some instances it may be beneficial to apply the chemical agent to the surface in a carrier-coating.
  • the materials form lower boiling azeotropes with the produced well fluids which aid in the distribution of the chemical treating agent throughout the well.
  • formaldehyde is an effective inhibitor
  • acetaldehyde in an equimolecular concentration is 80% as effective in combatting the attack of hydrogen sulfide.
  • Benzaldehyde was found to be only about as effective as formaldehyde.
  • the aldehydes may exist in polymerized form such as paraformaldehyde, the inhibiting power of these polymerized aldehydes depending chiefly upon their solubility in the brine.
  • the inclusion of a small proportion of methanol with the formaldehyde stabilizes it against polymerization and maintains the lnhibiting efiect of formaldehyde.
  • the step which comprises mixing with a fluid containing a sulfide and normally having a corrosive action upon metals, a small proportion of an organic compound at least partially soluble in said fiuid and containing the characteristic aldehyde group, CHO.
  • the step which comprises mixing with a fluid containing hydrogen sulfide and normally having a corrosive action upon metals, a small proportion of an organic compound at least partially soluble in said fluid and containing the characteristic aldehyde group, -CH0.
  • the step which comprises mixing with a sulfide-containing fluid normally having a corrosive action upon metals, a small proportion of an aliphatic aldehyde containing not more than four carbon atoms to the molecule.
  • the step which comprises mixing with a hydrocarbon fluid containing a sulfide and normally having a corrosive action upon metals, a small proportion of formaldehyde.
  • the step which comprises mixing a small proportion of an aldehyde in a liquid containing a sulfide and normally having a corrosive action upon said metals, said aldehyde being at least partially solublein said liquid.
  • the step which comprises mixing a small proportion of an aliphatic aldehyde in a liquid containing a sulfide and normally having a corrosive action upon said metals, said aldehyde being at least partially soluble in said liquid.
  • the method of inhibiting the normal tendency of sulfide-containing aqueous liquids to attack ferrous metals which comprises the step of adding to said liquids a small proportion of a water-soluble aldehyde.
  • the method of treating sulfide-containing well fluids to inhibit the tendency of such well fluids to cause corrosion of metals in the presence of water comprises the step of dispersing in the well fluids within a well a small proportion of an organic compound containing the characteristic aldehyde group, CHO, and which is at least partially water-soluble.
  • the step which comprises mixing with said liquids formaldehyde in amount of the order of about 50 to about 100 parts of formaldehyde per million parts of water in said liquids.
  • the method of inhibiting corrosive attack of ferrous metals within a well bore by well fluids containing hydrocarbons and sulfide brine which comprises dispersing in the fluids within a well bore water-soluble aliphatic aldehyde to the extent of at least ten parts of aldehyde per million parts of said brine produced with said well fluids.
  • the step which comprises admixing with said fluid a small proportion of an aldehyde-liberating substance, the liberated aldehyde being at least partially soluble in said fluid.

Description

Patented Aug. 26, 1947 llnd Oil and Gas Comp notation of Delaware any, Tulsa, Okla., a cor- No Drawing. Application November 15,1945, Serial No. 628,678
16 Claims. (Cl. 252--8.55)
This invention relates to a method of inhibiting the corrosive action of natural gas and oil containing soluble sulfides. More particularly, the invention relates to means for inhibiting the rapid corrosion of well tubing and/or pump rods which has heretofore occurred in producing wells where the well fiuid contains both brine and hydrogen sulfide.
Crude oil containing soluble sulfides is produced in the major producing areas of the United States, and corrosion of oil field equipment is especially severe in areas where brines are produced with sour crudes. These corrosive sulfide brines include alkali sulfides, alkaline earth metal sulfides, and/or acid sulfides such as hydrogen sulfide. Hydrogen sulfide is very soluble in water and brine, causing the brines to become very corrosive to iron and steel equipment due to the active formation of iron sulfide. Hydrogen sulfide corrosion will take place in both acidic sulfide brines and in alkaline sulfide brines with pH below 9. This range embraces virtually all natural brines, since most sulfide brines are acidic within the range of about pH 4.5 to pH 7, those of pH above 7 being uncommon.
In some areas, the production is so corrosive that, after the tubing has been in use for a relatively shorttime, it has been necessary to pull the tubing once a week to inspect for failure. In one case, it was necessary to replace eleven Joints in one string of tubing within eight months because of leaks; in another, a new string of pump rods began parting after thirty-six days of service. It will be apparent, therefore, that the cost of replacing equipment made useless by corrosion and the cost of labor involved are major factors in the future economic operation of many oil fields producing sour crude and brine.
One object of this invention, therefore, is to provide a means for inhibiting the attack of ferrous metals by sour crudes containing brine. Another object is that of providing a class of ma terials for preventing chemical attack of metals by well fluids which is' efiective in both its liquid and vapor phases. A further object of this invention is to provide an effective inhibitor for use in treating produced well fiuids before they enter the well tubing. Still another object is to provide a protective film on metal surfaces. The above and other objects of my invention will become apparent to those skilled in the art as the description thereof proceeds.
For many years generally ineffective efforts have been made by equipment manufacturers and corrosion experts to develop materials capable of withstanding hydrogen sulfide corrosion of the type to which this invention is directed. Various steel alloy tubings were tried under these corrosive conditions without apparent success, since the additional cost of the alloy did not give a corresponding additional length of service. Likewise, coatings of paint and synthetic rubber have failed to prevent metal corrosion when the equipment was put in field use. Zinc plates have been installed on Dump rods and in treaters as a form of cathodic protection, but this has also failed to prevent damage from sulfide corrosion. Chemical treatment of the well fiuids with sodium hydroxide, tannin, sodium silicate and the like in the attempted neutralization of the hydrogen sulfide has been tried in wells without inhibiting this type of corrosion.
In carrying out the present invention, an inhibiting substance, as, for example, an aldehyde, and preferably formaldehyde, is introduced into the producing well, for example between the casing and tubing. Various methods of introducing the inhibitor may be used, but in each case the inhibitor is supplied to the fluids being produced and is carried upwardly through the tubing.
There are many examples of threshold treatments in which organic agents react to produce traces of new compounds, only a relatively minor proportion of the original agents reacting. This appears to be the case with formaldehyde and hydrogen sulfide in brines since the major portion of the hydrogen sulfide content is unafiected. Without being limited to any theory of operation, it appears that by the slow reaction of formaldehyde with a component of the well fiuids, a new compound is produced whichin some manner inhibits corrosion. Thus the formaldehyde apparently reacts with a portion of the hydrogen sulfide in the presence of the brine to produce a, thin protective film of a reaction product on the exposed metal surfaces. A protective film is thereby maintained on the exposed surface of the well equipment, "and this film apparently acts to prevent the corrosion by the brine and hydrogen sulfide while the normally corrosive fiuids are produced.
The phenomenon was studied in the laboratory, and when formaldehyde was added to acidic hydrogen sulfide brines there appeared to be visible signs of chemical reaction. The clear brine became opalescent and a very small amount of insoluble precipitate formed, and the reaction drifted slightly toward neutral. The formaldehyde and hydrogen sulfide reacted, but only a small portion of the dissolved hydrogen sulfide,
since the brine still showed a high content of hydrogen sulfide following the treatment. Chemical reactions are known which involve the combination of formaldehyde with hydrogen sulfide to form mercaptan-like compounds, but when preformed mercaptans, carbon bisulfide. and the like were added to hydrogen sulfide brines they did not act as inhibitors of the hydrogen sulfide corrosion.
Panels of mild steel were immersed in sulfide brine of the North Cowden Field, Ector County, Texas, which showed a corrosion loss of 0.92 pound per square foot per year. Chemical ananlyses of several brine samples from this field showed it to average 40,000 to 60,000 P. P. M. total dissolved solids. A typical analysis showed .the followin Sodium parts per million-- 14,000 Calcium ....do.. 1,600 Magnesi do 500 Sulfat do 3,000 Chlor do 26,000 Bicarbon 110---. 1,000 Sulfide do 1,000 pH value 6 The various samples of brine from this field were found to be acidic, having a range of between about pH 4.5 and about 6.8.- The gas produced contains about 0.5% carbon dioxide and between about and about 8% hydrogen sulfide, which indicates that the brine is nearly saturated with hydrogen sulfide at bottom hole conditions.
Panels of mild steel were cleaned of mill scale and smoothed with the finest grade of emery cloth. These panels were dried and weighed and then suspended in the sulfide brine on glass hooks. After immersion for a known time, the panel was removed from the brine, washed quickly in a 1% hydrochloric acid solution, wiped free of corrosion products with a soft cloth, washed with distilled water, dipped in alcohol, dried rapidly and reweighed. The panels that had been immersed in the formaldehyde-treated brine retained a tarnished-like appearance after being cleaned with dilute hydrochloric acid solution. The weight loss was assumed to be due to hydrogen sulfide corrosion.
In the above laboratory tests, it was established that when formaldehyde was added to the brine in concentrations of 125 P. P. M. and 250 P. P. M., the corrosion loss was found to be 0.15 and 0.11 pound per square foot per year, respectively.
The invention has been used extensively in field tests, and for these tests oil wells where the subsurface equipment had shown severe corrosion conditions were chosen in three different oil fields. Although the laboratory tests indicated excellent inhibition of sulfide corrosion, the field results were even better. Technical grade formaldehyde, sometime referred to as formalin which consists of a 40% aqueous solution of formaldehyde, was injected down the casing at a rate of between about 1 and about 2 quarts per day with the wells being produced through the tubing. These trials were continued over extended periods, after which the pump rods and tubing of several wells in each field were pulled and inspected.
Various methods were tried for injecting formaldehyde lnto the annulus and it was found that a lubricator or drip system was the most satisfactory of any of the methods tried. Thus,
' ever, when the well is subject to being pumped for example, formaldehyde can be stored in a tank or drum of suitable capacity supported at a sufficient height to permit gravity drainage of the formaldehyde into a small measuring container, usually of Z-quart capacity. In the case of wells requiring relatively large amounts of formaldehyde the 55-gallon formaldehyde container may conveniently serve as the storage container, in which case piping connections are made to the bottom end of the drum. When a well produces a small volume of water. quite small treatments of formaldehyde are used, and it is sometimes desirable to dilute the formaldehyde with an equal volume or more of water to facilitate measuring and injecting the chemical. In making the treatment, the measuring container is filled with formaldehyde from the storage drum and then permitted to drain from the measuring container into the annulus between tubing and casing. The batch injection of formaldehyde daily does not adversely affect the efilciency of the treatment, particularly in wells where the fluid level is substantially above the pump suction, and generally offers advantages over continuous injection as regards cost and maintenance of injection equipment. Howoff, continuous introduction of chemical is preferred.
Prior to these field tests, well Number 1 has shown severe corrosion with perforations of the tubing and corrosion of the pump, rods, balls, and seats. New tubing and rods were run in this well just prior to the test, and injection of formaldehyde down the casing was begun and continued for five months, after which the rods, pump, and tubing were pulled for inspection. The examination of the tubing showed no evidence of corrosion on the outside as far down as the upper perforations in the tail pipe below the pump. The interior of the tubing examined at the joints showed no evidence of corrosion; neither were the threads affected. The pump, balls and seats were found in good condition. It appears that the outside of the tubing was protected as far as the top perforations below the pump and the inside of the tubing and the pump rods were protected as the well was. produced. As the inhibitor did not fall below the top perforations, the lower part of the tail pipe was not protected and suffered severe c'orrosion. In fact, the perforated tail pipe below the pump was found to be corroded paper thin in extensive areas. This well produced an average of 30 barrels of sulfide brine per day and had received quarts of formaldehyde during the five months test at a cost for formaldehyde of $12.00. Previously, it had been necessary to replace the balls and seats frequently and sections of the 2000-foot tubing after a years service. Furthermore, it had been necessary to pull the tubing periodically to determine whether or not replacement was yet necessary.
Well Number 2 was subject to frequent rod breaks, there having been 33 rod breaks in the seventeen months preceding the test. Likewise, there had been severe ball and seat corrosion. The well produces 45 barrels of water per day. Just prior to the test, 500 feet of new rods were run in at between the 1100 and 1600 feet level, the section where the most frequent rod breaks had occurred. The injection of formaldehyde down the casing was then begun and continued for five months. At the end of the test, these rods were pulled, and when the 500-foot section of new rods, the ball, seat, and pump were inspected for evidence of corrosion no evidence of corrosion could be detected. The monthly cost of protection during the test was only a small fraction of the monthly cost of the thirty-three pulling jobs and replacements during the seventeen months preceding the test.
A third well producing barrels of water per day had prior to the use of the inhibitor required frequent pulling and the well had not operated longer than eight weeks between pulling jobs when balls and seats and joints of tubing and rods were replaced. During the five months test one quart of formaldehyde was injected daily through a half-inch tube extending to the fluid level in the annulus between the tubing and easing. Asa part of the test, inexpensive "lin pipe had been run for tubing and used pump rods installed.
During the test the well did not require pulling and, in addition, a troublesome emulsion production had been overcome. The rods and pump were pulled at the end of the test, but they did not show any active corrosion.
These foregoing examples ofier conclusive evidence that the injection of an aldehyde inhibits sulfide corrosion of subsurface equipment of oil wells and that there is great economic advantage in the treatment.
. More than 10 P. P. M, of aldehyde: preferably more than about 50 P. P. M. of aldehyde based upon the brine produced, is ordinarily required for protection. Ordinarily not more than 100 P, P. M. will be required. Typically about one quart of U. S. P. formaldehyde (formalin) per 100 barrels of water produced gives adequate inhibitions. Further beneficial results are obtained in some cases by employing larger proportions initiall and decreasing with time the proportion of inhibitor used in subsequent'treatments.
It is contemplated also that the treatment may be applied to crude and product pipe lines, refining equipment, and storage tanks where attack can be expected. The sour hydrocarbons in pipe lines and storage tanks usually carry only a small percentage of water and a proportionally small amount of inhibitor may be effective. In the case of storage tanks, the inhibitor may b introduced into the vapor space and, in general, a, vaporizable material should be used, In some instances it may be beneficial to apply the chemical agent to the surface in a carrier-coating.
The foregoing description has been with particular reference to the use of formaldehyde which is only one example of the class of materials which come within this invention. The invention, however, contemplates generally the use of any inhibitor which has the characteristic aldehyde structure where R represents any hydrocarbon radical, or
- materials producing aldehydes under conditions producing well, for example,
select the chemical agent having the desired properties under the particular conditions of the treatment. In some instances the materials form lower boiling azeotropes with the produced well fluids which aid in the distribution of the chemical treating agent throughout the well. Specifically, tests show that under conditions in which formaldehyde is an effective inhibitor, acetaldehyde in an equimolecular concentration is 80% as effective in combatting the attack of hydrogen sulfide. Benzaldehyde, on the other hand, was found to be only about as effective as formaldehyde.
It is contemplated that the aldehydes may exist in polymerized form such as paraformaldehyde, the inhibiting power of these polymerized aldehydes depending chiefly upon their solubility in the brine. The inclusion of a small proportion of methanol with the formaldehyde stabilizes it against polymerization and maintains the lnhibiting efiect of formaldehyde.
This application is a continuation-in-part of my copending application Serial Number 570,800, filed December 30, 1944. e
The preferred embodiments of my invention described herein are for the purpose of illustration only and are not intended to limit the scope points that make it possible to of the invention defined by the appended claims, since it is apparent that the principles of my invention may be applied generally by those skilled in the art in view of the foregoing description.
I claim:
1. In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a fluid containing a sulfide and normally having a corrosive action upon metals, a small proportion of an organic compound at least partially soluble in said fiuid and containing the characteristic aldehyde group, CHO.
2. In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a fluid containing hydrogen sulfide and normally having a corrosive action upon metals, a small proportion of an organic compound at least partially soluble in said fluid and containing the characteristic aldehyde group, -CH0.
3; In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a sulfide-containing fluid normally having a corrosive action upon metals, a small proportion of an aliphatic aldehyde containing not more than four carbon atoms to the molecule.
4. In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a hydrocarbon fluid containing a sulfide and normally having a corrosive action upon metals, a small proportion of formaldehyde.
5. In the art of inhibiting corrosive attack on ferrous metals, the step which comprises mixing a small proportion of an aldehyde in a liquid containing a sulfide and normally having a corrosive action upon said metals, said aldehyde being at least partially solublein said liquid.
6. In the art of inhibiting corrosive attack on ferrous metals, the step which comprises mixing a small proportion of an aliphatic aldehyde in a liquid containing a sulfide and normally having a corrosive action upon said metals, said aldehyde being at least partially soluble in said liquid.
7. In the art of inhibiting the corrosion of ferrous metal by a liquid comprising hydrogen sulfide and water, the step which comprises commingling with said liquid a small proportion of an organic compound containing an aldehyde group capable of reacting with hydrogen sulfide.
8. The method of inhibiting the normal tendency of a sulfide-containing mixture of aqueous and non-aqueous fluids to attack ferrous metals which comprises the step of adding to said mixture a small proportion of an organic compound containing the characteristic aldehyde group, -CHO, said organic compound being at least partially soluble in said mixture.
9. The method of inhibiting the normal tendency of sulfide-containing aqueous liquids to attack ferrous metals which comprises the step of adding to said liquids a small proportion of a water-soluble aldehyde.
10. The method of inhibiting corrosion of ferrous metals by naturally occurring fluids containing water and a water-soluble sulfide which comprises dispersing in said fluids a small proportion of a water-soluble organic compound containing the characteristic aldehyde group, -CHO.
11. The method of treating sulfide-containing well fluids to inhibit the tendency of such well fluids to cause corrosion of metals in the presence of water which comprises the step of dispersing in the well fluids within a well a small proportion of an organic compound containing the characteristic aldehyde group, CHO, and which is at least partially water-soluble.
12. The method of inhibiting corrosion of ferrous metals by well fluids containing .a watersoluble sulfur compound and water which comprises supplying to the well fluids within a producing well a small proportion of a water-soluble aldehyde.
13. In the art of inhibiting the attack of ferrous metals by liquids comprising a corrosive sulfide and water, the step which comprises mixing with said liquids formaldehyde in amount of the order of about 50 to about 100 parts of formaldehyde per million parts of water in said liquids.
14. The method of inhibiting corrosive attack of ferrous metals within a well bore by well fluids containing hydrocarbons and sulfide brine which comprises dispersing in the fluids within a well bore water-soluble aliphatic aldehyde to the extent of at least ten parts of aldehyde per million parts of said brine produced with said well fluids.
15. The method of inhibiting corrosive attack of ferrous metals within a well by well fluids containing hydrocarbons, brine and hydrogen sulfide which comprises dispersing in said fluids within the well a small amount of formaldehyde.
16. In the art of inhibiting the corrosion of metals by a fluid containing a sulfide, the step which comprises admixing with said fluid a small proportion of an aldehyde-liberating substance, the liberated aldehyde being at least partially soluble in said fluid.
PAUL L. MENAUL.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Smith Sept. 5, 1944
US628678A 1945-11-15 1945-11-15 Inhibiting corrosion Expired - Lifetime US2426318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US628678A US2426318A (en) 1945-11-15 1945-11-15 Inhibiting corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US628678A US2426318A (en) 1945-11-15 1945-11-15 Inhibiting corrosion

Publications (1)

Publication Number Publication Date
US2426318A true US2426318A (en) 1947-08-26

Family

ID=24519863

Family Applications (1)

Application Number Title Priority Date Filing Date
US628678A Expired - Lifetime US2426318A (en) 1945-11-15 1945-11-15 Inhibiting corrosion

Country Status (1)

Country Link
US (1) US2426318A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496354A (en) * 1947-09-11 1950-02-07 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2496594A (en) * 1947-09-11 1950-02-07 Cities Service Oil Co Formaldehyde corrosion inhibitor compositions
US2514508A (en) * 1947-04-05 1950-07-11 Standard Oil Dev Co Corrosion prevention
US2571739A (en) * 1949-10-28 1951-10-16 Pure Oil Co Prevention of corrosion of structural metals by hydrogen sulfide, air, and water
US2596273A (en) * 1947-09-11 1952-05-13 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2596425A (en) * 1947-09-11 1952-05-13 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2602779A (en) * 1947-09-11 1952-07-08 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2605223A (en) * 1950-05-26 1952-07-29 Gulf Oil Corp Chemical treatment of wells for the prevention of corrosion
US2642139A (en) * 1946-04-26 1953-06-16 Stanolind Oil & Gas Co Apparatus for treating wells
US2643227A (en) * 1950-02-21 1953-06-23 Cities Service Oil Co Method of inhibiting corrosion of metals
US2643978A (en) * 1951-02-24 1953-06-30 Cities Service Res & Dev Co Method of inhibiting corrosion of metals
US2646400A (en) * 1951-02-24 1953-07-21 Cities Service Res & Dev Co Method of inhibiting corrosion of metals
US2658036A (en) * 1950-07-19 1953-11-03 Texas Acidizers Inc Composition for preventing deposition and corrosion in oil well equipment
US2882226A (en) * 1954-02-23 1959-04-14 Sinclair Refining Co Corrosion prevention method and composition
US2882227A (en) * 1954-02-23 1959-04-14 Sinclair Refining Co Corrosion prevention method and composition
US3042609A (en) * 1959-10-09 1962-07-03 Petrolite Corp Prevention of corrosion in systems containing a corrosive aqueous medium
US4680127A (en) * 1985-12-13 1987-07-14 Betz Laboratories, Inc. Method of scavenging hydrogen sulfide
US4888121A (en) * 1988-04-05 1989-12-19 Halliburton Company Compositions and method for controlling precipitation when acidizing sour wells
US4949790A (en) * 1988-04-05 1990-08-21 Halliburton Company Compositions and method for controlling precipitation when acidizing sour wells
US5284576A (en) * 1989-08-01 1994-02-08 Petrolite Corporation Method of scavenging hydrogen sulfide from hydrocarbons
US6399547B1 (en) * 1999-10-13 2002-06-04 Schlumberger Technology Corporation Well treatment fluids comprising mixed aldehydes
US6666975B1 (en) 2002-10-04 2003-12-23 Ge Betz, Inc. Method of reducing hydrogen sulfide odor emissions from an aqueous medium
US20040074813A1 (en) * 2000-12-14 2004-04-22 Hardy John Andrew Hydrogen sulphide scavenging method
EP1624089A1 (en) 2004-07-08 2006-02-08 General Electric Company Method of preventing hydrogen sulfide odor generation in an aqueous medium
US20060073112A1 (en) * 2004-10-01 2006-04-06 Whitekettle Wilson K Method of preventing hydrogen sulfide odor generation in an aqueous medium
US20070074316A1 (en) * 2005-08-12 2007-03-29 Cambrios Technologies Corporation Nanowires-based transparent conductors
US20070131625A1 (en) * 2005-12-12 2007-06-14 General Electric Company Methods of inhibiting biogenic sulfide formation in aqueous systems
US20080143906A1 (en) * 2006-10-12 2008-06-19 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US20080259262A1 (en) * 2007-04-20 2008-10-23 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US20090068059A1 (en) * 2007-09-12 2009-03-12 Whitekettle Wilson K Method of preventing hydrogen sulfide odor generation in an aqueous medium
US20100243295A1 (en) * 2006-10-12 2010-09-30 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US20110192633A1 (en) * 2010-02-05 2011-08-11 Cambrios Technologies Corporation Photosensitive ink compositions and transparent conductors and method of using the same
WO2013041654A1 (en) 2011-09-23 2013-03-28 Lonza Inc. Process and composition for the removal of hydrogen sulfide from industrial process fluids
WO2014031537A2 (en) 2012-08-21 2014-02-27 Lonza, Inc. Method of scavenging hydrogen sulfide and/or sulfhydryl compounds
WO2017064267A1 (en) * 2015-10-14 2017-04-20 Haldor Topsøe A/S A process for removing sulphur compounds from process streams

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1151255A (en) * 1913-11-18 1915-08-24 Pyrene Mfg Co Method of rendering corrosive fluids non-corrosive.
US1470225A (en) * 1921-01-17 1923-10-09 Harry N Holmes Removal of scale and rust from iron and steel
US1809041A (en) * 1930-02-03 1931-06-09 Swann Res Inc Inhibitor
US1829705A (en) * 1925-03-12 1931-10-27 Empire Oil & Refining Company Prevention of corrosion in oil wells
US1873084A (en) * 1928-07-19 1932-08-23 Empire Oil And Refining Compan Method of preventing corrosion in oil wells
US1877504A (en) * 1932-06-30 1932-09-13 Dow Chemical Co Treatment of deep wells
US2019599A (en) * 1932-02-06 1935-11-05 Westinghouse Lamp Co Process for producing clad metals
US2297666A (en) * 1940-03-09 1942-09-29 Shell Dev Internal corrosion prevention in conduits
US2355599A (en) * 1941-01-23 1944-08-08 Du Pont Acid metal treating baths
US2357559A (en) * 1942-08-24 1944-09-05 Odessa Chemical And Equipment Method of sweetening sour gas and preventing corrosion of oil producing wells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1151255A (en) * 1913-11-18 1915-08-24 Pyrene Mfg Co Method of rendering corrosive fluids non-corrosive.
US1470225A (en) * 1921-01-17 1923-10-09 Harry N Holmes Removal of scale and rust from iron and steel
US1829705A (en) * 1925-03-12 1931-10-27 Empire Oil & Refining Company Prevention of corrosion in oil wells
US1873084A (en) * 1928-07-19 1932-08-23 Empire Oil And Refining Compan Method of preventing corrosion in oil wells
US1809041A (en) * 1930-02-03 1931-06-09 Swann Res Inc Inhibitor
US2019599A (en) * 1932-02-06 1935-11-05 Westinghouse Lamp Co Process for producing clad metals
US1877504A (en) * 1932-06-30 1932-09-13 Dow Chemical Co Treatment of deep wells
US2297666A (en) * 1940-03-09 1942-09-29 Shell Dev Internal corrosion prevention in conduits
US2355599A (en) * 1941-01-23 1944-08-08 Du Pont Acid metal treating baths
US2357559A (en) * 1942-08-24 1944-09-05 Odessa Chemical And Equipment Method of sweetening sour gas and preventing corrosion of oil producing wells

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642139A (en) * 1946-04-26 1953-06-16 Stanolind Oil & Gas Co Apparatus for treating wells
US2514508A (en) * 1947-04-05 1950-07-11 Standard Oil Dev Co Corrosion prevention
US2496354A (en) * 1947-09-11 1950-02-07 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2496595A (en) * 1947-09-11 1950-02-07 Cities Service Oil Co Formaldehyde corrosion inhibitor compositions
US2496596A (en) * 1947-09-11 1950-02-07 Cities Service Oil Co Formaldehyde corrosion inhibitor compositions
US2496594A (en) * 1947-09-11 1950-02-07 Cities Service Oil Co Formaldehyde corrosion inhibitor compositions
US2596273A (en) * 1947-09-11 1952-05-13 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2596425A (en) * 1947-09-11 1952-05-13 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2602779A (en) * 1947-09-11 1952-07-08 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2571739A (en) * 1949-10-28 1951-10-16 Pure Oil Co Prevention of corrosion of structural metals by hydrogen sulfide, air, and water
US2643227A (en) * 1950-02-21 1953-06-23 Cities Service Oil Co Method of inhibiting corrosion of metals
US2605223A (en) * 1950-05-26 1952-07-29 Gulf Oil Corp Chemical treatment of wells for the prevention of corrosion
US2658036A (en) * 1950-07-19 1953-11-03 Texas Acidizers Inc Composition for preventing deposition and corrosion in oil well equipment
US2646400A (en) * 1951-02-24 1953-07-21 Cities Service Res & Dev Co Method of inhibiting corrosion of metals
US2643978A (en) * 1951-02-24 1953-06-30 Cities Service Res & Dev Co Method of inhibiting corrosion of metals
US2882226A (en) * 1954-02-23 1959-04-14 Sinclair Refining Co Corrosion prevention method and composition
US2882227A (en) * 1954-02-23 1959-04-14 Sinclair Refining Co Corrosion prevention method and composition
US3042609A (en) * 1959-10-09 1962-07-03 Petrolite Corp Prevention of corrosion in systems containing a corrosive aqueous medium
US4680127A (en) * 1985-12-13 1987-07-14 Betz Laboratories, Inc. Method of scavenging hydrogen sulfide
US4888121A (en) * 1988-04-05 1989-12-19 Halliburton Company Compositions and method for controlling precipitation when acidizing sour wells
US4949790A (en) * 1988-04-05 1990-08-21 Halliburton Company Compositions and method for controlling precipitation when acidizing sour wells
US5284576A (en) * 1989-08-01 1994-02-08 Petrolite Corporation Method of scavenging hydrogen sulfide from hydrocarbons
US6024866A (en) * 1989-08-01 2000-02-15 Baker-Hughes Incorporated Method of scavenging hydrogen sulfide from hydrocarbons
US6399547B1 (en) * 1999-10-13 2002-06-04 Schlumberger Technology Corporation Well treatment fluids comprising mixed aldehydes
US20040074813A1 (en) * 2000-12-14 2004-04-22 Hardy John Andrew Hydrogen sulphide scavenging method
US6666975B1 (en) 2002-10-04 2003-12-23 Ge Betz, Inc. Method of reducing hydrogen sulfide odor emissions from an aqueous medium
EP1624089A1 (en) 2004-07-08 2006-02-08 General Electric Company Method of preventing hydrogen sulfide odor generation in an aqueous medium
US20060073112A1 (en) * 2004-10-01 2006-04-06 Whitekettle Wilson K Method of preventing hydrogen sulfide odor generation in an aqueous medium
US20070074316A1 (en) * 2005-08-12 2007-03-29 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
WO2007022226A3 (en) * 2005-08-12 2007-06-21 Cambrios Technologies Corp Nanowires-based transparent conductors
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US20080286447A1 (en) * 2005-08-12 2008-11-20 Cambrios Technologies Corporation Nanowires-based transparent conductors
US20080283799A1 (en) * 2005-08-12 2008-11-20 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
EP1962349A3 (en) * 2005-08-12 2010-04-07 Cambrios Technologies Corporation Nanowires-based transparent conductors
US20070131625A1 (en) * 2005-12-12 2007-06-14 General Electric Company Methods of inhibiting biogenic sulfide formation in aqueous systems
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US20080143906A1 (en) * 2006-10-12 2008-06-19 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US20110088770A1 (en) * 2006-10-12 2011-04-21 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US20100243295A1 (en) * 2006-10-12 2010-09-30 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10244637B2 (en) 2007-04-20 2019-03-26 Cambrios Film Solutions Corporation Composite transparent conductors and methods of forming the same
US20080259262A1 (en) * 2007-04-20 2008-10-23 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US20090068059A1 (en) * 2007-09-12 2009-03-12 Whitekettle Wilson K Method of preventing hydrogen sulfide odor generation in an aqueous medium
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US20110192633A1 (en) * 2010-02-05 2011-08-11 Cambrios Technologies Corporation Photosensitive ink compositions and transparent conductors and method of using the same
WO2013041654A1 (en) 2011-09-23 2013-03-28 Lonza Inc. Process and composition for the removal of hydrogen sulfide from industrial process fluids
US9334182B2 (en) 2011-09-23 2016-05-10 Lonza Inc. Process and composition for the removal of hydrogen sulfide from industrial process fluids
WO2014031537A2 (en) 2012-08-21 2014-02-27 Lonza, Inc. Method of scavenging hydrogen sulfide and/or sulfhydryl compounds
US9752083B2 (en) 2012-08-21 2017-09-05 Lonza, Inc. Method of scavenging hydrogen sulfide and/or sulfhydryl compounds
WO2017064267A1 (en) * 2015-10-14 2017-04-20 Haldor Topsøe A/S A process for removing sulphur compounds from process streams
EA035710B1 (en) * 2015-10-14 2020-07-29 Хальдор Топсёэ А/С Process for removing sulphur compounds from process streams
US10875789B2 (en) 2015-10-14 2020-12-29 Haldor Topsøe A/S Process for removing sulphur compounds from process streams

Similar Documents

Publication Publication Date Title
US2426318A (en) Inhibiting corrosion
US2496595A (en) Formaldehyde corrosion inhibitor compositions
US2756211A (en) jones
MX2010010834A (en) Organic corrosion inhibitor package for organic acids.
US2345611A (en) Process for plugging formations
US3625888A (en) Oxygen scavenger system
US11359126B2 (en) Formulation and method for dissolution of metal sulfides, inhibition of acid gas corrosion, and inhibition of scale formation
US2659693A (en) Process for preventing corrosion of ferrous metals
US2485309A (en) Corrosion prevention
US2426317A (en) Inhibiting well corrosion
US4460482A (en) Composition and method for corrosion inhibition
US2605223A (en) Chemical treatment of wells for the prevention of corrosion
US2602779A (en) Method of inhibiting hydrogen sulfide corrosion of metals
CN109772104B (en) Hydrogen sulfide absorbent for acid washing and use method thereof
US4511001A (en) Composition and method for corrosion inhibition
US2510771A (en) Method of protecting metal surfaces against hydrogen sulfide corrosion
US2691631A (en) Method of inhibiting corrosion
US2560331A (en) Method for preventing corrosion in wells
US2461359A (en) Inhibiting acidic corrosion in wells
US2514508A (en) Corrosion prevention
US2635698A (en) Method for inhibiting corrosion
US2453882A (en) Inhibiting corrosion in wells
US2902447A (en) Composition and method for inhibition of corrosion
US2453881A (en) Inhibition of corrosion in wells
US4556111A (en) Method for inhibiting corrosion