US2375899A - Salts of certain substituted aldimines, etc. - Google Patents

Salts of certain substituted aldimines, etc. Download PDF

Info

Publication number
US2375899A
US2375899A US406034A US40603441A US2375899A US 2375899 A US2375899 A US 2375899A US 406034 A US406034 A US 406034A US 40603441 A US40603441 A US 40603441A US 2375899 A US2375899 A US 2375899A
Authority
US
United States
Prior art keywords
acid
acids
oil
salts
petroleum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US406034A
Inventor
Groote Melvin De
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Petrolite LLC
Original Assignee
Petrolite Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US273222A external-priority patent/US2278163A/en
Application filed by Petrolite Corp filed Critical Petrolite Corp
Priority to US406034A priority Critical patent/US2375899A/en
Application granted granted Critical
Publication of US2375899A publication Critical patent/US2375899A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means

Definitions

  • This invention relates to a new composition of matter consisting of a certain kind of amine salt derived from water-soluble petroleum sulfonic acid or acids of the kind hereinafter described.
  • the object of my invention is to provide a new material or composition of matter that is an efficient solubilizer, particularly in instances where it is desired to make two immiscible materials mutually soluble, and which is also capable of use as a demulsifier for crude oil emulsions, either alone or in admixture with conventional demulsifying agents, such, for example, as demulsifying agents of the modified fatty acid type, or of the alkylated aromatic sulfonic acid ype.
  • Petroleum sulfonic acids are produced from a wide variety of petroleum distillates or petroleum fractions, and in some instances, they are produced from the crude petroleum itself. When produced from crude petroleum itself, it is customary to use crude oil of the naphthene type, crude oil of the paramn type, crude oil of the asphaltic type, and mixtures of said three different types of crude oil.
  • the oil-soluble type or the mahogany acids are characterized by being soluble in oil, especially when anhydrous, and being soluble in oil, even if they contain some dissolved water.
  • Some of the mahogany acids also show limited hydrophilic properties to the extent that either some water can be dissolved in the acids, or they, in turn, may dissolve to some extent in water.
  • their salts such as the sodium, ammonium, or potassium salt, willdissolve in water to give a colloidal sol.
  • Green acids are hydrophile in character, as previously stated. Their hydrophile character has been increased by neutralization with material such as triethanolamine and the like. Such green acid salts having enhanced water solubility as compared with the ordinary alkali salts, have found application in certain arts.
  • the new composition of matter which constitutes my present invention is represented by substituted aldimine salts of hydrophilic, non-hydrophobic green petroleum acids, asexemplified by the salt derived from such green acids by neutralization with a base obtained by reaction between a mole of octylamine and a mole of acetaldehyde.
  • the manufacture of said composition of matter involves nothing more or less than neutralizing one molecule of the selected petroleum acid with one molecule of a suitable base until neutral to methyl orange indicator or other suitable indicators.
  • the selected petroleum sulfonicacid contain not over 15% of water. It is understood.
  • the conventional procedure in employing double decomposition, instead of direct neutralization can be utilized in the manufacture of my new material or composition of matter.
  • the sodium salt of the selected petroleum sulfonic acid can be dissolved in alcohol or other suitable solvent, and the base hydrochloride added so that sodium chloride will precipitate. After filtering off the precipitated sodium chloride, the alcohol can be evaporated and the petroleum sulfonic acid salt recovered.
  • aldehyde for instance, acetaldehyde
  • the imide i. e., the aldo-imine. sometimes known as the aldo-imine, or aldimide
  • the transformation may be indicated in the following manner:
  • T represents a non-aryl monovalent hydrocarbon radical of the kind just described; and in the case of a Schiff's base, or an anil, the composition is similar, except that T represents an aryl residue.
  • aldehydes of higher molecular weight such as heptaldehyde, octaldehyde, lauric aldehyde, palmitic aldehyde, hexahydro-benzaldehyde, phenyl-acetaldehyde, and stearic aldehyde, etc.
  • heptaldehyde is most readily available, in view of its manufacture, by the distillation of castor oil. My preference is to react heptaldehyde with octaylamine, so as to obtain the corresponding octyl aldimine.
  • any suitable non-aryl primary amine can be employed, but I have found, by experience, that generally speaking, it is most desirable to use the most readily available amine, such as monoamylamine, monocyclohexylamine, benzylamine, or octylamine.
  • Amines of higher molecular weight such as oleylamine, may be employed.
  • cyclohexylamine one may, of course, employ homologues obtained by the hydrogenation of methyl aniline or the like, instead of by the hydrogenation of aniline.
  • benzylamine may be looked upon as a derivative of benzy] alcohol, and one may accordingly use other homologues derived from homologues of benzyl alcohol.
  • alkylamines of course, are available; and those employed may contain a hydroxy radical, such as monobutanolamine,
  • An aromatic aldehyde such as benzaldehyde
  • unsaturated aldehydes such as acrolein, crotonaldehyde, or tiglic aldehyde
  • Heterocyclicaldehydes such as furfuraldehyde
  • My preference is to employ an unsubstituted aldehyde having at least five carbon atoms and not more than 8 carbon atoms, such as furfural, benzaldehyde, or heptaldehyde, and further characterized by freedom from an unsaturated aliphatic group.
  • an aralkyl aldehyde such as phenylacetaldehyde. C6H5.CH2CHO, or an alicyclic aldehyde, such as hexahydro-benzaldehyde.
  • the hydroxyl radical may be removed, if desired. by an acylation reaction involving a member of the lower fatty acid series. such as acetic acid. butyric acid, heptoic acid, or the like. having seven carbon atoms or less; or by an acid havin at least 8 carbon atoms and not more than 32 carbon atoms, and of the kind referred to as a detergent-forming acid, such as a fatty acid, including oleic acid, stearic acid.
  • a member of the lower fatty acid series such as acetic acid. butyric acid, heptoic acid, or the like. having seven carbon atoms or less; or by an acid havin at least 8 carbon atoms and not more than 32 carbon atoms, and of the kind referred to as a detergent-forming acid, such as a fatty acid, including oleic acid, stearic acid.
  • acylation reactions instead of employing the acid, one may employ any suitable compound, such as the Similarly, one may acylate the hydroxyl radical or radicals attached to an amine, as in the case of ethanolamine or glycerylamine. In such acylation reactions. precautions must be taken to prevent any undesirable side reactions; as, for instance. if monopropanolamine is esterified with an acid. the formation of a substituted amide or an imide must be prevented. Similar difliculties may arise in the acylation of a material such as aldol.
  • Y is a hydrogen atom or a residue derived from an aldehyde and mav be alkyl, aralkyl. aryl alicyclic, or heterocyclic in nature; and T is a residue derived from a primary am ne and may be alkyl, aralkyl, or alicyclic in nature. or hydroxylated derivatives of these three types, or acylation compounds derived from acids or their functional equivalents. and such hydroxy hydrocarbon radicals.
  • My preferred reagent is manufactured in the manner which has already been suggested in considerable detail.
  • Technically pure heptaldehyde derived from castor oil is cautiously reacted with octylamine, so as to produce the corresponding octyl aldimine; or, for the sake of convenience, will be indicated as octyl heptaldimine.
  • reaction takes place very readily at ordinary temperature, and sometimes must be retarded by means of a cooling agency during the early stages of the reaction. During the latter stages of the reaction, moderate heat may be employed to insure completion. If desired, conventional procedures may be employed to eliminate unreacted aldehyde or unreacted amine. However, if the reaction is conducted carefully. a substantial and generous yield of the desired aldimine is obtained, and it is unnecessary to resort to any purification. It has been previously pointed out that having obtained an amine of the kind desired, it is only necessary to proceed to neutralize the green acid, as previously indicated.
  • hydrophile non-hydrophobe petroleum sulfonic acid or acds of the green acid type vary somewhat; for instance, the molecular weight may vary within the range of 350-500 or thereabouts.
  • these petroleum sulfonic acids may carry some polymerized olefines, free hydrocarbons, or the 40 like, or may even carry a bit of naphthenic acids which represent carboxylated non-sulfonated petroleum acids.
  • these ma- .terlals are well known commercial products and are available in the open market either in the form of the acid itself or in the form of a salt.
  • the aldimine is referred to as basic, to indicate that the basicity is in the neighborhood of that of ammonia, trietha-nolamine, or amylamine. In some cases the basicity may be somewhat greater, in fact, perhaps considerably greater, and in some instances, slightly less. In order to insure such basicity, it is necessary that there be no aryl or aromatic radical attached to the amino nitrogen atom from which the substituted aldimine is produced. In other words, such materials as aniline, naphthylamine, etc.,arenot satisfactory, due to the presence of an aryl radical attached directly to the amino nitrogen atom.
  • the substituted aldimines derived from such aromatic bases result in the formation of Schiifs bases, previously described, which are of such low basicity that they do not form stable salts with the petroleum acids of the kind described. For this reason, the expression basic" is employed to clearly characterize the substituted aldimine.
  • the term sulfonic acid used in the claims is intended to refer to a substance consisting either of a single acid or a mixture of acids.
  • the new process that I have devised for resolving or breaking petroleum emulsions of the water-in-oil type involves subjecting the emulsion to the action of a demulsifier consisting of the above described new material or composition of matter. Said material is used either alone or in admixture with another or with other conventional demulsifying agents, and its method of use is the same as that generally employed in resolving or breaking petroleum emulsions of the water-in-oil type with a chemical demulsifier.
  • the conventional method of using a chemical demulsifier to break a petroleum emul' involves subjecting the emulsion to the action of a demulsifier consisting of the above described new material or composition of matter. Said material is used either alone or in admixture with another or with other conventional demulsifying agents, and its method of use is the same as that generally employed in resolving or breaking petroleum emulsions of the water-in-oil type with a chemical demulsifier.
  • sion consists in introducing the demulsifier into the well in which the emulsion is produced; introducing the demulsifier into aconduit through which the emulsion is flowing; or introducing the demulsifler into a tank in which the emulsion is stored.
  • the emulsion is allowed to stand in a quiescent state, usually in a settling tank and usually at a temperature varying from atmospheric temperature to about 200 F., so as to permit the water or brine to separate from the oil, it being preferable to keep the temperature low enough to prevent the volatilizaticn of valuable constituents of the oil.
  • the amount of demulsifier that may be required to break the emulsion may vary from 1 part of demulsifier to 500 parts of emulsion, up to 1 part of demulsifler to 20,000, or even 30,000 parts of emulsion.
  • the superiority of the reagent or demulsifying agent herein described is based upon its ability -to treat certain emulsions more advantageously and at a somewhat lower cost than is possible with the other available demulsifiers, or conventional mixtures thereof. It is believed that the particular demulsifying agent or treating agent herein described will find comparatively limited application, so far as the majority of oil field emulsions are concerned; but I have found that such a demulsifying agent has commercial value, as it will economically break or resolve oil field emulsions in a number of cases which cannot be treated as easily or at so low a cost with the demulsifying agents heretofore available.
  • a new compound consisting of a water-insoluble salt of a basic substituted aldimine of the formula type:
  • T is an acylated hydroxy hydrocarbon radical in which the acyl group corresponds to a carboxy acid and has not more than 32 carbon atoms; said aldimine salt being obtained from water-soluble non-hydrophobe petroleum sulfonic acid of the green acid type.
  • a new compound consisting of a water-insoluble salt of a basic substituted aldimine of the formula type:
  • H YAI NT in which Y ,is a hydrocarbon radical and T is an acylated hydroxy hydrocarbon radical in which the acyl group corresponds to a carboxy acid and has not more than 32 carbon atoms; said aldimine salt being obtained from watersoluble non-hydrophobe petroleum sulfonic acid of the green acid type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

- atente if? PATENT SALTS OF CERTAIN SUBSTITUTED ALDIMINES, ETC.
Melvin De Groote, University City, Mo., assignor, by mesne assignments, to Petrolite Corporation, Ltd., a corporation of Delaware 4 Claims.
This inventionrelates to a new composition of matter consisting of a certain kind of amine salt derived from water-soluble petroleum sulfonic acid or acids of the kind hereinafter described.
This application is a division of my prior application Serial No. 273,222, filed May 12, 19391 The object of my invention is to provide a new material or composition of matter that is an efficient solubilizer, particularly in instances where it is desired to make two immiscible materials mutually soluble, and which is also capable of use as a demulsifier for crude oil emulsions, either alone or in admixture with conventional demulsifying agents, such, for example, as demulsifying agents of the modified fatty acid type, or of the alkylated aromatic sulfonic acid ype.
Petroleum sulfonic acids are produced from a wide variety of petroleum distillates or petroleum fractions, and in some instances, they are produced from the crude petroleum itself. When produced from crude petroleum itself, it is customary to use crude oil of the naphthene type, crude oil of the paramn type, crude oil of the asphaltic type, and mixtures of said three different types of crude oil.
The art of refining petroleum crude or various fractions, using sulfuric acid of various strengths, as well as monohydrate and fuming acid, is a well known procedure. fining procedure, petroleum sulfonic acids have been produced as by-products. For instance, in removing the olefinic components, it has been common practice to use sulfuric acid; so as to polymerize the olefines or convert them into sulfonic acids, which are subsequently removed. Likewise, in the production of white oil or highly refined lubricating oils, it has been customary to treat with fuming sulfuric acid, so as to eliminate certain undesirable components.
In recent years, certain mineral oil fractions have been treated with sulfuric acid with the In such conventional reprimary object of producing petroleum sulfonic herein referred to as water-soluble, without any effort to indicate whether the solution is molecular or colloidal in nature. The green acids, as indicated by their name, frequently give an aqueous solution having a dark green or grey-green appearance. They generally appear as a component of the acid draw-off, and do not remain behind dissolved in the oil fraction which has been subjected to sulfuric acid treatment. The green acids are not soluble in oil, even when substantially anhydrous, and certainly are not soluble in oil when they contain as much as 15% of water. Similarly, their salts obtained by neutralization with a strong solution of caustic soda, caustic potash, or ammonia, are not oil soluble. For convenience of classification, the ammonium salt will be considered as an alkali salt.
In contradistinction to the hydrophile green acids, there occurs, as in the manufacture of medicinal white oil, the oil-soluble type or the mahogany acids. These mahogany acids are characterized by being soluble in oil, especially when anhydrous, and being soluble in oil, even if they contain some dissolved water. Some of the mahogany acids also show limited hydrophilic properties to the extent that either some water can be dissolved in the acids, or they, in turn, may dissolve to some extent in water. In some instances their salts, such as the sodium, ammonium, or potassium salt, willdissolve in water to give a colloidal sol. However, regardless of the presence of any hydrophilic properties whatsoever, they always have a characteristic hydrophobe property, as indicated by the fact that the substantially anhydrous form, for instance, their alkali salts containing 512% water, will dissolve in oil. This clearly distinguishes them from the green acids previously referred to, because the green acids in similar form containing the same amount of water, for example, will not dissolve in oil. The green acids, as such, are essentially hydrophilic and non-hydrophobic in character.
The utility of the mahogany acids in various arts has been enhanced by increasing their water solubility; for instance, converting the mahogany acids into hydroxy alkylamine salts. On the other hand, as far as I am aware, no valuable product of commerce has resulted from decreasing the water solubility of the mahogany acids by the addition of some oil-soluble basic amine, such, for example, as triamylamine. The triamylamine salts of mahogany acids, for example, are completely devoid of any solubility in water which the alkali salts may have exhibited and show, as would be expected, an increased solu- .bility in hydrophobe solvents.
Green acids are hydrophile in character, as previously stated. Their hydrophile character has been increased by neutralization with material such as triethanolamine and the like. Such green acid salts having enhanced water solubility as compared with the ordinary alkali salts, have found application in certain arts.
I have found that when green acids, i. e., the oil-insoluble type, are neutralized with a substituted aldimine, as hereinafter described, so as to produce a water-insoluble product that the resulting material, even though it does not exhibit any marked oil solubility, especially when it contains 5-10% of water, still has pronounced value as a demulsifier for oil field emulsions, either when used alone, or in conjunction with other known demulsifying agents. I employ a substituted aldimine 0f the kind derivable most readily by reactions involving an aldehyde and an amine other than an arylamine. Details as to the manufacture and nature of such bases are hereinafter described. I have also found that such substituted aldimine salts of green acids will mix in with a hydrophobe material and a hydrophile material, so as to produce a homogeneous mixture. The effectiveness of the above described material or composition of matter as a demulsifying agent for oil field emulsions appears to be related to some factors other than its solubility characteristics.
The new composition of matter which constitutes my present invention is represented by substituted aldimine salts of hydrophilic, non-hydrophobic green petroleum acids, asexemplified by the salt derived from such green acids by neutralization with a base obtained by reaction between a mole of octylamine and a mole of acetaldehyde. The manufacture of said composition of matter involves nothing more or less than neutralizing one molecule of the selected petroleum acid with one molecule of a suitable base until neutral to methyl orange indicator or other suitable indicators. For purposes of convenience, I prefer that the selected petroleum sulfonicacid contain not over 15% of water. It is understood. of course, that, the conventional procedure in employing double decomposition, instead of direct neutralization can be utilized in the manufacture of my new material or composition of matter. For instance, the sodium salt of the selected petroleum sulfonic acid can be dissolved in alcohol or other suitable solvent, and the base hydrochloride added so that sodium chloride will precipitate. After filtering off the precipitated sodium chloride, the alcohol can be evaporated and the petroleum sulfonic acid salt recovered.
It so happens that the commonest example of a substituted aldimine represents a type of material not employed in the present instance. Reference is made to the type of material frequently known as a Schiff's base, and sometimes, in order to emphasize its aromatic character as an anil. Such materials are obtained by reactions between an arylamine and an aldehyde. which may or may not be aromatic in nature. Reference is made to the following statement, which is found in Textbook of Organic Chemistry, by Richte 1938, page 502:
The reaction of primary aryl amines and aldehydes leads to a type compound referred to as a Schiffs base or azomethine, substances which contain the structure CH=N--. Acetaldehyde and aniline react to form ethylidine aniline.
If an aldehyde, for instance, acetaldehyde, is converted into the imide, i. e., the aldo-imine. sometimes known as the aldo-imine, or aldimide, then the transformation may be indicated in the following manner:
I; H CHI-6:0 cm-=mr Obviously, if the imino hydrogen atom is replaced by a suitable substituent, 'for instance, an alkyl radical, an aralkyl radical, or an alicyclic radical, then one obtains a compound indicated by the following formula:
in which T represents a non-aryl monovalent hydrocarbon radical of the kind just described; and in the case of a Schiff's base, or an anil, the composition is similar, except that T represents an aryl residue. Obviously, one need not depend on reactions involving formaldehyde, for instance, or acetaldehyde; but one may employ aldehydes of higher molecular weight, such as heptaldehyde, octaldehyde, lauric aldehyde, palmitic aldehyde, hexahydro-benzaldehyde, phenyl-acetaldehyde, and stearic aldehyde, etc. As a matter of fact, when aldehydes of low molecular weight are employed, there is a greater tendency to obtain reactions other than the desired substituted aldimine. Note, for instance, the following statement found in Richter's Organic Chemistry, Allott, volume 1, third (1934) edition, page 250:
By the use of-aldehydes of higher molecular weight, the tendency to polymerization on the part of the reaction products of primary amines and aldehydes diminishes and Schiffs bases are formed.
Methylisobutylideneamine,
(CH3) 2CH.CH=N.CH3 B. P. 63.
Note in this instance the term "Schiffs base is not limited to aromatic materials such as anils, but is extended to non-aryl compounds.
Commercially, heptaldehyde is most readily available, in view of its manufacture, by the distillation of castor oil. My preference is to react heptaldehyde with octaylamine, so as to obtain the corresponding octyl aldimine.
In the manufacture 'of such compounds, any suitable non-aryl primary amine can be employed, but I have found, by experience, that generally speaking, it is most desirable to use the most readily available amine, such as monoamylamine, monocyclohexylamine, benzylamine, or octylamine. Amines of higher molecular weight, such as oleylamine, may be employed. Instead of cyclohexylamine, one may, of course, employ homologues obtained by the hydrogenation of methyl aniline or the like, instead of by the hydrogenation of aniline. Similarly, benzylamine may be looked upon as a derivative of benzy] alcohol, and one may accordingly use other homologues derived from homologues of benzyl alcohol. A wide variety of alkylamines, of course, are available; and those employed may contain a hydroxy radical, such as monobutanolamine,
monopentanolamine, monoethanolamine, hydroxyether amine (OHC2H4OC2H4NH2), and the acyl chloride. anhydride. etc.
like. My preference, however, is to use nonhydroxylated nonaryl amines. Hexadecylamine and octadecylamine may be employed.
An aromatic aldehyde, such as benzaldehyde, may be employed; unsaturated aldehydes, such as acrolein, crotonaldehyde, or tiglic aldehyde, may be employed, but are objectionable, due to the fact that they enter into an entirely different series of reactions with primary amines. Heterocyclicaldehydes, such as furfuraldehyde, may be employed. Similarly, one may employ hydroxy aldehydes, such as aldol; but here again, the use of such a substituted aldehyde is objectionable. in that another series of undesirable reactions may take place. My preference is to employ an unsubstituted aldehyde having at least five carbon atoms and not more than 8 carbon atoms, such as furfural, benzaldehyde, or heptaldehyde, and further characterized by freedom from an unsaturated aliphatic group. One may also employ an aralkyl aldehyde, such as phenylacetaldehyde. C6H5.CH2CHO, or an alicyclic aldehyde, such as hexahydro-benzaldehyde.
If an aldehyde is employed in which'an alcoholic hydroxyl radical is present. then either prior to or after the formation of the aldimine, the hydroxyl radical may be removed, if desired. by an acylation reaction involving a member of the lower fatty acid series. such as acetic acid. butyric acid, heptoic acid, or the like. having seven carbon atoms or less; or by an acid havin at least 8 carbon atoms and not more than 32 carbon atoms, and of the kind referred to as a detergent-forming acid, such as a fatty acid, including oleic acid, stearic acid. and the like; or a petroleum acid, such as a naphthenic acid, or a resin acid, such as abietic ac d. In such acylation reactions, instead of employing the acid, one may employ any suitable compound, such as the Similarly, one may acylate the hydroxyl radical or radicals attached to an amine, as in the case of ethanolamine or glycerylamine. In such acylation reactions. precautions must be taken to prevent any undesirable side reactions; as, for instance. if monopropanolamine is esterified with an acid. the formation of a substituted amide or an imide must be prevented. Similar difliculties may arise in the acylation of a material such as aldol. as, for example, a condensation of the type commonly known as an aldol condensation. For this reason. in most instances. if it is deemed undesirable to remove an alcoholiform hydroxyl from the substituted aldimine, such hydroxyl should be removed after the substituted aldimine has been formed.
The substituted aldimine employed in the present process may be characterized by the formula:
in which Y is a hydrogen atom or a residue derived from an aldehyde and mav be alkyl, aralkyl. aryl alicyclic, or heterocyclic in nature; and T is a residue derived from a primary am ne and may be alkyl, aralkyl, or alicyclic in nature. or hydroxylated derivatives of these three types, or acylation compounds derived from acids or their functional equivalents. and such hydroxy hydrocarbon radicals.
My preferred reagent is manufactured in the manner which has already been suggested in considerable detail. Technically pure heptaldehyde derived from castor oil is cautiously reacted with octylamine, so as to produce the corresponding octyl aldimine; or, for the sake of convenience, will be indicated as octyl heptaldimine.
The reaction takes place very readily at ordinary temperature, and sometimes must be retarded by means of a cooling agency during the early stages of the reaction. During the latter stages of the reaction, moderate heat may be employed to insure completion. If desired, conventional procedures may be employed to eliminate unreacted aldehyde or unreacted amine. However, if the reaction is conducted carefully. a substantial and generous yield of the desired aldimine is obtained, and it is unnecessary to resort to any purification. It has been previously pointed out that having obtained an amine of the kind desired, it is only necessary to proceed to neutralize the green acid, as previously indicated.
Obviously, as to the preparation of the preferred reagent, no additional information is required. However, it may be well to point out that I prefer to use-a green acid selected so that it is relatively free from inorganic acids, such as sulfurous acid and sulfuric acid, and containng not over 15% water. and preferably as little unsulfonated hydrocarbon material as possible. A convenient amount of such material. for instance, a thousand pounds, is neutralized with octyl heptaldamine previously described, so that the resultant compound indicates neutral or slightly basic to methyl orange, or some other acceptable indicator.
It may be well to point out that hydrophile non-hydrophobe petroleum sulfonic acid or acds of the green acid type vary somewhat; for instance, the molecular weight may vary within the range of 350-500 or thereabouts. Naturally, these petroleum sulfonic acids may carry some polymerized olefines, free hydrocarbons, or the 40 like, or may even carry a bit of naphthenic acids which represent carboxylated non-sulfonated petroleum acids. As previously stated, these ma- .terlals are well known commercial products and are available in the open market either in the form of the acid itself or in the form of a salt.
In the claims the aldimine is referred to as basic, to indicate that the basicity is in the neighborhood of that of ammonia, trietha-nolamine, or amylamine. In some cases the basicity may be somewhat greater, in fact, perhaps considerably greater, and in some instances, slightly less. In order to insure such basicity, it is necessary that there be no aryl or aromatic radical attached to the amino nitrogen atom from which the substituted aldimine is produced. In other words, such materials as aniline, naphthylamine, etc.,arenot satisfactory, due to the presence of an aryl radical attached directly to the amino nitrogen atom. The substituted aldimines derived from such aromatic bases result in the formation of Schiifs bases, previously described, which are of such low basicity that they do not form stable salts with the petroleum acids of the kind described. For this reason, the expression basic" is employed to clearly characterize the substituted aldimine. The term sulfonic acid used in the claims, is intended to refer to a substance consisting either of a single acid or a mixture of acids.
The new process that I have devised for resolving or breaking petroleum emulsions of the water-in-oil type involves subjecting the emulsion to the action of a demulsifier consisting of the above described new material or composition of matter. Said material is used either alone or in admixture with another or with other conventional demulsifying agents, and its method of use is the same as that generally employed in resolving or breaking petroleum emulsions of the water-in-oil type with a chemical demulsifier. Briefly stated, the conventional method of using a chemical demulsifier to break a petroleum emul'. sion consists in introducing the demulsifier into the well in which the emulsion is produced; introducing the demulsifier into aconduit through which the emulsion is flowing; or introducing the demulsifler into a tank in which the emulsion is stored. After treatment the emulsion is allowed to stand in a quiescent state, usually in a settling tank and usually at a temperature varying from atmospheric temperature to about 200 F., so as to permit the water or brine to separate from the oil, it being preferable to keep the temperature low enough to prevent the volatilizaticn of valuable constituents of the oil. The amount of demulsifier that may be required to break the emulsion may vary from 1 part of demulsifier to 500 parts of emulsion, up to 1 part of demulsifler to 20,000, or even 30,000 parts of emulsion.
I desire to point out that the superiority of the reagent or demulsifying agent herein described is based upon its ability -to treat certain emulsions more advantageously and at a somewhat lower cost than is possible with the other available demulsifiers, or conventional mixtures thereof. It is believed that the particular demulsifying agent or treating agent herein described will find comparatively limited application, so far as the majority of oil field emulsions are concerned; but I have found that such a demulsifying agent has commercial value, as it will economically break or resolve oil field emulsions in a number of cases which cannot be treated as easily or at so low a cost with the demulsifying agents heretofore available.
I claim:
1. A new compound consisting of a water-insoluble salt of a basic substituted aldimine of the formula type:
in which T is an acylated hydroxy hydrocarbon radical in which the acyl group corresponds to a carboxy acid and has not more than 32 carbon atoms; said aldimine salt being obtained from water-soluble non-hydrophobe petroleum sulfonic acid of the green acid type.
3. A new compound consisting of a water-insoluble salt of a basic substituted aldimine of the formula type:
H YAI=NT in which Y ,is a hydrocarbon radical and T is an acylated hydroxy hydrocarbon radical in which the acyl group corresponds to a carboxy acid and has not more than 32 carbon atoms; said aldimine salt being obtained from watersoluble non-hydrophobe petroleum sulfonic acid of the green acid type.
MELVIN DE GROOTE.
US406034A 1939-05-12 1941-08-08 Salts of certain substituted aldimines, etc. Expired - Lifetime US2375899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US406034A US2375899A (en) 1939-05-12 1941-08-08 Salts of certain substituted aldimines, etc.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US273222A US2278163A (en) 1939-05-12 1939-05-12 Aldimine salts of petroleum sulphonic acids
US406034A US2375899A (en) 1939-05-12 1941-08-08 Salts of certain substituted aldimines, etc.

Publications (1)

Publication Number Publication Date
US2375899A true US2375899A (en) 1945-05-15

Family

ID=26956026

Family Applications (1)

Application Number Title Priority Date Filing Date
US406034A Expired - Lifetime US2375899A (en) 1939-05-12 1941-08-08 Salts of certain substituted aldimines, etc.

Country Status (1)

Country Link
US (1) US2375899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005847A (en) * 1956-04-17 1961-10-24 Bray Oil Co Amine sulfonates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005847A (en) * 1956-04-17 1961-10-24 Bray Oil Co Amine sulfonates

Similar Documents

Publication Publication Date Title
US2243329A (en) Process for breaking petroleum emulsions
US2468180A (en) Process for breaking petroleum emulsions
US2270681A (en) Salts of certain methylene diamines with certain petroleum suphonic acids
US2400394A (en) Process for breaking petroleum emulsions
US2262743A (en) Process for breaking petroleum emulsions
US2278163A (en) Aldimine salts of petroleum sulphonic acids
US2353694A (en) Process for breaking petroleum emulsions
US2375899A (en) Salts of certain substituted aldimines, etc.
US2344539A (en) Salts of certain methylene diamines with certain petroleum sulphonic acids
US2226122A (en) Process for resolving petroleum emulsions
US2543223A (en) Processes for breaking petroleum emulsions
US2167349A (en) Process for breaking petroleum emulsions
US2226121A (en) Process for resolving petroleum emulsions
US2372257A (en) Process for breaking petroleum emulsions
US2231753A (en) Process for resolving petroleum emulsions
US2369817A (en) Basic acylated cyclic diamine
US2153744A (en) Process for resolving petroleum emulsions
US2385969A (en) Process for breaking petroleum emulsions
US2250407A (en) Process for breaking petroleum emulsions
US2050925A (en) Process for breaking petroleum emulsions
US2335262A (en) Process for breaking petroleum emulsions
US2363504A (en) Process for breaking petroleum emulsions
US2153745A (en) Process for resolving petroleum emulsions
US2363505A (en) Process for breaking petroleum emulsions
US2154423A (en) Composition of matter and process for resolving petroleum emulsions