US2281843A - Metal film resistor - Google Patents

Metal film resistor Download PDF

Info

Publication number
US2281843A
US2281843A US317154A US31715440A US2281843A US 2281843 A US2281843 A US 2281843A US 317154 A US317154 A US 317154A US 31715440 A US31715440 A US 31715440A US 2281843 A US2281843 A US 2281843A
Authority
US
United States
Prior art keywords
carrier
palladium
resistance
metal
resinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US317154A
Inventor
Joseph W Jira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONTINENTAL CARBON Inc
Original Assignee
CONTINENTAL CARBON Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23232347&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2281843(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CONTINENTAL CARBON Inc filed Critical CONTINENTAL CARBON Inc
Priority to US317154A priority Critical patent/US2281843A/en
Application granted granted Critical
Publication of US2281843A publication Critical patent/US2281843A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/20Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by pyrolytic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49101Applying terminal

Definitions

  • My invention relates in general to resistance units and more particularly to precision resistance units and the process for making the same.
  • a precision resistance unit must possess the following requirements:
  • Resistors must not deviate more than 1.0% from their initial value when conditioned 100 hours at a relative humidity of 90% at 40 C.
  • the minimum voltage characteristic may vary anywhere from 0.1% to 1.0% for values below 100,000 ohms; 1.0% to 5.0% for values below 500,000 ohms and from 2.0% to 10.0% for values above 500,000 ohms.
  • the minimum temperature coeflicient of resistance may vary anywhere from 0.07 to +0.05% per degree centigrade. In other words, the resistance in ohms of any given value may change from -'7.0% to +50% for a temperature variation of centigrade.
  • the low, no load humidity characteristic was found to vary anywhere from -15.0% to +20.0% in 100 hours.
  • wire wound resistors increase in size with resistance value, so that resistors varying in value from 200,000 to 1,000,000 ohms are not only excessively large, but prohibitive in price.
  • resistors varying in value from 200,000 to 1,000,000 ohms are not only excessively large, but prohibitive in price.
  • the wire wound resistors are expected to remain reasonably stable under varying atmospheric conditions, the wire must be protected with vitreous enamel fused upon the surface of the unit at very high temperatures. High vitrificating temperatures cause alterations in the metal-crystal structure within the wire comprising the resistance unit and consequently hot spots appear which seriously impair the operating characteristics of the resistor.
  • Noise may vary between the limits of 0.2
  • the shift in resistance may be in either a positive or negative direction depending upon the electrical parameters of the wire wound unit. ,This shift in high frequency resistance may be as much as 60% from the original measured value.
  • An object of my invention is to construct a resistance' unit possessing the good qualities of each of the carbon composition resistors and the wire wound resistors.
  • Another object of my invention is to construct a resistance unit possessing all of the qualifications of a precision resistor.
  • Another object of my invention is to construct the resistance element part of the resistor by atomically depositing a thin film of a metal upon the surface of a non-conductive carrier,
  • Another object of my invention is to construct the resistance element part of the resistor by coating a non-conductive carrier with an organocompound of a metal and heating same to atomi cally deposit a thin film of the metal upon the non-conductive carrier and to oxidize the remaining portion of the organo-c'ompound of the metal.
  • Another object of my invention is to deposit metal upon the end portions or upon spaced surfaces of the thin film of metal to serve as a connecting area for the terminals.
  • Another object of my invention is to provide a method for controlling the thickness of the thin metal film deposited, upon the non-conductive carrier.
  • Figure 1 shows a longitudinal view of a resistance unit embodying the features of my invention, partly in section along the line l-l of Figure 8;
  • Figures 2 to 8, inclusive show the steps by which my invention is constructed, Figure 8 being a section taken transversely through the terminal connection.
  • my resistance unit comprises a non-conductive carrier III, a thin metal film H deposited upon the outer surface of the non-conductive carrier I 0, a body of thin metal deposit l2 upon each end portion of the thin metal film II, and a terminal member I: having a lead I connected to the body of the thin metal deposits l2 upon each end of the resistor.
  • the non-conductive carrier I0 may be constructed of any suitable material and may comprise a rod or a hollow tube as shown in Figure 2 and be made of ceramic material which will withstand thermal shock and which possesses a very low moisture absorbing characteristic. In actual'practice, I find that a ceramic material like Isolantite or its equivalent is suitable and preferable.
  • the thin metal film I l is atomically deposited upon the outer surface'of the non-conductive carrier III by coating the outer surface with an organo-compound of a substantially stable and substantially non-oxidizable metal and heating the same.
  • the outer surface is sub jected to a degreasing or cleaning operation. This may be done by suspending or immersing the ceramic tube into a boiling solution of trisodium phosphate for about 10 minutes. It has also been found through careful research that numerous other chemical cleaning agents are adapted for use in the cleaning operation. Outstanding among these are ethylene di-chloride and tetrachloro-ethane.
  • the ceramic tube Ill after it is removed from the cleaning solution, is washed five or six times in clear running water and then thoroughly dried.
  • substantially stable and substantially non-oxidizable metal comprises those metals principally of the noble group although not limited thereto.
  • the metal must remain substantially stable and be substantially non-oxidizable under high temperatures sufficient to burn out the residue remaining after deposition of the metal upon the ceramic tube.
  • the resinates Under the general class of compounds known as the resinates are included the constituents of natural occurring resinates, resins, exudations from trees and synthetic preparations.
  • the metal is substituted into or added to the organeresinate. Of the metals, I find that palladium or platinum may be substituted into or added to the resinate, giving substantially palladium or platinum resinate. My invention will be described with palladium resinate but it will be understood that it includes platinum resinate or its equivalent.
  • the palladium resinate is evenly dispersed in the solvent, and when applied to the ceramic carrier gives in eflect a reduced amount of palladium.
  • the suitable solvents I find that a high boiling keadding a sufficient amount of solvent to the palladium resinate so that the amount of palladium is substantially one percent.
  • the coating comprising the palladiu resinate and the solvent, which is represented by the reference character in Figure 3, is applied to the ceramic carrier 10, it is then permitted to dry in air for about 30 minutes at a temperature of approximately 20 to degrees centigrade. The thickness of the coating is exaggerated in the drawing.
  • the ceramic carrier and coating is given its first stage of heat treatment to chemically deposit the palladium upon the carrier.
  • the precipitation of pure metallic palladium from the palladium resinate starts at temperatures ranging anywhere from approximately 200 to 400 centigrade. Careful study shows that a very fine cubical crystal formation of the precipitated palladium occurs at 300 centigrade and that the precipitation progresses with time until approximately a 100% metallic deposit results.
  • the time was found to vary anywhere from 15 to minutes, depending upon the surface area of the ceramic carrier and the thickness of the applied coating.
  • Accompanying the precipitation of palladium is the formation of ash on the carrier mixed with the pure palladium which comprises essentially carbon as the residue of the applied coating and is represented by the reference character 2
  • the second stage heating is to completely oxidize the ash or residue and to insure a thorough precipitation of the palladium.
  • the second stage heating may range from 400 to 750 centigrade for about one hour.
  • Figure 5 shows the ceramic tube after the residue is thoroughly oxidized leaving the thin palladium film II which may be characterized as the basic resistance.
  • the metallic film possesses unusually good bonding properties. In fact, the metal bonding characteristic is such thatthe only means of removal from the ceramic carrier is by grinding. The ceramic and the deposited metal are virtually one.
  • the next general series of steps in my process is to connect the terminal members 13 having leads H to the end portions of the thin metal film H.
  • I first deposit a body of thin metal 12 upon the end portions of the palladium film II as shown in Figures 1 and 7.
  • the body of thin metal I! may be physically deposited upon the end portions of the palladium film II by coating the end portions with a band of colloidal silver as indicated by the reference character 22 in Figure 6 and heating the same at approximately 500 to 600 centigrade for 30 minutes or thereabouts.
  • the terminal members l3 comprising preferably thin strips of copper metal are clamped thereon as shown in Figures 1 and 8, making a good electrical contact with the silver.
  • the terminal members 13 may be securely clamped about the silver deposit by fastening the free ends together by means of a rivet I5.
  • the leads 14 may be connected to the terminal members I3 by the same rivets that hold the free end of the terminal members I3 together. The connection at the rivet may also be soldered.
  • the silver is ideally suited in this part of the process since it possesses a low thermo-electric effect against either the palladium or the copper metal of the terminal members.
  • This type of contact is of extremely low resistance, thus reflecting its advantages in producing a resistor possessing a minimum noise and' voltage characteristic.
  • the resistance unit may or may not be spiralled depending upon the resistance value desired.
  • the :resistor is then given a coat of moisture proof lacquer which when dried completes the process.
  • the heating to burn out the ash or residue is below the melting point of the precipitated metal and also below the oxidizing temperature of the metal, giving a good stable and continuous film.
  • the initial basic resistance value of the palladium film ll may be controlled by the number of coats applied to the ceramic carrier or by varying the amount of the palladium resinate in the applied coating.
  • an additional number of coatings may be added at different stages in the process.
  • the additional coatings may be applied on top of the coating 20 in Figure 3, after each applied coating is allowed to dry. After the several coatings are dried, the process is then carried out as above explained.
  • an additional coating may be applied on top of the coating 2
  • an additional coating may be applied on top of the metal film H in Figure 5, which means that two first stage and two second stage firings are required. Under the third example, any number of coatings may be applied by repeating the procedure. After the additional coatings have been added under the third example, the general process is then completed as previously described.
  • the resistance may also be varied by spiralling, that is, by grinding a very narrow helical groove along the periphery of the carrier, giving a helical path for the current to flow.
  • This spiralling procedure has the effect of increasing the total effective resistive path and by doing so increases the resistance value of the unit manifold.
  • a resistance having a basic value of 1000, 5000 and 10,000 ohms when ground with a helical path equally along the periphery of the carrier for a period of ten revolutions will produce 100,000, 500,000 and 1,000,000 ohms respectively. Therefore, by utilizing five or six basic values a great number of various resistance values are possible.
  • gas carbon Since gas carbon is now chiefly employed in carbon composition type resistors, it exerts a certain amount of influence upon the water repellency of the manufactured unit. Since gas carbon is hygroscopic it prevents the manufacture of a resistor possessing a stable shelf life or a low humidity characteristic, even if thoroughly impregnated in wax under reduced pressure.
  • the new resistor not only possessed all the desirable electrical characteristics of a wire wound unit, but for a given value and wattage ratin was one-tenth the size, a factor of commercial importance.
  • the applied metallic-organo film had to be evenly distributed over the surface of the carrier, otherwise areas of uneven density appeared over the periphery of the unit and caused erratic resistance fluctuations during the spiralling operation.
  • the deposited metallic film II had to be of sufficient thickness to prevent discontinuous electrical paths resulting from a difference in the linear coefficients of expansion of the metal film and the ceramic carrier.
  • a resistance unit comprising the steps of providing a non-conduc tive carrier, providing a metallic organo-compoundcomprising an organic resinate of a substantially stable and substantially non-oxidizable metal, coating the non-conductive carrier with the metallic organo-compound, heating the coated non-conductive carrier to first atomically deposit a thin continuous film of the metal upon the non-conductive carrier and to secondly oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
  • a resistance unit comprising the steps of providing a non-conductive carrier, providing a compound of palladium resinate, coating the non-conductive carrier with said compound, heating the coated non-conductive carrier to first atomically deposit a thin film of the palladium upon the non-conductive carrier and to secondly oxidize the remaining portion of thesaid compound, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
  • a resistance unit comprising the steps of providing a non-conductive carrier, providing a compound of platinum resinate, coating the non-conductive carrier with said compound, heating the coated non-conductive carrier to first atomically deposit a thin film of the platinum upon the non-conductive carrier and to secondly oxidize the remaining portion of the said compound, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the platinum.
  • the process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a palladium resinate, cleaning the surface of the carrier, coating the carrier with said palladium resinate, first heating the coated carrier in a temperature range from 200 degrees to' 400 degrees centigrade to atomically deposit a thin film of the palladium upon the carrier, secondly heating the coated carrier in a temperature range from 400 degrees to 750 degrees centigrade to oxidize the remaining portion of said palladium resinate, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
  • a resistance unit comprising the steps of providing a non-conduc tive carrier, providing a metallic organo-compound comprising an organic resinate of a substantially stable and substantially non-oxidizable metal, cleaning the surface ofthe carrier, coating the non-conductive carrier with the metallic organo-compound, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin continuous film of the metal upon the carrier, secondly heating the coat ed carrier in a relatively high temperature range to oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
  • the process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a metallic organo-compound comprising an organic resinate of a substantially stable and substantially non-oxidizable metal, adding a solvent to the metallic organo-compound to reduce theconcentration of the metal, cleaning the surface of the carrier, coating the non-conductive carrier with the metallic organo-compound and the solvent, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin continuous film of the metal upon the carrier, secondly heating the coated carrier in a relative- 1y high temperature range to oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
  • the process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a palladium resinate, adding a solvent to the palladium resinate to reduce the concentration of the palladium, cleaning the surface of the carrier, coating the carrier with the palladium resinate and the solvent, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin film of the palladium upon the carrier, secondly heating the coated carrier in a relatively high temperature range to oxidize the remaining portion of the palladium resinate, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
  • a resistance unit comprising the steps of providing a non-conductive carrier, providing a platinum-resinate, adding a solvent to the platinum resinate to reduce the concentration of the platinum, cleaning the surface of the carrier, coating the carrier with the platinum resinate and the solvent, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin film of the platinum upon the carrier, secondly heating the coated carrier in a relatively high temperature range to oxidize the remaining portion of the platinum resinate, providing terminals for the resistance unit,*and connecting the terminals to spaced surfaces of the thin film of the platinum.
  • the process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a palladium resinate, adding a high boiling ketone to the palladium resinate to reduce the concentration of the palladium therein to substantially one percent, cleaning the surface of the carrier, coating the carrier with the palladium resinate and the kBtOne, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin film of the palladium upon the carrier, secondly heating the coated carrier in a relatively high temperature range to oxidize the remaining portion of the palladium resinate, providing a silver colloid, applying the silver colloid to spaced surfaces of the thin film of palladium, thirdly heating the carrier, the thin film of palladium and the silver colloid to physically deposit the silver upon the said spaced surfaces, providing terminals for the resistance unit, and connecting the terminals to the deposited silver.
  • the process of constructing a resistance unit comprising the steps of providing a nonconductive carrier, providing a metal resinate such as palladium resinate, coating the non-conductive carrier with the palladium resinate, drying the said coated carrier for approximately 30 minutes at room temperature, heating the coated non-conductive carrier for approximately 30 minutes in a temperature range of 200 to 400 centigrade effecting a thin film of atomic deposit of palladium upon the non-conductive carrier, oxidizing the remaining portion of the palladium resinate in a temperature range of 400 to 750 centigrade for substantially one hour, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
  • a metal resinate such as palladium resinate
  • a resistance unit comprising the steps of providing a non-conductive carrier, providing a metallic organo-compound comprising an organic resinate of a substantially stable and substantially non-oxidizable metal, coating the non-conductive carrier with the metallic organo-compound, heating the coated non-conductive carrier to a temperature below the melting point and the oxidizing point of the metal to first atomically deposit a thin continuous film of the metal upon the non-conductive carrier and to secondly oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Adjustable Resistors (AREA)

Description

May 5, 1942.
J. W. JIRA METAL FILM RESISTOR Filed Feb. 5, 1940 INVENTOR. $0567 6 W J/AA Patented May 5, 1942 METAL FIIM RESISTOR Joseph W. lira, Newbnrgh Heights, Ohio, assignor to Continental Carbon, Inc.
Application February 3, 1940, Serial No. 317,154
11 Claims.
My invention relates in general to resistance units and more particularly to precision resistance units and the process for making the same.
A precision resistance unit must possess the following requirements:
(1) Stable shelf life. This term implies that the resistor must not change more than 1.0% from its original value when subject for 10,000 hours to normal atmospheric conditions withou any current flowing through the unit.
(2) Minimum voltage characteristic. When the voltage is changed from that value required to give 2% of rated wattage to that value required to give 200% of rated wattage, the resistance shall not change more than 0.1% for values below 100,000; 0.2% for values below 500,000 ohms and 0.3% for values above 500,000 ohms.
(3) Minimum temperature coefiicient of resistance. The average change in resistance due to temperature must not exceed 02% per degree centigrade.
(4) Low, no load humidity characteristic. Resistors must not deviate more than 1.0% from their initial value when conditioned 100 hours at a relative humidity of 90% at 40 C.
(5) Stability at rated and double rated wattage. Resistors subjected to continuous operation for 5,000 hours at rated wattage shall show no permanent change in resistance exceeding 2.5% when measured by the bridge method at C. At double rated wattage the change in resistance shall not exceed 5% from the original when measured at 25 C.
(6) Low noise characteristic. When precision resistors are tested for noise at rated wattage by connecting unit and battery in series with a balancing network connected to the input of a 120 DB resistance coupled amplifier, the measured noise must not exceed 0.2 microvolt per volt for any given value of resistance.
(7) Good high frequency characteristic. When precision resistance units are subjected to high frequency, they must have a low inductive and capacitative reactance.
The applicant finds from years of experience in the development, testing and manufacture of resistance units that carbon composition and wire wound resistance units do not possess all of the requirements of a precision resistor.
In comparing the characteristic of carbon composition resistors with the above mentioned 4 requirements of a precision resistance unit, it is noted that the carbon composition resistors are deficient due to the following properties:
(1) Carbon resistors, as a whole, do not possess stable shelf life or permanency of resistance over an extended period. Tests performed on hundreds of units of various makes show that the shelf life may vary anywhere from 1.0% to 30.0% in 250 hours.
(2) The minimum voltage characteristic may vary anywhere from 0.1% to 1.0% for values below 100,000 ohms; 1.0% to 5.0% for values below 500,000 ohms and from 2.0% to 10.0% for values above 500,000 ohms.
This variation of resistance with applied voltage could not possibly be tolerated in precision electrical equipment.
(3) The minimum temperature coeflicient of resistance may vary anywhere from 0.07 to +0.05% per degree centigrade. In other words, the resistance in ohms of any given value may change from -'7.0% to +50% for a temperature variation of centigrade.
(4) The low, no load humidity characteristic was found to vary anywhere from -15.0% to +20.0% in 100 hours.
(5) At normal rated wattage the load characteristic varied anywhere from -10.0% to +10.0% in 100 hours, while at twice rated wattage the load characteristic varied from 15.0 to +15.0%.
(6) Noise, inherent within all carbon composition type resistors, varied anywhere from 1.0 to 4.0 microvolts per volt for any given value.
The wire wound resistor is deficient due to the following characteristics:
(1) For any given wattage rating wire wound resistors increase in size with resistance value, so that resistors varying in value from 200,000 to 1,000,000 ohms are not only excessively large, but prohibitive in price. 1 (2) If the wire wound resistors are expected to remain reasonably stable under varying atmospheric conditions, the wire must be protected with vitreous enamel fused upon the surface of the unit at very high temperatures. High vitrificating temperatures cause alterations in the metal-crystal structure within the wire comprising the resistance unit and consequently hot spots appear which seriously impair the operating characteristics of the resistor.
(3) Alterations in the metal crystal structure due to high vitrificating temperatures also cause a great reduction in strength and elasticity of the resistance wire thus initiating open circuits prior to the application of voltage.
(4) Due to the extremely reduced diameter of the wire (.001) employed in fabricating wire wound resistors of high value (15,000 to 100,000
ohms) breaks often appear at the contact due to thermal expansion of the unit while under the influence of heat.
(5) Noise may vary between the limits of 0.2
' to 1.0 microvolt per volt brought about by oxida- "a pronounced influence upon the initial direct current value of resistance. The shift in resistance may be in either a positive or negative direction depending upon the electrical parameters of the wire wound unit. ,This shift in high frequency resistance may be as much as 60% from the original measured value.
Apart from some of the physical and electrical deficiencies aflixed to wire wound resistors, they present many noteworthy features, when properly fabricated.
1. A very stable shelf life.
2. Minimum voltage characteristic.
3. Minimum temperature coefllcient of resistance.
4. Low humidity characteristic.
5. Stability of resistance while subject to either normal or twice rated wattage.
6. Low noise level.
An object of my invention is to construct a resistance' unit possessing the good qualities of each of the carbon composition resistors and the wire wound resistors.
Another object of my invention is to construct a resistance unit possessing all of the qualifications of a precision resistor.
Another object of my invention is to construct the resistance element part of the resistor by atomically depositing a thin film of a metal upon the surface of a non-conductive carrier,
Another object of my invention is to construct the resistance element part of the resistor by coating a non-conductive carrier with an organocompound of a metal and heating same to atomi cally deposit a thin film of the metal upon the non-conductive carrier and to oxidize the remaining portion of the organo-c'ompound of the metal.
Another object of my invention is to deposit metal upon the end portions or upon spaced surfaces of the thin film of metal to serve as a connecting area for the terminals.
Another object of my invention is to provide a method for controlling the thickness of the thin metal film deposited, upon the non-conductive carrier.
Other objects and a fuller understanding of my invention may be had by referring to the following description and claims taken in conjunction with the accompanying drawing, in which:
Figure 1 shows a longitudinal view of a resistance unit embodying the features of my invention, partly in section along the line l-l of Figure 8; and
Figures 2 to 8, inclusive, show the steps by which my invention is constructed, Figure 8 being a section taken transversely through the terminal connection.
With reference to Figure 1, my resistance unit comprises a non-conductive carrier III, a thin metal film H deposited upon the outer surface of the non-conductive carrier I 0, a body of thin metal deposit l2 upon each end portion of the thin metal film II, and a terminal member I: having a lead I connected to the body of the thin metal deposits l2 upon each end of the resistor.
The non-conductive carrier I0 may be constructed of any suitable material and may comprise a rod or a hollow tube as shown in Figure 2 and be made of ceramic material which will withstand thermal shock and which possesses a very low moisture absorbing characteristic. In actual'practice, I find that a ceramic material like Isolantite or its equivalent is suitable and preferable.
The thin metal film I l is atomically deposited upon the outer surface'of the non-conductive carrier III by coating the outer surface with an organo-compound of a substantially stable and substantially non-oxidizable metal and heating the same. Before applying the organo-compound to the ceramic tube In, the outer surface is sub jected to a degreasing or cleaning operation. This may be done by suspending or immersing the ceramic tube into a boiling solution of trisodium phosphate for about 10 minutes. It has also been found through careful research that numerous other chemical cleaning agents are adapted for use in the cleaning operation. Outstanding among these are ethylene di-chloride and tetrachloro-ethane. The ceramic tube Ill, after it is removed from the cleaning solution, is washed five or six times in clear running water and then thoroughly dried.
Upon the drying of the ceramic tube, a thin coating of the organo-compound comprising-an organic resinate of a stable and non-oxidizable metal is applied to the ceramic tube by either dipping, brushing or spraying. The term substantially stable and substantially non-oxidizable metal comprises those metals principally of the noble group although not limited thereto. The metal must remain substantially stable and be substantially non-oxidizable under high temperatures sufficient to burn out the residue remaining after deposition of the metal upon the ceramic tube. Under the general class of compounds known as the resinates are included the constituents of natural occurring resinates, resins, exudations from trees and synthetic preparations. In preparing my metallic organo-compound, the metal is substituted into or added to the organeresinate. Of the metals, I find that palladium or platinum may be substituted into or added to the resinate, giving substantially palladium or platinum resinate. My invention will be described with palladium resinate but it will be understood that it includes platinum resinate or its equivalent.
To obtain a thin metal film upon the ceramic carrier to give a high resistance value, I find that it is diflicult to do so by applying a substantially saturated compound of palladium resinate, without an appropriate solvent, to the ceramic carrier. Even though one attempts to apply by brushing or dipping a substantially saturated compound of palladium resinate, in the absence of a solvent, as thinly as possible upon the carrier, yet the chemically deposited metal film results in too great a thickness to give a high ohmic value of resistance. The solvent functions as a medium for carrying the palladium resinate, so that the palladium resinate is evenly distributed upon the ceramic carrier l0. That is to say, the palladium resinate is evenly dispersed in the solvent, and when applied to the ceramic carrier gives in eflect a reduced amount of palladium. Of the suitable solvents, I find that a high boiling keadding a sufficient amount of solvent to the palladium resinate so that the amount of palladium is substantially one percent. 1
After the coating comprising the palladiu resinate and the solvent, which is represented by the reference character in Figure 3, is applied to the ceramic carrier 10, it is then permitted to dry in air for about 30 minutes at a temperature of approximately 20 to degrees centigrade. The thickness of the coating is exaggerated in the drawing. Upon drying, the ceramic carrier and coating is given its first stage of heat treatment to chemically deposit the palladium upon the carrier. The precipitation of pure metallic palladium from the palladium resinate starts at temperatures ranging anywhere from approximately 200 to 400 centigrade. Careful study shows that a very fine cubical crystal formation of the precipitated palladium occurs at 300 centigrade and that the precipitation progresses with time until approximately a 100% metallic deposit results. The time was found to vary anywhere from 15 to minutes, depending upon the surface area of the ceramic carrier and the thickness of the applied coating. Accompanying the precipitation of palladium is the formation of ash on the carrier mixed with the pure palladium which comprises essentially carbon as the residue of the applied coating and is represented by the reference character 2| in Figure 4.
The second stage heating is to completely oxidize the ash or residue and to insure a thorough precipitation of the palladium. The second stage heating may range from 400 to 750 centigrade for about one hour. Figure 5 shows the ceramic tube after the residue is thoroughly oxidized leaving the thin palladium film II which may be characterized as the basic resistance. The metallic film possesses unusually good bonding properties. In fact, the metal bonding characteristic is such thatthe only means of removal from the ceramic carrier is by grinding. The ceramic and the deposited metal are virtually one.
The next general series of steps in my process is to connect the terminal members 13 having leads H to the end portions of the thin metal film H. To do this, I first deposit a body of thin metal 12 upon the end portions of the palladium film II as shown in Figures 1 and 7. The body of thin metal I! may be physically deposited upon the end portions of the palladium film II by coating the end portions with a band of colloidal silver as indicated by the reference character 22 in Figure 6 and heating the same at approximately 500 to 600 centigrade for 30 minutes or thereabouts.
After the band of silver 12 is deposited about the end portions, the terminal members l3 comprising preferably thin strips of copper metal are clamped thereon as shown in Figures 1 and 8, making a good electrical contact with the silver. The terminal members 13 may be securely clamped about the silver deposit by fastening the free ends together by means of a rivet I5. The leads 14 may be connected to the terminal members I3 by the same rivets that hold the free end of the terminal members I3 together. The connection at the rivet may also be soldered.
The silver is ideally suited in this part of the process since it possesses a low thermo-electric effect against either the palladium or the copper metal of the terminal members. This type of contact is of extremely low resistance, thus reflecting its advantages in producing a resistor possessing a minimum noise and' voltage characteristic.
To complete the resistance unit, it may or may not be spiralled depending upon the resistance value desired. The :resistor is then given a coat of moisture proof lacquer which when dried completes the process. In my invention, the heating to burn out the ash or residue is below the melting point of the precipitated metal and also below the oxidizing temperature of the metal, giving a good stable and continuous film.
The initial basic resistance value of the palladium film ll may be controlled by the number of coats applied to the ceramic carrier or by varying the amount of the palladium resinate in the applied coating. In the event an additional number of coatings are applied, they may be added at different stages in the process. As a first example, the additional coatings may be applied on top of the coating 20 in Figure 3, after each applied coating is allowed to dry. After the several coatings are dried, the process is then carried out as above explained. As a second example, an additional coating may be applied on top of the coating 2| in Figure 4, which means that two first stage and one second stage firings are required. Under the second example, any number of coatings may be applied by repeating the procedure. After the additional coatings have been added under the second example, the general process is then completed as previously described. As a third example, an additional coating may be applied on top of the metal film H in Figure 5, which means that two first stage and two second stage firings are required. Under the third example, any number of coatings may be applied by repeating the procedure. After the additional coatings have been added under the third example, the general process is then completed as previously described.
The resistance may also be varied by spiralling, that is, by grinding a very narrow helical groove along the periphery of the carrier, giving a helical path for the current to flow.
This spiralling procedure has the effect of increasing the total effective resistive path and by doing so increases the resistance value of the unit manifold. As an example, a resistance having a basic value of 1000, 5000 and 10,000 ohms when ground with a helical path equally along the periphery of the carrier for a period of ten revolutions will produce 100,000, 500,000 and 1,000,000 ohms respectively. Therefore, by utilizing five or six basic values a great number of various resistance values are possible.
Due to the fact that the conducting medium of my invention is metal, many of the difficulties arising from the use of carbon were completely eliminated. The first of these deficiencies was temperature coefilcient of resistance. It is well known that carbon possesses a negative temperature coefilcient, a factor partly responsible for resistor failures when subject to normal or twice rated wattage.
Since gas carbon is now chiefly employed in carbon composition type resistors, it exerts a certain amount of influence upon the water repellency of the manufactured unit. Since gas carbon is hygroscopic it prevents the manufacture of a resistor possessing a stable shelf life or a low humidity characteristic, even if thoroughly impregnated in wax under reduced pressure.
Furthermore, since the conventional carbon resin, it is more or less prone to carbonization and therefore deterioration while under the in-' fiuence of heat, a factor chiefly responsible for resistor failure.
By virtue of the bonding medium and countless particles of carbon that do not contribute towards the resistance value (undispersible conductor) hundreds of minute capacities are formed which exert a pronounced influence upon the high frequency characteristic of the unit. This distributed capacity is usually more evidenced in units of high resistance value, say 100,000 ohms and above.
All the above shortcomings of the carbon type resistor were completely rectified by the metal film resistor.
The new resistor not only possessed all the desirable electrical characteristics of a wire wound unit, but for a given value and wattage ratin was one-tenth the size, a factor of commercial importance.
The most difficult steps encountered in fabricating a resistor of the type were the following:
(1) The applied metallic-organo film had to be evenly distributed over the surface of the carrier, otherwise areas of uneven density appeared over the periphery of the unit and caused erratic resistance fluctuations during the spiralling operation.
I (2) Temperatures had to be carefully controlled otherwise nonadhering or only partly adhering metallic films resulted. L
(3) The deposited metallic film II had to be of sufficient thickness to prevent discontinuous electrical paths resulting from a difference in the linear coefficients of expansion of the metal film and the ceramic carrier.
Although I have described my invention with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example and that numerous changes in the details of the combination and arrangement of substances may be resorted to without departing from the spirit and the scope of the invention as hereinafter claimed.
I claim as my invention:
1. The process of constructing a resistance unit comprising the steps of providing a non-conduc tive carrier, providing a metallic organo-compoundcomprising an organic resinate of a substantially stable and substantially non-oxidizable metal, coating the non-conductive carrier with the metallic organo-compound, heating the coated non-conductive carrier to first atomically deposit a thin continuous film of the metal upon the non-conductive carrier and to secondly oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
2. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a compound of palladium resinate, coating the non-conductive carrier with said compound, heating the coated non-conductive carrier to first atomically deposit a thin film of the palladium upon the non-conductive carrier and to secondly oxidize the remaining portion of thesaid compound, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
3. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a compound of platinum resinate, coating the non-conductive carrier with said compound, heating the coated non-conductive carrier to first atomically deposit a thin film of the platinum upon the non-conductive carrier and to secondly oxidize the remaining portion of the said compound, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the platinum.
4. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a palladium resinate, cleaning the surface of the carrier, coating the carrier with said palladium resinate, first heating the coated carrier in a temperature range from 200 degrees to' 400 degrees centigrade to atomically deposit a thin film of the palladium upon the carrier, secondly heating the coated carrier in a temperature range from 400 degrees to 750 degrees centigrade to oxidize the remaining portion of said palladium resinate, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
5. The process of constructing a resistance unit comprising the steps of providing a non-conduc tive carrier, providing a metallic organo-compound comprising an organic resinate of a substantially stable and substantially non-oxidizable metal, cleaning the surface ofthe carrier, coating the non-conductive carrier with the metallic organo-compound, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin continuous film of the metal upon the carrier, secondly heating the coat ed carrier in a relatively high temperature range to oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
6. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a metallic organo-compound comprising an organic resinate of a substantially stable and substantially non-oxidizable metal, adding a solvent to the metallic organo-compound to reduce theconcentration of the metal, cleaning the surface of the carrier, coating the non-conductive carrier with the metallic organo-compound and the solvent, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin continuous film of the metal upon the carrier, secondly heating the coated carrier in a relative- 1y high temperature range to oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
7. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a palladium resinate, adding a solvent to the palladium resinate to reduce the concentration of the palladium, cleaning the surface of the carrier, coating the carrier with the palladium resinate and the solvent, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin film of the palladium upon the carrier, secondly heating the coated carrier in a relatively high temperature range to oxidize the remaining portion of the palladium resinate, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
8. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a platinum-resinate, adding a solvent to the platinum resinate to reduce the concentration of the platinum, cleaning the surface of the carrier, coating the carrier with the platinum resinate and the solvent, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin film of the platinum upon the carrier, secondly heating the coated carrier in a relatively high temperature range to oxidize the remaining portion of the platinum resinate, providing terminals for the resistance unit,*and connecting the terminals to spaced surfaces of the thin film of the platinum.
9. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a palladium resinate, adding a high boiling ketone to the palladium resinate to reduce the concentration of the palladium therein to substantially one percent, cleaning the surface of the carrier, coating the carrier with the palladium resinate and the kBtOne, first heating the coated carrier in a relatively low temperature range to atomically deposit a thin film of the palladium upon the carrier, secondly heating the coated carrier in a relatively high temperature range to oxidize the remaining portion of the palladium resinate, providing a silver colloid, applying the silver colloid to spaced surfaces of the thin film of palladium, thirdly heating the carrier, the thin film of palladium and the silver colloid to physically deposit the silver upon the said spaced surfaces, providing terminals for the resistance unit, and connecting the terminals to the deposited silver.
10. The process of constructing a resistance unit comprising the steps of providing a nonconductive carrier, providing a metal resinate such as palladium resinate, coating the non-conductive carrier with the palladium resinate, drying the said coated carrier for approximately 30 minutes at room temperature, heating the coated non-conductive carrier for approximately 30 minutes in a temperature range of 200 to 400 centigrade effecting a thin film of atomic deposit of palladium upon the non-conductive carrier, oxidizing the remaining portion of the palladium resinate in a temperature range of 400 to 750 centigrade for substantially one hour, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the palladium.
11. The process of constructing a resistance unit comprising the steps of providing a non-conductive carrier, providing a metallic organo-compound comprising an organic resinate of a substantially stable and substantially non-oxidizable metal, coating the non-conductive carrier with the metallic organo-compound, heating the coated non-conductive carrier to a temperature below the melting point and the oxidizing point of the metal to first atomically deposit a thin continuous film of the metal upon the non-conductive carrier and to secondly oxidize the carbonaceous residue remaining after the deposition of the thin film of metal, providing terminals for the resistance unit, and connecting the terminals to spaced surfaces of the thin film of the metal.
JOSEPH W. JIRA.
US317154A 1940-02-03 1940-02-03 Metal film resistor Expired - Lifetime US2281843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US317154A US2281843A (en) 1940-02-03 1940-02-03 Metal film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US317154A US2281843A (en) 1940-02-03 1940-02-03 Metal film resistor

Publications (1)

Publication Number Publication Date
US2281843A true US2281843A (en) 1942-05-05

Family

ID=23232347

Family Applications (1)

Application Number Title Priority Date Filing Date
US317154A Expired - Lifetime US2281843A (en) 1940-02-03 1940-02-03 Metal film resistor

Country Status (1)

Country Link
US (1) US2281843A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2440691A (en) * 1945-03-07 1948-05-04 Continental Carbon Inc Alloy metal film resistor
US2472930A (en) * 1945-08-23 1949-06-14 Western Electric Co Electrical heating unit
US2529436A (en) * 1944-06-14 1950-11-07 Polytechnic Inst Brooklyn Metal film attenuator
US2556991A (en) * 1946-03-20 1951-06-12 Bell Telephone Labor Inc Light-sensitive electric device
US2693023A (en) * 1950-06-20 1954-11-02 Painton & Co Ltd Electrical resistor and a method of making the same
US2748234A (en) * 1952-10-14 1956-05-29 British Insulated Callenders Electric resistors
US2757104A (en) * 1953-04-15 1956-07-31 Metalholm Engineering Corp Process of forming precision resistor
US2860222A (en) * 1958-11-11 Miniature high power
US2882377A (en) * 1951-10-24 1959-04-14 Pittsburgh Plate Glass Co Electrical resistor metal coatings on refractory materials
DE972477C (en) * 1942-06-02 1959-07-30 Siemens Ag Circuit board made of insulating material with electrical connections made of conductive paint
US3107179A (en) * 1959-09-21 1963-10-15 Wilbur M Kohring Process for making carbon-metal resistors
US3205555A (en) * 1961-11-07 1965-09-14 Western Electric Co Methods of making printed circuit components
US3216090A (en) * 1961-11-06 1965-11-09 Mitsubishi Electric Corp Process of producing solid composition resistors of monolithic structure
US3223829A (en) * 1959-11-14 1965-12-14 Davy John Rupert Glass sandwiches primarily for windows of optical instruments
US3311968A (en) * 1962-06-02 1967-04-04 Ardouin Jean Jules Henri Methods of making electrical resistors
US3314140A (en) * 1964-05-14 1967-04-18 Merritt W Albright Method of making a surface joint
US3329526A (en) * 1965-06-14 1967-07-04 Cts Corp Electrical resistance element and method of making the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860222A (en) * 1958-11-11 Miniature high power
DE972477C (en) * 1942-06-02 1959-07-30 Siemens Ag Circuit board made of insulating material with electrical connections made of conductive paint
US2529436A (en) * 1944-06-14 1950-11-07 Polytechnic Inst Brooklyn Metal film attenuator
US2440691A (en) * 1945-03-07 1948-05-04 Continental Carbon Inc Alloy metal film resistor
US2472930A (en) * 1945-08-23 1949-06-14 Western Electric Co Electrical heating unit
US2556991A (en) * 1946-03-20 1951-06-12 Bell Telephone Labor Inc Light-sensitive electric device
US2693023A (en) * 1950-06-20 1954-11-02 Painton & Co Ltd Electrical resistor and a method of making the same
US2882377A (en) * 1951-10-24 1959-04-14 Pittsburgh Plate Glass Co Electrical resistor metal coatings on refractory materials
US2748234A (en) * 1952-10-14 1956-05-29 British Insulated Callenders Electric resistors
US2757104A (en) * 1953-04-15 1956-07-31 Metalholm Engineering Corp Process of forming precision resistor
US3107179A (en) * 1959-09-21 1963-10-15 Wilbur M Kohring Process for making carbon-metal resistors
US3223829A (en) * 1959-11-14 1965-12-14 Davy John Rupert Glass sandwiches primarily for windows of optical instruments
US3216090A (en) * 1961-11-06 1965-11-09 Mitsubishi Electric Corp Process of producing solid composition resistors of monolithic structure
US3205555A (en) * 1961-11-07 1965-09-14 Western Electric Co Methods of making printed circuit components
US3311968A (en) * 1962-06-02 1967-04-04 Ardouin Jean Jules Henri Methods of making electrical resistors
US3314140A (en) * 1964-05-14 1967-04-18 Merritt W Albright Method of making a surface joint
US3329526A (en) * 1965-06-14 1967-07-04 Cts Corp Electrical resistance element and method of making the same

Similar Documents

Publication Publication Date Title
US2281843A (en) Metal film resistor
US2440691A (en) Alloy metal film resistor
US4032752A (en) Heating elements comprising a ptc ceramic article of a honeycomb structure composed of barium titanate
US1881444A (en) Manufacture of resistance units
US2405449A (en) Electrical resistance element
US1847653A (en) Manufacture of resistance units
US4361597A (en) Process for making sensor for detecting fluid flow velocity or flow amount
US2425032A (en) Enamel for resistors
US4053866A (en) Electrical resistor with novel termination and method of making same
US2786925A (en) Metal film resistor
US3776772A (en) Electrical resistance composition and resistance element
US2434511A (en) Method of making electric coils
US3172074A (en) Electrical resistors
US3310718A (en) Impedance element with alloy connector
US4712085A (en) Thermistor element and method of manufacturing the same
US3329526A (en) Electrical resistance element and method of making the same
US2855493A (en) Metal film resistor
US3952116A (en) Process for forming electrical resistance heaters
US2079690A (en) Method of making resistance devices
US3018198A (en) Film resistor and method of making same
US4992772A (en) Metal oxide film resistor
US1773105A (en) Resistance paint and art of making resistances
US1671469A (en) Electric resistance
EP0063264A1 (en) Method for the manufacture of a temperature sensitive platinum thin film resistance element
US3496513A (en) Film resistor with securely soldered leads