US2248440A - Process and apparatus for making helical tension springs having particularly great preliminary tension - Google Patents

Process and apparatus for making helical tension springs having particularly great preliminary tension Download PDF

Info

Publication number
US2248440A
US2248440A US295128A US29512839A US2248440A US 2248440 A US2248440 A US 2248440A US 295128 A US295128 A US 295128A US 29512839 A US29512839 A US 29512839A US 2248440 A US2248440 A US 2248440A
Authority
US
United States
Prior art keywords
wire
winding
spring
tools
carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US295128A
Inventor
Schmid Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2248440A publication Critical patent/US2248440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically
    • B21F3/06Coiling wire into particular forms helically internally on a hollow form

Definitions

  • This invention relates to a process and an apparatus for the production of helical tension or draw springs of high initial tension.
  • Machines are known in which initial tension is obtained by having the winding tools movable or rotatable with respect to each other in a direction parallel to the axis of the spring, so that'the Wire is given a certain deflection out of the winding plane. It is an object of the present invention to achieve a higher amount of pretensioning than has been attained in such prior machines. Another object is to provide a device which will wind highly pretensioned springs which can be cut to any desired length during formation.
  • each spring is wound in two stages, consisting of a preliminary winding stage and a finishing winding stage following immediately thereafter the spring being wound to a larger diameter than desired in the first stage and to the desired final diameter in the second stage.
  • the winding tools of the prewinding stage are adjustable in such manner that the angle between their winding plane and the winding plane of the winding tools of the finishing winding stage may be varied.
  • they are carried on a common holder which is oscillatable about an axis which is located in the extension of the axis of the fed wire, whereby the winding plane of these tools can be adjusted more or ess obliquely to the axis of the spring.
  • the winding tools of the finishing winding stage are carried on a common sliding carriage which is movable parallel to the axis of the spiral springs to be made, and preferably carry the device for cutting 01f the springs.
  • the winding tools can be easily adjusted, with their wire conveying rollers, in the direction of the helical lines of the spring winding, whereby a long holding duration of the winding tools is ensured.
  • Figure 2 is a side view of the prewinding stage viewed from the left
  • Figure 3 is a side view of the finishing winding stage seen from the right.
  • Figure '4 illustrates the'process and shows the adjustment of the winding tools for dilferent diameters of springs.
  • the wire a to be wound or coiled is fed in the direction of the arrow by'the two conveyor cylinders b and is delivered by a guide 0 to the winding tools dand e.
  • the two winding tools d, d constitute the prewinding stage and the three winding tools e,'e, e constitute the finishing wind-
  • the two tools d, d bend the wire a from a point A into an arc ABC, the radius of which, as shown by Figures 1 and 4, is greater than the radius of the finished spring I.
  • the three winding tools e, e, e bend the wire a to the final desired spring size DEF.
  • the winding tools d, d and e, e, e are forwardly and backwardly movable so that their working points B, G, D, E and F on the wire a move in the direction of the initial point A of the bending of the wire a, as shown by arrows in Figures 1 and 4.
  • the winding tool d, d and e, e, e are carried on slides g and h which can be shifted longitudinally and fixed, and the direction of movement of which is parallel to the path of movement (indicated by arrows) of the working points B, C, D. E, F.
  • the slides .11 are located in guides i fitted on a common holder is.
  • the holder is is oscillatable about two pivots l which are carried in two bearing blocks fitted on the machine frame m, and can be fixed in any adjusted position by means of two set screws 11, so that the amount of pretensioning or the pitch of the spring i may be varied.
  • the two pivots l are located in the extension of the axis of the supplied wire a. The more the holder is is oscillated, with its prewinding tools d, d, the greater will be the pitch of the wire arc section A, B, C.
  • the slides 12. of the finishing winding tools are longitudinally movable and are adapted to be fixed in guides o of a common carriage p.
  • the latter for the purpose of varying pretensioning or the pitch of thescrews f is movable on the machine frame m parallel to the axis of the spring by means of a thumb screw q Fig. 3. If the pretensioning is to be increased, the carriage p is drawn backwards, so that a greater deflection of the wire a takes place and vice versa.
  • a cutting-off device which consists of a movable cutter s and a fixed counter knife r.
  • the counter knife 1' is introduced into the finished spring ,1 and the cutter s moved towards it, whereby a section of the finished spring 1 is cut and a set of winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form.
  • a device for making helical tension springs with high initial tension comprising means for feeding spring wire to an initial bending point, a set of winding tools adapted to impart preliminary curvature to said wire of larger diameter than that of the helical spring to be made therefrom, a set of winding tools arranged to operate on the preliminary curved wire to increase the curvature thereof to bring said wire to final diameter and form, and means for adjusting said winding tools along lines which intersect at said initial bending point.
  • a device for making helical tension springs with high initial tension comprising a set of winding tools adapted to impart to spring Wire preliminary curvature of larger diameter than that of the helical spring to be made therefrom, a set of Winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form, a carriage supporting the second-mentioned set of winding tools, a pivot for said carriage, said pivot being coaxial with the helical spring being formed, and means for adjusting the angular position of the carriage about said pivot.
  • a device for making helical tension springs with high initial tension comprising a set of winding tools adapted to impart to spring wire preliminary curvature of larger diameter than that of the helical spring to be made therefrom, a set of winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form, a carriage supporting the final winding tools, and means for adjusting said carriage in a direction parallel to the axis of the helical spring being formed.
  • a device for making helical tension springs with high initial tension comprising a set of winding tools adapted to impart to spring wire preliminary curvature of larger diameter than that of the helical spring to be made therefrom,
  • a set of winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form, a carriage supportingthe preliminary winding tools, a pivot for said carriage said pivot being co-axial with the helical spring being made, means for adjusting the angular position of the carriage about said pivot, a carriage supporting the final winding tools, and means for adjusting said last mentioned carriage in a direction parallel to the axis of the helical spring being formed.
  • a method for making helical tension springs in which the wire of the spring is wound in a helix in two successive stages, comprising winding the wire as a preliminary stage into a coil of larger diameter than that finally required, and then winding the thus treated wire directly from the larger diameter into a final and smaller diameter and helical form as the second stage.
  • a method of producing helical tension springs from wire comprising winding the wire into a preliminary curved configuration of a larger diameter than that required for the finished spring, and further winding the curved wire directly from the larger diameter into the final curved configuration having a smaller diameter equal to the desired spring.
  • the preliminary winding tools are adjustable in a direction parallel to the axis of the helix to vary the angle between the winding plane of said tools and the winding plane of the tools of the final winding.
  • a machine for making helical tension springs with high initial tension comprising a holder, a set of winding tools mounted on said holder and adapted to impart to spring wire preliminary curvature of larger diameter than that of the finished helical spring, a carriage, and a set of winding tools arranged on said carriage to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to the final diameter and form of the finished spring.
  • each winding tool is provided with an adjustable mounting so that each tool may be adjusted relative to its holder or carriage.
  • a machine for making helical tension springs with high initial tension comprising means for feeding a spring wire into the machine at a tangent to the helical spring to be wound, a holder, at set of winding tools mounted on said holder and adapted to impart to spring Wire preliminary curvature of larger diameter than that of the finished helical spring, a carriage, a set of winding tools arranged on said carriage to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to the final diameter and form of the finished spring, and cutting means on the carriage to cut the wire feeding into the machine by the feeding means after the spring has been completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Description

v e 8N h 4 S v H 1 2 e July 8, 1941. O SCHMID PROCESS AND APPARATUS FOR MAKING HELICAL T PARTICULARLY GREAT PRELIMINARY TENSION Filed Sept 15, 1939 I-m/ewfor:
Otto chmid 12.,
y 1941- o. SCHMID 2.248.440 PROCESS AND APPARATUS FOR MAKING HELICAL TENSION SPRINGS HAVING PARTICULARLY GREAT PRELIMINARY TENSION Filed Sept. 15, 1939 2 Sheets-Sheet 2 Ivn/n Zor: Otto d'clzmdci Patented July 8, 1941 PROCESS AItTD APPARATUS FOR MAKING HELICAL TENSION SPRINGS HAVING PAR- TICULARLY GREAT PRELIIVIINARY TEN- SION om Schmid, Reutlingen, Germany Application September 15, 1939, Serial No. 295,128 In Germany August 7, 1937 14 Claims.
This invention relates to a process and an apparatus for the production of helical tension or draw springs of high initial tension.
Machines are known in which initial tension is obtained by having the winding tools movable or rotatable with respect to each other in a direction parallel to the axis of the spring, so that'the Wire is given a certain deflection out of the winding plane. It is an object of the present invention to achieve a higher amount of pretensioning than has been attained in such prior machines. Another object is to provide a device which will wind highly pretensioned springs which can be cut to any desired length during formation.
According to the invention each spring is wound in two stages, consisting of a preliminary winding stage and a finishing winding stage following immediately thereafter the spring being wound to a larger diameter than desired in the first stage and to the desired final diameter in the second stage.
In order to be able to wind springs of different diameter, with the same apparatus the winding tools, or their points of engagement on the wire,
are made adjustable in the direction of the initial points of the bend of the fed wire. In this way, the winding effect of the winding tools remains the same with each adjustment.
Furthermore, in order to be able to adjust the amount of pretensioning or the pitch of the helical springs, the winding tools of the prewinding stage are adjustable in such manner that the angle between their winding plane and the winding plane of the winding tools of the finishing winding stage may be varied. To this end, they are carried on a common holder which is oscillatable about an axis which is located in the extension of the axis of the fed wire, whereby the winding plane of these tools can be adjusted more or ess obliquely to the axis of the spring. The winding tools of the finishing winding stage are carried on a common sliding carriage which is movable parallel to the axis of the spiral springs to be made, and preferably carry the device for cutting 01f the springs.
With the device according to the invention, it is not necessary to twist the winding tools unnaturally in order to bend the wire out of the winding plane. On the contrary, the winding tools can be easily adjusted, with their wire conveying rollers, in the direction of the helical lines of the spring winding, whereby a long holding duration of the winding tools is ensured.
' The device forparrying out the process according to the invention is shown by way of example in the accompanying drawings, in which Figure 1 is a front view of the complete spring winding apparatus,
Figure 2 is a side view of the prewinding stage viewed from the left,
ing stage.
Figure 3 is a side view of the finishing winding stage seen from the right, and
Figure '4 illustrates the'process and shows the adjustment of the winding tools for dilferent diameters of springs.
The wire a to be wound or coiled is fed in the direction of the arrow by'the two conveyor cylinders b and is delivered by a guide 0 to the winding tools dand e. The two winding tools d, d constitute the prewinding stage and the three winding tools e,'e, e constitute the finishing wind- The two tools d, d bend the wire a from a point A into an arc ABC, the radius of which, as shown by Figures 1 and 4, is greater than the radius of the finished spring I. Following thereon, the three winding tools e, e, e bend the wire a to the final desired spring size DEF.
So that springs f of different diameters may be wound by means of the same apparatus, the winding tools d, d and e, e, e are forwardly and backwardly movable so that their working points B, G, D, E and F on the wire a move in the direction of the initial point A of the bending of the wire a, as shown by arrows in Figures 1 and 4.
The winding tool d, d and e, e, e are carried on slides g and h which can be shifted longitudinally and fixed, and the direction of movement of which is parallel to the path of movement (indicated by arrows) of the working points B, C, D. E, F. The slides .11 are located in guides i fitted on a common holder is. The holder is is oscillatable about two pivots l which are carried in two bearing blocks fitted on the machine frame m, and can be fixed in any adjusted position by means of two set screws 11, so that the amount of pretensioning or the pitch of the spring i may be varied. The two pivots l, are located in the extension of the axis of the supplied wire a. The more the holder is is oscillated, with its prewinding tools d, d, the greater will be the pitch of the wire arc section A, B, C.
The slides 12. of the finishing winding tools are longitudinally movable and are adapted to be fixed in guides o of a common carriage p. The latter, for the purpose of varying pretensioning or the pitch of thescrews f is movable on the machine frame m parallel to the axis of the spring by means of a thumb screw q Fig. 3. If the pretensioning is to be increased, the carriage p is drawn backwards, so that a greater deflection of the wire a takes place and vice versa.
With the process and the apparatus according to the inventiomsprings of any desired length can be produced. In order to be able to make springs of an exactly definite number of turns, a cutting-off device is provided, which consists of a movable cutter s and a fixed counter knife r. The counter knife 1' is introduced into the finished spring ,1 and the cutter s moved towards it, whereby a section of the finished spring 1 is cut and a set of winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form.
2. A device for making helical tension springs with high initial tension, comprising means for feeding spring wire to an initial bending point, a set of winding tools adapted to impart preliminary curvature to said wire of larger diameter than that of the helical spring to be made therefrom, a set of winding tools arranged to operate on the preliminary curved wire to increase the curvature thereof to bring said wire to final diameter and form, and means for adjusting said winding tools along lines which intersect at said initial bending point.
3. A device for making helical tension springs with high initial tension, comprising a set of winding tools adapted to impart to spring Wire preliminary curvature of larger diameter than that of the helical spring to be made therefrom, a set of Winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form, a carriage supporting the second-mentioned set of winding tools, a pivot for said carriage, said pivot being coaxial with the helical spring being formed, and means for adjusting the angular position of the carriage about said pivot.
4. A device for making helical tension springs with high initial tension, comprising a set of winding tools adapted to impart to spring wire preliminary curvature of larger diameter than that of the helical spring to be made therefrom, a set of winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form, a carriage supporting the final winding tools, and means for adjusting said carriage in a direction parallel to the axis of the helical spring being formed.
5. A device for making helical tension springs with high initial tension, comprising a set of winding tools adapted to impart to spring wire preliminary curvature of larger diameter than that of the helical spring to be made therefrom,
a set of winding tools arranged to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to final diameter and form, a carriage supportingthe preliminary winding tools, a pivot for said carriage said pivot being co-axial with the helical spring being made, means for adjusting the angular position of the carriage about said pivot, a carriage supporting the final winding tools, and means for adjusting said last mentioned carriage in a direction parallel to the axis of the helical spring being formed.
6. A method for making helical tension springs in which the wire of the spring is wound in a helix in two successive stages, comprising winding the wire as a preliminary stage into a coil of larger diameter than that finally required, and then winding the thus treated wire directly from the larger diameter into a final and smaller diameter and helical form as the second stage.
'7. A method of producing helical tension springs from wire comprising winding the wire into a preliminary curved configuration of a larger diameter than that required for the finished spring, and further winding the curved wire directly from the larger diameter into the final curved configuration having a smaller diameter equal to the desired spring.
8. A device according to claim 1, in which the preliminary winding tools are adjustable in a direction parallel to the axis of the helix to vary the angle between the winding plane of said tools and the winding plane of the tools of the final winding.
9. Device according to claim 4 wherein means for cutting the spring wire are carried on said carriage.
10. Device according to claim 5 wherein means for cutting the spring wire are provided on the carriage of the final winding tools.
11. A machine for making helical tension springs with high initial tension, comprising a holder, a set of winding tools mounted on said holder and adapted to impart to spring wire preliminary curvature of larger diameter than that of the finished helical spring, a carriage, and a set of winding tools arranged on said carriage to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to the final diameter and form of the finished spring.
12. A machine according to claim 11, in which each winding tool is provided with an adjustable mounting so that each tool may be adjusted relative to its holder or carriage.
13. A machine according to claim 11, in which the holder is provided with adjustable and pivotal mounting means and in which the carriage is provided with adjustable and pivotal mounting means, the pivotal mounting means for the holder beingrco-axial with the direction of feed of the wire into the machine and the pivotal mounting means for the carriage being co-axial with the helical spring being formed.
14. A machine for making helical tension springs with high initial tension, comprising means for feeding a spring wire into the machine at a tangent to the helical spring to be wound, a holder, at set of winding tools mounted on said holder and adapted to impart to spring Wire preliminary curvature of larger diameter than that of the finished helical spring, a carriage, a set of winding tools arranged on said carriage to operate on the wire curved by the first mentioned set to impart further curvature to the wire to bring it to the final diameter and form of the finished spring, and cutting means on the carriage to cut the wire feeding into the machine by the feeding means after the spring has been completed.
OTTO SCHMID.
US295128A 1937-08-07 1939-09-15 Process and apparatus for making helical tension springs having particularly great preliminary tension Expired - Lifetime US2248440A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2248440X 1937-08-07

Publications (1)

Publication Number Publication Date
US2248440A true US2248440A (en) 1941-07-08

Family

ID=7992230

Family Applications (1)

Application Number Title Priority Date Filing Date
US295128A Expired - Lifetime US2248440A (en) 1937-08-07 1939-09-15 Process and apparatus for making helical tension springs having particularly great preliminary tension

Country Status (1)

Country Link
US (1) US2248440A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614606A (en) * 1949-12-05 1952-10-21 Leggett & Platt Coiling machine
US2713377A (en) * 1953-02-20 1955-07-19 Charles M Tursky Method and apparatus for producing filter coils
US2774407A (en) * 1950-04-27 1956-12-18 Willem J B Jansen Methods of and machines for winding spiral springs
DE1177594B (en) * 1958-07-17 1964-09-10 Wirth Arno H Fa Automatic bending machine with tools grouped around a central workstation of a round table
US3183698A (en) * 1962-01-29 1965-05-18 Stephen A Platt Coiling roll for wire coiling machine
US3934445A (en) * 1974-06-24 1976-01-27 Torin Corporation Dual purpose spring coiling machine
US4227392A (en) * 1977-10-05 1980-10-14 Itaya Seisakusho Co., Ltd. Spring winding machine
US4719683A (en) * 1985-12-30 1988-01-19 Windwinder Corporation Preloaded spring, method and apparatus for forming same
US4836514A (en) * 1985-12-30 1989-06-06 Windwinder Corporation Preloaded spring, method and apparatus for forming same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614606A (en) * 1949-12-05 1952-10-21 Leggett & Platt Coiling machine
US2774407A (en) * 1950-04-27 1956-12-18 Willem J B Jansen Methods of and machines for winding spiral springs
US2713377A (en) * 1953-02-20 1955-07-19 Charles M Tursky Method and apparatus for producing filter coils
DE1177594B (en) * 1958-07-17 1964-09-10 Wirth Arno H Fa Automatic bending machine with tools grouped around a central workstation of a round table
US3183698A (en) * 1962-01-29 1965-05-18 Stephen A Platt Coiling roll for wire coiling machine
US3934445A (en) * 1974-06-24 1976-01-27 Torin Corporation Dual purpose spring coiling machine
US4227392A (en) * 1977-10-05 1980-10-14 Itaya Seisakusho Co., Ltd. Spring winding machine
US4719683A (en) * 1985-12-30 1988-01-19 Windwinder Corporation Preloaded spring, method and apparatus for forming same
US4836514A (en) * 1985-12-30 1989-06-06 Windwinder Corporation Preloaded spring, method and apparatus for forming same

Similar Documents

Publication Publication Date Title
US2248440A (en) Process and apparatus for making helical tension springs having particularly great preliminary tension
NO134288B (en)
US3879975A (en) Machine for producing coil springs
US1762556A (en) Process and apparatus for making piston rings
US3402584A (en) Spring coiling machine
JPS6222698B2 (en)
JPH1058075A (en) Spring manufacturing equipment
US2404424A (en) Machine for coiling metal stock
US1930329A (en) Spring coiling machine
US1266070A (en) Spring-coiling machine.
US3204847A (en) Tube forming apparatus
US4663955A (en) Apparatus for straightening tubing
US1083501A (en) Machine for making coil-springs.
US3025890A (en) Method of shaping wire stock
US3454053A (en) Coiled filament forming apparatus
KR200372927Y1 (en) Do spiral spring manufactory
US2324641A (en) Spring coiling machine
US2569292A (en) Wire winding machine
US4371432A (en) Method of and apparatus for electroerosive production of profiled surfaces
US2249996A (en) Spring-forming machine
US2872949A (en) Tension spring machine
US2230818A (en) Machine and method of making terminals for electrostatic condensers
DE102019212090B4 (en) Forming machine with feed device
US2388630A (en) Wire-coiling apparatus
US2176918A (en) Grid machine and method of controlling grid bows