US2168093A - Size-reducing mill - Google Patents

Size-reducing mill Download PDF

Info

Publication number
US2168093A
US2168093A US98226A US9822636A US2168093A US 2168093 A US2168093 A US 2168093A US 98226 A US98226 A US 98226A US 9822636 A US9822636 A US 9822636A US 2168093 A US2168093 A US 2168093A
Authority
US
United States
Prior art keywords
size
chamber
reducing
chambers
providing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US98226A
Inventor
Charles F Osgood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sullivan Machinery Co
Original Assignee
Sullivan Machinery Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sullivan Machinery Co filed Critical Sullivan Machinery Co
Priority to US98226A priority Critical patent/US2168093A/en
Application granted granted Critical
Publication of US2168093A publication Critical patent/US2168093A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/14Mills in which the charge to be ground is turned over by movements of the container other than by rotating, e.g. by swinging, vibrating, tilting

Definitions

  • My invention relates to size-reducing mills, and more particularly to mills which are especially suited for the reduction in size of masses of rock;l
  • An object of my invention is to provide an improved size-reducing mill. Another object of my invention is to provide an improved size-reducing -mill requiring a minimum amount of power in proportion to the amount of useful work performed. Still another object is to provide an improved mill in which a plurality of stages of reduction may be effected in an apparatus so designed that the portions thereof in which different stages of size-reduction take place, so-tospeak, at least substantially counterbalance each other and thereby reduce the vibration of the machine and render the same' much more smooth-running and uniform in its power requirements, and in which, further, bearing pressures -due to unbalanced forces are kept at a minimum.
  • a more specific object of my invention is to provide an improved size-reducing mill in which a plurality of size-reducing chambers are arranged in symmetrical relation with respect to an axis upon which the size-reducing chamber-providing means is pivotable.
  • a more specific object of my invention is to provide, in one aspect of said invention, an improved size-reducing mill in which a plurality of size-reducing chambers, in at least some of which different stages of sizereduction take place, are arranged in equally spaced relation about an axis of oscillation.
  • Fig. 1 is a View largely in vertical section through a size-reducing mill constructed in accordance with one of the illustrative embodiments of the invention.
  • Fig. 2 is a vertical section on the plane of the line 2-2.of Fig. 1.
  • Fig. 3 is a somewhat fragmentary view through the size-reducing-chamber-providing member and associated parts, showing a modified form of construction.
  • Fig. 4 is a similar view showing a further modied form of construction.
  • a base I is provided with side frames 2, of which but one is shown in Fig. 1, providing muscularte material, designated 22.
  • crank shaft I carries a combined driving pulley 5 and fly wheel 8 which may be driven by any suitable means, as, for example, a belt 9; and the crank shaft is connected by a connecting rod l0 to a pin H carried in projecting bosses I2, herein formed integral with the chamber-providing l0 member ⁇ 5.
  • the chamber-providing member in Fig. 1 comprises an upper size-reducing chamber I3 in which material of comparatively large size is adapted to be reduced to a size, say of a maximum l5 dimension of one inch or thereabouts, or smaller, a lower size-reducing chamber I4 in which a pulverizing of the partially size-reduced product discharged from chamber I3 may take place, and an intermediate connecting passage portion I5 for 20 conducting the crushed material from chamber I3 into chamber I4.
  • Each of the chambers I3, I4 is arcuate in form and of substantially uniform cross section at all points along its length materially spaced from the approximately hemispher- 25 ical ends IS' thereof.
  • the arcs on which the chambers I3, I4 are struck have a common center in the axis II of the shaft 4.
  • the top of the chamber-providing member 5 is provided with a flared funnel-like portion l ⁇ I8 providing a -feed 30 passage of extended dimension lso that the stationary feed supply chute I9 through which material masses entering the initial size-reducing chamber' I3 may nd access to the latterirrespec-v tive of the oscillation of the chamber-providing 35 y member 5.
  • a passage 2 I connects the base of the funnel-like portion I8 with the top of the sizereducing chamber I3.
  • a size-reducing medium is provided in the chamber M I3, herein the form of a single large ball of ap- 'I'he lower, radially inner wall of the chamber I3 is traversed by a slot 23 which opens into the annular materialY conducting space I5- which surrounds a hubg5 like portion 24 through which the central portion of the shaft 4 extends.
  • the upper wall of the chamber I4 is traversed by a series of openings 25 through which the material passing through the annular space I5 may secure access into the lower i0 size-reducing chamber I4. In that chamber, e.
  • size-reducing medium is also preferably used, this time a medium made up of a charge of relatively small size-reducing elements 3S, desire-1 bly of graduated sizes so that some straticaticn as of material and size-reducing media may take place.
  • a suitable stationary chute 28 is arranged below the oscillatory size-reducingchamber-providing member 5, to receive the reduced material therefrom.
  • the material entering the chamber I3 is subjected to a size-reducing action by the ball 22, and as the latter is thrown between the ends of the chamber I3, and the material also in part thrown between the ends of said chamber, the material is rapidly crushed suiiciently to escape through the sizable opening 23 in the bottom wall of the chamber I3.
  • the material enters the chamber I3 through the opening 2
  • the chamber forming member 5 may be balancedin large measure so that the weight of the mass thereof above the pivot and the weight of the mass below the pivot will substantially counterbalance each other or counterbalance each other with due allowance made for the effects of the connecting rod, crank pin, etc.; and a minimization of stresses on the shaft 4 secured.
  • the masses of the size-reducing media may be appropriately proportioned to maintain the balance of the entire oscillating system, and by appropriate determination of the feed rate and of the sizes of the discharge openings even the quantity of ma.- terial undergoing reduction may be maintained so divided between the chambers as to provide a balanced relation of the entire system undergoing oscillation.
  • a substantially cylindrical size-reducing-chamber element 35 is provided, the periphery of this element being, in the illustrative form shown, wholly cylindrical except for the projection therefrom of the feed funnel portion 36 and the webs 31 which support the pin 38 to which the connecting rod Ill' is connected.
  • Within the cylindrical body 35 there are formed three size-reducing chambers, a primary size-reducing chamber 39 with which the material conducting passage 40 of the funnel portion 36 communicates through an opening 4I, and a pair of symmetrically arranged lower size-reducing chambers 42 and 43.
  • Chambers 42 and 43 and the chamber 39 are struck on common arcs about the axis 44 of the supporting -shaft of the chamber forming member 35.
  • Said shaft is appropriately journaled in a frame of which a portion is shown at 46.
  • An appropriate crushing medium, herein a ball 53 is arranged in the chamber 39, and appropriate size-reducing media 54 desirably graduated in size are provided in the chambers 42, 43.
  • Discharge toyss of suitable size and number, as shown at 55 are provided leading from the lower ends of each of the chambers 42, 43.
  • the delivery of all the material discharged through the openings 55 through the discharge connection 56 is insured by an enclosure 51 whose upper portion at 58 is closely adjacent the horizontal diametric line of the size-reducing element 35.
  • Discharge orifices 68 lead from the chamber 64 Aopening through the lower wall of the latter.
  • I have provided a substantially balanced ⁇ size-reducing-chamber-forming member mounted for oscillation and provided with chambers formed therein for the performance of sizereduction in a plurality of stages, the chambers being arranged in such relation to the axis of oscillation of the size-reducing-chamber-forming member as to maintain a desired balanced condition and also promote maximum eiciency in size-reduction.
  • access may be obtained to the interior of the chambers, for the removal of the size-reducing media, for example, in any appropriate manner; and removable side walls have been illustrated at 69 in Fig.
  • sizereducing-chamber-providing member providing a primary size-reducing chamber above a horizontal axis of oscillation, a secondary sizereducing chamber below said horizontal axis of oscillation, said primary and secondary size-reducing chambers providing two-stage reduction of material fed to the primary chamber, means providing for the passing of predeterminedlysize-reduced material between said chambers, and means for oscillating said chamber-providing member on said axis through such an arc that a portion of said primary size-reducing chamber is always higher than the highest point in said secondary size-reducing chamber.
  • a size-reducing-chamber-providing member providing a primary size-reducing chamber above a horizontal axis of oscillation and with its walls respectively nearer and' more remote from said axis struck, on arcs from the latter, a secondary size-reducing chamber below said horizontal axis of oscillation and with its walls respectively nearer and more remote from said axis struck on arcs from the latter, said primary and secondary sizereducing chambers providing two-stage reduction of material fed to the primary chamber, means providing for the passing of predeterminedly-size-reduced material between said chambers, and means for oscillating said chamberproviding member on said axis through such an arc that a portion of said primary size-reducing chamber is always higher than the highest point in said secondary size-reducing chamber.
  • a substantially cylindrical size-reducing-chamberforming member in combination, a substantially cylindrical size-reducing-chamberforming member, and means for oscillating said member on its axis, said member providing a plu- -rality of arcuately-elongated size-reducing chambers therein arranged in a common annular-zone and of a cumulative angular extent less than l360 and struck on radii of like lengths from the their mean arcs, said 'chambers being connected and arranged for the serial size-reduction of material rst in one and then in the remainder thereof.
  • secondary size-reducing chambers' being disposed in-said member inra common annular zone with said rst mentioned chamber, said common annular zone of the same radial dimension as said primary chamber and said secondary chambers being arranged and connected to receive material processed in said primary chamber, and means for oscillating said member on its axis through an angle of arc less than the angle of arc of said chambers.
  • a. power oscillated size-reducing-chamber-forming element having at least three arcuate size-reducing chambers formed therein in a common annularzone and each with concentric arcuate walls respectively struck on ⁇ the radii of the inner and outer walls of such zone, means for discharging size-reduced material from two of said chambers,
  • the mill only after it has passed through at least two chambers.
  • an oscillatable sizereducing-chamber-providing element providing a pair of arcuate size-reducing chambers,one at one side and the other at the opposite side of a dia.- metric planey including the axis of oscillation of said member, means for conducting material from one of said chambers to the other extending between said chambers and providing separated passage portions arranged in parallel at opposite sides of the axis ⁇ of oscillation, and means for oscillating said member through an arc less than the arcuate length of said chambers, each of said chambers being offset from said axis and of an elongation arcuately at least twice its radial dimension and one having an elongated arcuate inner wall and the other an elongated arcuate outer wall along which its contents are slidable.
  • a generally cylindrical, oscillatable size-reducing-chamber-providing ⁇ member providing a pair of elongated arcuate size-reducing chambers of relatively small -radial dimension, one at one side and the other at the opposite side of a diametric plane including the axis of oscillation of said member, means for introducing all the material delivered into said mill into one of said chambers, means ,for discharging all the material discharged from the mill from vthe other chamber, and means -for conducting material between said chambers providing sepa- -rated passage portions arranged at oppositesides of the axis of oscillation and constituting the sole means of access for material tha't enters s aid first chamber to said second chamber, and means for oscillating said member on its axis through a small angle.
  • an oscillatable sizereducing-chamber-providing element providing a pair of elongated arcuate size-reducing chambers, one at one side and the other at the opposite side of a diametric plane including the axis of oscillation of said element, said chambers oirset from such axis so that they have inner arcuate walls of substantial arcuate length, means' for effecting a rapid power oscillation of said element while maintaining one of the chambers therein with at least the major portion thereof at all times at the same side of a plane in which the axis of oscillation lies and which plane is perpendicular to a plane bisecting the path of oscillation of said chamber, means for delivering material to said last mentioned chamber, and means for conducting material from said last mentioned chamber to the other providing separated passage portions arranged at opposite sides of the axis of .oscillation and connecting like portions of the adjacent sides of said chambers.
  • a substantially cylindrical size-reducing-chamberformmg member journaled for oscillation on a horizontal axis, a downwardly concave primary size-reducing chamber being formed in said member above the axis thereof, and a plurality of arcuate secondary size-reducing chambers being formed in said member in a common annular zone with said iirst mentioned chamber and so located in said member that in the mid-position of the latter, in respect to the oscillation thereof, said secondary chambers lie mainly below the horizontal diametric plane of said element, means for conducting material'from said primary chamber to each of said secondary chambers, and means for effecting a rapid power oscillation of said member of a speed and amplitude to throw the contents of said several chambers back and forth between their several'ends.
  • a substantially 'cylindrical size-reducing-chamberforming member in combination, a substantially 'cylindrical size-reducing-chamberforming member, and means for oscillating said member on its axis, said member providing a plurality of arcuately-elongated size-reducing chambers therein in a. common annular zone and struckon radii of like lengths from the axis of oscillation of said chamber-forming member, said chambers so arranged that the corresponding ends of the several chambers are equally angularly spaced from each other, means for delivering material to be processed initially into lone of said chambers, and means for delivering material size-reduced in said last mentioned chamber to each of the other remaining chambers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Description

Aug. l, 1939. c. F. osGooD sIzE-REDUcNG MILL.
Patented Aug. l', 1939 PATENT fori-ICE sIzE-REDUcING MILL Charles F. Osgood, Claremont, N. H., assignor to Sullivan Machinery Company, a corporation of Massachusetts Application August 27,
' 11 claims. My invention relates to size-reducing mills, and more particularly to mills which are especially suited for the reduction in size of masses of rock;l
ore, retort residues, coal or other materials from sizes of a maximum diameter of several inches to sizes which will pass through a comparatively small-meshv sieve.
An object of my invention is to provide an improved size-reducing mill. Another object of my invention is to provide an improved size-reducing -mill requiring a minimum amount of power in proportion to the amount of useful work performed. Still another object is to provide an improved mill in which a plurality of stages of reduction may be effected in an apparatus so designed that the portions thereof in which different stages of size-reduction take place, so-tospeak, at least substantially counterbalance each other and thereby reduce the vibration of the machine and render the same' much more smooth-running and uniform in its power requirements, and in which, further, bearing pressures -due to unbalanced forces are kept at a minimum. A more specific object of my invention is to provide an improved size-reducing mill in which a plurality of size-reducing chambers are arranged in symmetrical relation with respect to an axis upon which the size-reducing chamber-providing means is pivotable. A more specific object of my invention is to provide, in one aspect of said invention, an improved size-reducing mill in which a plurality of size-reducing chambers, in at least some of which different stages of sizereduction take place, are arranged in equally spaced relation about an axis of oscillation.
Otherl objects and advantages of the invention will hereinafter more fully appear.
In the accompanying drawing, in which for purposes of illustration three illustrative embodi- 0 ments of the invention are shown,
Fig. 1 is a View largely in vertical section through a size-reducing mill constructed in accordance with one of the illustrative embodiments of the invention.
Fig. 2 is a vertical section on the plane of the line 2-2.of Fig. 1.
Fig. 3 is a somewhat fragmentary view through the size-reducing-chamber-providing member and associated parts, showing a modified form of construction.
Fig. 4 is a similar view showing a further modied form of construction.
Referring first tol Figs. 1 and 2, it will be observed that a base I is provided with side frames 2, of which but one is shown in Fig. 1, providing propriate material, designated 22.
1936, Serial No. 98,226 (c1. 834-9) bearings 3,' 3 for a shaft 4 supporting an oscillating size-reducing chamber-providing member 5, and further providing bearings as at 6 in which a crank shaft 'I is rotatably supported. The crank shaft I carries a combined driving pulley 5 and fly wheel 8 which may be driven by any suitable means, as, for example, a belt 9; and the crank shaft is connected by a connecting rod l0 to a pin H carried in projecting bosses I2, herein formed integral with the chamber-providing l0 member` 5. y
The chamber-providing member in Fig. 1 comprises an upper size-reducing chamber I3 in which material of comparatively large size is adapted to be reduced to a size, say of a maximum l5 dimension of one inch or thereabouts, or smaller, a lower size-reducing chamber I4 in which a pulverizing of the partially size-reduced product discharged from chamber I3 may take place, and an intermediate connecting passage portion I5 for 20 conducting the crushed material from chamber I3 into chamber I4. Each of the chambers I3, I4 is arcuate in form and of substantially uniform cross section at all points along its length materially spaced from the approximately hemispher- 25 ical ends IS' thereof. The arcs on which the chambers I3, I4 are struck have a common center in the axis II of the shaft 4. The top of the chamber-providing member 5 is provided with a flared funnel-like portion l`I8 providing a -feed 30 passage of extended dimension lso that the stationary feed supply chute I9 through which material masses entering the initial size-reducing chamber' I3 may nd access to the latterirrespec-v tive of the oscillation of the chamber-providing 35 y member 5. A passage 2 I connects the base of the funnel-like portion I8 with the top of the sizereducing chamber I3.
To promote the rapidity of size-reduction, a size-reducing medium is provided in the chamber M I3, herein the form of a single large ball of ap- 'I'he lower, radially inner wall of the chamber I3 is traversed by a slot 23 which opens into the annular materialY conducting space I5- which surrounds a hubg5 like portion 24 through which the central portion of the shaft 4 extends. The upper wall of the chamber I4 is traversed by a series of openings 25 through which the material passing through the annular space I5 may secure access into the lower i0 size-reducing chamber I4. In that chamber, e. size-reducing medium is also preferably used, this time a medium made up of a charge of relatively small size-reducing elements 3S, desire-1 bly of graduated sizes so that some straticaticn as of material and size-reducing media may take place. Through the bottom wall of the chamber I4 there are provided a considerable number of discharge slots 21, and a suitable stationary chute 28 is arranged below the oscillatory size-reducingchamber-providing member 5, to receive the reduced material therefrom.
. ,The mode of operation of this form of the invention will be clear Irom the description given. Material particles to be reduced in size supplied in any suitable manner to the stationary feed connection I9 enter the funnel-like portion I 8 and pass through the opening 2| into the primary size-reducing chamber I3. Driving by the belt 9 of the flywheel and pulley 8 rotates the crank shaft 1 and causes the connecting rod I0 to oscillate the chamber-providing member 5 upon the axis I1. The oscillation of this member throws the c/ontents of the chambers alternately in opposite directions, the contents moving in each direction a part of the time concurrently with and a part of the time relative to the walls of the chambers. The material entering the chamber I3 is subjected to a size-reducing action by the ball 22, and as the latter is thrown between the ends of the chamber I3, and the material also in part thrown between the ends of said chamber, the material is rapidly crushed suiiciently to escape through the sizable opening 23 in the bottom wall of the chamber I3. The material enters the chamber I3 through the opening 2| alternately at opposite sides of the ball 22 as the latter moves relative to the cham.- ber, and so the size-reduction takes place at each end of the chamber I3. The material which passes through the discharge opening 23, of which but one is shown but of which` theremay obviously be more if desired, enters the semiannular spaces I5 and passes through the latter and through the slots 25 into the chamber I4. Here it mingleswith the size-reducing medium 26, and the entire charge within the chamber I4 is thrown from end to end of the chamber and subjected to a combination of centrifugal pressure, internal Working, and impact, whose proportions of the combined operation are determined by the design of the chamber and its oscillating means. The material, largely reduced to dust-like form within the chamber I4, is discharged into the collecting chute 28. It will be evident, noting that there is a thickening of the bottom wall of the chamber I4 at 29 throughout the length of the portion containing the slots 21, that the chamber forming member 5 may be balancedin large measure so that the weight of the mass thereof above the pivot and the weight of the mass below the pivot will substantially counterbalance each other or counterbalance each other with due allowance made for the effects of the connecting rod, crank pin, etc.; and a minimization of stresses on the shaft 4 secured. vIt will be noted, moreover, that the masses of the size-reducing media may be appropriately proportioned to maintain the balance of the entire oscillating system, and by appropriate determination of the feed rate and of the sizes of the discharge openings even the quantity of ma.- terial undergoing reduction may be maintained so divided between the chambers as to provide a balanced relation of the entire system undergoing oscillation.
In Fig. 3, instead of using a somewhat irregular shaped size-reducing-chamber element 5, a substantially cylindrical size-reducing-chamber element 35 is provided, the periphery of this element being, in the illustrative form shown, wholly cylindrical except for the projection therefrom of the feed funnel portion 36 and the webs 31 which support the pin 38 to which the connecting rod Ill' is connected. Within the cylindrical body 35 there are formed three size-reducing chambers, a primary size-reducing chamber 39 with which the material conducting passage 40 of the funnel portion 36 communicates through an opening 4I, and a pair of symmetrically arranged lower size-reducing chambers 42 and 43. Chambers 42 and 43 and the chamber 39 are struck on common arcs about the axis 44 of the supporting -shaft of the chamber forming member 35. Said shaft is appropriately journaled in a frame of which a portion is shown at 46. Adjacent the ends of the inner Wall of the chamber 39 there are provided a pair of passages 48 which open approximately centrally, as at 50, 5I, through the inner walls of the secondary size-reducing chambers '42, 43. An appropriate crushing medium, herein a ball 53, is arranged in the chamber 39, and appropriate size-reducing media 54 desirably graduated in size are provided in the chambers 42, 43. Discharge orices of suitable size and number, as shown at 55, are provided leading from the lower ends of each of the chambers 42, 43. The delivery of all the material discharged through the openings 55 through the discharge connection 56 is insured by an enclosure 51 whose upper portion at 58 is closely adjacent the horizontal diametric line of the size-reducing element 35.
The mode of operation of this arrangement will be readily appreciated. -Here it will have been noted that the three chambers which are shown are symmetrically arranged with respect to a vertical plane passing through the axis of the shaft 44. It will be noted, moreover, that the several chambers are so distributed around that axis that a substantial balance of the cylindrical size-reducing chamber-providing member 35 is' secured, lIt will be observed that the material crushed Within the chamber 39 will discharge from adjacent the opposite ends thereof through the passages 48 into the chambers 42, 43 and there be reduced in size further to th@l desired degree. By proportioning the size of the discharge orices 55 in a suitable manner, the ultimate neness of the size-reduction may be made substantially anything called for. Due to the balancing secured by the design of the chamber and by the appropriate selection of the weights of the size-reducing media, the stresses upon the bearings of the shaft 44 set up during the oscillation of the chamber-forming member by the connecting rod I0 may be made not a great deal more than would result from the oscillation of a Wheel of similar weight. 'I'he material discharged from opposite ends of the size-reducing chamber 39 is distributed nicely between the chambers 42, 43, and the size-reducing action at the lower ends of these chambers occurs in alternation as does also the secondary size-reducing action which takes place adjacent the upper ends of the chambers, though the latter is` of less intensity. The material passing through the orices 55 is prevented from escape by its delivery within the shield portion 51.
With reference to Fig. f1, this combines the structural features of the species of Figs. l and. 2
and those of Fig. 3. A single, more elongated arcuate size-reducing chamber 60 containing, herein, a single large size-reducing element 6I CTI 63, and lead from points adjacent the ends of the inner lower'wall of the chamber 60 to approximately corresponding positions in the inner upper wall of the secondary size-reducing chamber 64. Discharge orifices 68 lead from the chamber 64 Aopening through the lower wall of the latter.
A detailed discussion of the mode of operap tion of this form of the invention is unnecessary in view of the similarity of its diierent features to the features found in the other forms.
In all the forms of the invention it will be observed that I have provided a substantially balanced `size-reducing-chamber-forming member mounted for oscillation and provided with chambers formed therein for the performance of sizereduction in a plurality of stages, the chambers being arranged in such relation to the axis of oscillation of the size-reducing-chamber-forming member as to maintain a desired balanced condition and also promote maximum eiciency in size-reduction. Of course it will be observed that access may be obtained to the interior of the chambers, for the removal of the size-reducing media, for example, in any appropriate manner; and removable side walls have been illustrated at 69 in Fig. 2 merely to serve as suggestions of effective, very rugged, requires a minimumof power, reduces wear upon' its bearings to the maximum possible extent; and, particularly in the species of Figs. 3 and 4, provides for an absolute maximum of size-reducing work in a minimum of space.
While there are in this application specifically described three forms which the invention may assume in practice, it will be understood that these forms of the same are shown for purposes A of illustration and that the invention may be modified and embodied in ,various other forms* without departing from its?, spirit vor the scope of the appended claims.
What I claim as new and desire to secure by Letters Patent is:
1. In a size-reducing mill, in combination, a
sizereducing-chamber-providing member providing a primary size-reducing chamber above a horizontal axis of oscillation, a secondary sizereducing chamber below said horizontal axis of oscillation, said primary and secondary size-reducing chambers providing two-stage reduction of material fed to the primary chamber, means providing for the passing of predeterminedlysize-reduced material between said chambers, and means for oscillating said chamber-providing member on said axis through such an arc that a portion of said primary size-reducing chamber is always higher than the highest point in said secondary size-reducing chamber.
2. In a size-reducing mill, in combination, a size-reducing-chamber-providing member providing a primary size-reducing chamber above a horizontal axis of oscillation and with its walls respectively nearer and' more remote from said axis struck, on arcs from the latter, a secondary size-reducing chamber below said horizontal axis of oscillation and with its walls respectively nearer and more remote from said axis struck on arcs from the latter, said primary and secondary sizereducing chambers providing two-stage reduction of material fed to the primary chamber, means providing for the passing of predeterminedly-size-reduced material between said chambers, and means for oscillating said chamberproviding member on said axis through such an arc that a portion of said primary size-reducing chamber is always higher than the highest point in said secondary size-reducing chamber.
3. In a size-reducing mill, in combination, a substantially cylindrical size-reducing-chamberforming member, and means for oscillating said member on its axis, said member providing a plu- -rality of arcuately-elongated size-reducing chambers therein arranged in a common annular-zone and of a cumulative angular extent less than l360 and struck on radii of like lengths from the their mean arcs, said 'chambers being connected and arranged for the serial size-reduction of material rst in one and then in the remainder thereof. A
4. In a size-reducing mill; in combination, a substantially cylindrical size-reducing-chamberforming member journaled for oscillation on a horizontal axis, a downwardly concave primary size-reducing chamber being formed in said member above and radially spaced from the axis thereof, and a=plurality of arcuate. secondary size-reducing chambers'being disposed in-said member inra common annular zone with said rst mentioned chamber, said common annular zone of the same radial dimension as said primary chamber and said secondary chambers being arranged and connected to receive material processed in said primary chamber, and means for oscillating said member on its axis through an angle of arc less than the angle of arc of said chambers. Y
5. In a size-reducing mill, in combination, a. power oscillated size-reducing-chamber-forming element having at least three arcuate size-reducing chambers formed therein in a common annularzone and each with concentric arcuate walls respectively struck on` the radii of the inner and outer walls of such zone, means for discharging size-reduced material from two of said chambers,
means for introducing material to be processed initiallyinto a chamber between said' two chambers, and means for delivering material size-reduced in said third chamber to one or the other of said two chambers.
6. In a size-reducing mill, in combination. aA
the mill only after it has passed through at least two chambers.
7. In a size-reducing mill, an oscillatable sizereducing-chamber-providing element providing a pair of arcuate size-reducing chambers,one at one side and the other at the opposite side of a dia.- metric planey including the axis of oscillation of said member, means for conducting material from one of said chambers to the other extending between said chambers and providing separated passage portions arranged in parallel at opposite sides of the axis `of oscillation, and means for oscillating said member through an arc less than the arcuate length of said chambers, each of said chambers being offset from said axis and of an elongation arcuately at least twice its radial dimension and one having an elongated arcuate inner wall and the other an elongated arcuate outer wall along which its contents are slidable.
8. In a size-reducing mill, a generally cylindrical, oscillatable size-reducing-chamber-providing `member providing a pair of elongated arcuate size-reducing chambers of relatively small -radial dimension, one at one side and the other at the opposite side of a diametric plane including the axis of oscillation of said member, means for introducing all the material delivered into said mill into one of said chambers, means ,for discharging all the material discharged from the mill from vthe other chamber, and means -for conducting material between said chambers providing sepa- -rated passage portions arranged at oppositesides of the axis of oscillation and constituting the sole means of access for material tha't enters s aid first chamber to said second chamber, and means for oscillating said member on its axis through a small angle.
9.-.In a size-reducing mill, an oscillatable sizereducing-chamber-providing element providing a pair of elongated arcuate size-reducing chambers, one at one side and the other at the opposite side of a diametric plane including the axis of oscillation of said element, said chambers oirset from such axis so that they have inner arcuate walls of substantial arcuate length, means' for effecting a rapid power oscillation of said element while maintaining one of the chambers therein with at least the major portion thereof at all times at the same side of a plane in which the axis of oscillation lies and which plane is perpendicular to a plane bisecting the path of oscillation of said chamber, means for delivering material to said last mentioned chamber, and means for conducting material from said last mentioned chamber to the other providing separated passage portions arranged at opposite sides of the axis of .oscillation and connecting like portions of the adjacent sides of said chambers.
10. In a size-reducing mill, in combination, a substantially cylindrical size-reducing-chamberformmg member journaled for oscillation on a horizontal axis, a downwardly concave primary size-reducing chamber being formed in said member above the axis thereof, and a plurality of arcuate secondary size-reducing chambers being formed in said member in a common annular zone with said iirst mentioned chamber and so located in said member that in the mid-position of the latter, in respect to the oscillation thereof, said secondary chambers lie mainly below the horizontal diametric plane of said element, means for conducting material'from said primary chamber to each of said secondary chambers, and means for effecting a rapid power oscillation of said member of a speed and amplitude to throw the contents of said several chambers back and forth between their several'ends.
11. In a size-reducing mill, in combination, a substantially 'cylindrical size-reducing-chamberforming member, and means for oscillating said member on its axis, said member providing a plurality of arcuately-elongated size-reducing chambers therein in a. common annular zone and struckon radii of like lengths from the axis of oscillation of said chamber-forming member, said chambers so arranged that the corresponding ends of the several chambers are equally angularly spaced from each other, means for delivering material to be processed initially into lone of said chambers, and means for delivering material size-reduced in said last mentioned chamber to each of the other remaining chambers.
CHARLES F. OSGOOD.
US98226A 1936-08-27 1936-08-27 Size-reducing mill Expired - Lifetime US2168093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US98226A US2168093A (en) 1936-08-27 1936-08-27 Size-reducing mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US98226A US2168093A (en) 1936-08-27 1936-08-27 Size-reducing mill

Publications (1)

Publication Number Publication Date
US2168093A true US2168093A (en) 1939-08-01

Family

ID=22268161

Family Applications (1)

Application Number Title Priority Date Filing Date
US98226A Expired - Lifetime US2168093A (en) 1936-08-27 1936-08-27 Size-reducing mill

Country Status (1)

Country Link
US (1) US2168093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760727A (en) * 1950-05-25 1956-08-28 Tema Nv Process and apparatus for vibratory grinding
US3087707A (en) * 1962-02-01 1963-04-30 Sprayon Products Agitating means for aerosol spray cans
US3190568A (en) * 1962-10-08 1965-06-22 Freedman David Cell disintegrating apparatus
US3592396A (en) * 1964-10-30 1971-07-13 Andrew Szegvari Grinding and apparatus therefor
WO2008028897A1 (en) * 2006-09-08 2008-03-13 PFAFF AQS GmbH automatische Qualitätskontrollsysteme Vibration mill having sliding guide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760727A (en) * 1950-05-25 1956-08-28 Tema Nv Process and apparatus for vibratory grinding
US3087707A (en) * 1962-02-01 1963-04-30 Sprayon Products Agitating means for aerosol spray cans
US3190568A (en) * 1962-10-08 1965-06-22 Freedman David Cell disintegrating apparatus
US3592396A (en) * 1964-10-30 1971-07-13 Andrew Szegvari Grinding and apparatus therefor
WO2008028897A1 (en) * 2006-09-08 2008-03-13 PFAFF AQS GmbH automatische Qualitätskontrollsysteme Vibration mill having sliding guide
AU2007293868B2 (en) * 2006-09-08 2011-04-21 Flsmidth A/S Vibration mill having sliding guide
CN101553316B (en) * 2006-09-08 2012-06-27 Fl史密斯公司 Vibration mill having sliding guide

Similar Documents

Publication Publication Date Title
US2149571A (en) Hammer mill
US1267110A (en) Apparatus for treating nuts.
US2168093A (en) Size-reducing mill
US2575380A (en) Crusher mill
US134513A (en) Improvement in ivjachines for preparing flour
US2982485A (en) Gyratory ball mill
US2964193A (en) Centrifuge for separating water from fine granular material
US2171525A (en) Attrition mill
US2188230A (en) Crusher
US2466828A (en) Triple stage rotary beater mill
US1034552A (en) Ore-crusher.
GB191024660A (en) Improvements in Rotary Dry Pan Mills for Grinding and Pulverizing Clay and similar Substances.
US1948504A (en) Crushing machinery
US1047356A (en) Ore-crusher.
US1583324A (en) Pulverizing mill
SU808128A1 (en) Inertial crusner working member
RU2621560C1 (en) Cone-type vibratory crusher
US2168088A (en) Mill
US860782A (en) Grinding-mill.
GB983163A (en) An oscillatory grinding mill
US2168086A (en) Mill
RU2742509C1 (en) Hammer grain grinder with vertical rotor
GB710146A (en) Improved device for crushing hard materials
US220626A (en) Improvement in machines for manufacturing flour
US2168087A (en) Mill