US2127596A - Alloy - Google Patents

Alloy Download PDF

Info

Publication number
US2127596A
US2127596A US148284A US14828437A US2127596A US 2127596 A US2127596 A US 2127596A US 148284 A US148284 A US 148284A US 14828437 A US14828437 A US 14828437A US 2127596 A US2127596 A US 2127596A
Authority
US
United States
Prior art keywords
alloy
copper
zirconium
magnesium
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US148284A
Inventor
Franz R Hensel
Earl I Larsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duracell Inc USA
Original Assignee
PR Mallory and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PR Mallory and Co Inc filed Critical PR Mallory and Co Inc
Priority to US148284A priority Critical patent/US2127596A/en
Application granted granted Critical
Publication of US2127596A publication Critical patent/US2127596A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • Another object is to produce a copper alloy which has an excellent combination of hardness, electrical conductivity and resistance to annealing.
  • Specic objects are the provision of improved u copper-zirconium-magnesium alloys especially suitable for fabrication intowelding electrodes, high strength sand castings for use with cylinder heads, pistons and other parts of internal combustion engines, commutator segments, trolley 20 Wires, collector rings, switch plates, bolts, nuts and in general for all uses where high strength and/or high conductivity are required at elevated temperatures.
  • the present invention comprises a combination of elements, methods of manufacture and the product thereof brought out and exemplified 80 in the disclosure hereinafter set forth, the scope of the invention being indicated in the appended claims.
  • Fig. 1 is a graph illustrating the eifect of cold 35 working of the alloy referred to in Fig. 2 after aging.
  • Fig. 2 is a graph showing a curve illustrating the improvement during age hardening in the hardness and electrical conductivity of an alloy composed of l Percent Magnesium 0.45 zirconium 0.86 Balance substantially all copper
  • Figure 3 is a graph showing a curve illustrating the improvement in hardness during aging of an alloy composed of Percent MagnesiumL 1.33 zirconium 1.13 Balance substantially all copper alloy.
  • the preferred range of proportions are as follows:y
  • a copper magnesium alloy may iirst be made according to the conventional alloy making procedure of the prior art and then the zirconium may be added.
  • a copper-zirconium alloy first by melting down the copper and adding the zirconium in the form of a hardener alloy which may contain anywhere from 5-50'% zirconium.
  • This hardener alloy can be either a pressed product or a pressed and sintered product or a melted product.
  • 'I'he mag- 30 y nesium is preferably added also in the form of a hardener alloy.
  • Magnesium, in addition to its function as an alloying ingredient, will also act as a very strong deoxidizer and therefore with this new combination of copper magnesium zirconium it is possible to produce very sound castings.
  • the heat treatment may be carried out as follows: 0
  • the alloy in the form of a billet or a sand casting or any other form is raised in temperature above 700 degrees C., and preferably to a temperature Within the range of 800-1000 degrees C.
  • 'I'he alloy is then quenched from this high tem- 5 perature and subsequently aged at a temperature below 700 degrees C., and preferably in the range between 400-600 degrees C. It is possible to cold work the alloy after the complete heat treatment.
  • Alloys prepared as indicated above are well suited for the manufacture of any type of castings, such as sand castings, chill castings or permanent mold castings.
  • the alloys are further well suited for such manufacturing processes as extruding, forging, rolling and drawing.
  • the material can be used for electrical parts of any description.
  • An electrical current carrying member composed of about 0.05 to 3% magnesium, 0.1 to 10% zirconium, and the remainder copper.
  • a heat conducting member composed of about 0.05 to 3% magnesium, 0.1 to 10% zirconium, and the remainder copper.
  • a welding electrode composed of about 0.05 to 3.0% magnesium, 0.1 to 10% zirconium, and the remainder substantially all copper, characterized by a combination of high hardness and high electrical conductivity, and further characterized by the ability to maintain its hardness and high conductivity at temperatures in the order oi' 500 C.

Description

Aug. l23, 1938. F. R. HENSEL ET AL ALLOY Filed June l5, 1957 m j. m f
Patented Aug. 23, 1938 UNITED STATES PATENT OFFICE ALLOY .Franz R. Hensel and Earl I. Larsen, Indianapolis, Ind., assignors to P. R. Mallory & Co., Inc., Indianapolis, Ind., a corporation of Delaware Application June 15, 1937, Serial No. 148,284 s claims. (ci. 14s-s2) higher degree than has heretofore been possible.
lo Another object is to produce a copper alloy which has an excellent combination of hardness, electrical conductivity and resistance to annealing.
Specic objects are the provision of improved u copper-zirconium-magnesium alloys especially suitable for fabrication intowelding electrodes, high strength sand castings for use with cylinder heads, pistons and other parts of internal combustion engines, commutator segments, trolley 20 Wires, collector rings, switch plates, bolts, nuts and in general for all uses where high strength and/or high conductivity are required at elevated temperatures.
Other objects of the invention will be apparent from the following description taken in connection with the appended claims.
The present invention comprises a combination of elements, methods of manufacture and the product thereof brought out and exemplified 80 in the disclosure hereinafter set forth, the scope of the invention being indicated in the appended claims.
In the drawing:
Fig. 1 is a graph illustrating the eifect of cold 35 working of the alloy referred to in Fig. 2 after aging.
Fig. 2 is a graph showing a curve illustrating the improvement during age hardening in the hardness and electrical conductivity of an alloy composed of l Percent Magnesium 0.45 zirconium 0.86 Balance substantially all copper Figure 3 is a graph showing a curve illustrating the improvement in hardness during aging of an alloy composed of Percent MagnesiumL 1.33 zirconium 1.13 Balance substantially all copper alloy. vof copper, magnesium and zirconium in the following permissible range of -proportionsz f Percent Magnesium 0.05 to 3 zirconium -M 0.1 to 5 Balance substantially copper The preferred range of proportions are as follows:y
. Percent Magnesium 0.1m 1.5 1 Zirconium 0.1 to2 Balance ubstantially copper In some instances it may be desirable for certain uses to effect an improvement in the alloy by adding small percentages of additional ingredients, such as silver, zinc, tin, cadmium, calcium, lithium, silicon, titanium, beryllium `and aluminum.
In carrying out the present invention a copper magnesium alloy may iirst be made according to the conventional alloy making procedure of the prior art and then the zirconium may be added.
It is also possible, however,'to produce a copper-zirconium alloy first by melting down the copper and adding the zirconium in the form of a hardener alloy which may contain anywhere from 5-50'% zirconium. This hardener alloy can be either a pressed product or a pressed and sintered product or a melted product. 'I'he mag- 30 y nesium is preferably added also in the form of a hardener alloy. Magnesium, in addition to its function as an alloying ingredient, will also act as a very strong deoxidizer and therefore with this new combination of copper magnesium zirconium it is possible to produce very sound castings.
After the alloy has been prepared according to such alloying methods as described above, the heat treatment may be carried out as follows: 0
The alloy in the form of a billet or a sand casting or any other form, is raised in temperature above 700 degrees C., and preferably to a temperature Within the range of 800-1000 degrees C.
'I'he alloy is then quenched from this high tem- 5 perature and subsequently aged at a temperature below 700 degrees C., and preferably in the range between 400-600 degrees C. It is possible to cold work the alloy after the complete heat treatment.
v In manyv instances, we have found it advisable cold work the alloy after quenching, then subsequently age it, with or without further cold working after aging. We have found it possible to eliminate quenching` operations and cold work the material after hot working and subsequently This is of great importance whenever the alloyl is being used at elevated temperatures. Usually copper base alloys, particularly when cold worked, lose their hardness at elevated temperatures and it is necessary to apply additional cold work toraise the hardness to the original value. At the same time, the elastic and tensile properties are decreased considerably. Therefore, ,copper alloys have been very limited as structural parts in machinery which is run at elevated temperatures. The new alloy described in the present disclosure provides a material, which on account of its strength at elevated temperature and its good thermal conductivity, will provide an excellent material for such structural parts. Furthermore, alloys of the type described have a high resistance to oxidation and to corrosion.
While, for instance, it is necessary to add as much as 10% aluminum to obtain a certain oxidation resistance of a copper base alloy, the combined presence oi. 2% magnesium and zirconium will provide the same resistance.
Alloys prepared as indicated above are well suited for the manufacture of any type of castings, such as sand castings, chill castings or permanent mold castings. The alloys are further well suited for such manufacturing processes as extruding, forging, rolling and drawing. On account of the combination of high hardness, high electrical and high thermal conductivity,
the material can be used for electrical parts of any description.
Another important use for these high strength copper base alloys is in the fabrication of parts of internal combustion engines, such as automobile engines where high heat conductivity is needed.
While the present invention as to its objects and advantages has been described herein as carried out in specic embodiments thereof, it is not desired to be limited thereby, but it is intended to cover the invention broadly, within the spirit and the scope of the appended claims.
What is claimed is:
1. An alloy containing about 0.05 to 3.0% magnesium, 0.1 to 10% zirconium, and the remainder copper.
2. An age hardened alloy containing about 0.05 to 3% magnesium, 0.1 to 10% zirconium, and the remainder substantially all copper, characterized by a combination of high hardness and high electrical conductivity and further characterized by' the ability to maintain its hardness and high electrical conductivity at temperatures in the order of 500 C.
I 3. An electrical current carrying member composed of about 0.05 to 3% magnesium, 0.1 to 10% zirconium, and the remainder copper.
4. A heat conducting member composed of about 0.05 to 3% magnesium, 0.1 to 10% zirconium, and the remainder copper.
5. A welding electrode composed of about 0.05 to 3.0% magnesium, 0.1 to 10% zirconium, and the remainder substantially all copper, characterized by a combination of high hardness and high electrical conductivity, and further characterized by the ability to maintain its hardness and high conductivity at temperatures in the order oi' 500 C.
FRANZ R. HENSEL.
EARL I. LARSEN.
US148284A 1937-06-15 1937-06-15 Alloy Expired - Lifetime US2127596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US148284A US2127596A (en) 1937-06-15 1937-06-15 Alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US148284A US2127596A (en) 1937-06-15 1937-06-15 Alloy

Publications (1)

Publication Number Publication Date
US2127596A true US2127596A (en) 1938-08-23

Family

ID=22525089

Family Applications (1)

Application Number Title Priority Date Filing Date
US148284A Expired - Lifetime US2127596A (en) 1937-06-15 1937-06-15 Alloy

Country Status (1)

Country Link
US (1) US2127596A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629803A (en) * 1949-12-30 1953-02-24 Gen Electric Titanium electrode
US3143442A (en) * 1962-01-23 1964-08-04 Mallory & Co Inc P R Copper-base alloys and method of heat treating them
US3318693A (en) * 1964-12-30 1967-05-09 Dow Chemical Co Alloy composition
US3392016A (en) * 1965-10-15 1968-07-09 American Metal Climax Inc Copper-zirconium alloy
US3535094A (en) * 1965-10-15 1970-10-20 American Metal Climax Inc Radiators made of copper-zirconium alloys
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629803A (en) * 1949-12-30 1953-02-24 Gen Electric Titanium electrode
US3143442A (en) * 1962-01-23 1964-08-04 Mallory & Co Inc P R Copper-base alloys and method of heat treating them
US3318693A (en) * 1964-12-30 1967-05-09 Dow Chemical Co Alloy composition
US3392016A (en) * 1965-10-15 1968-07-09 American Metal Climax Inc Copper-zirconium alloy
US3535094A (en) * 1965-10-15 1970-10-20 American Metal Climax Inc Radiators made of copper-zirconium alloys
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
US20040159379A1 (en) * 2000-08-09 2004-08-19 Andreas Bogel Silver containing copper alloy

Similar Documents

Publication Publication Date Title
CA1099132A (en) Copper base alloys containing chromium, niobium and zirconium
US2241815A (en) Method of treating copper alloy castings
US2127596A (en) Alloy
US2157934A (en) Copper-magnesium alloys of improved properties
US2137281A (en) Copper alloys
US2171697A (en) Alloy
US2281691A (en) Process for heat treating copper alloys
US2143914A (en) Copper-silver-beryllium-nickel alloy
US2033709A (en) Copper alloys
US2311750A (en) Welding electrode
US3019102A (en) Copper-zirconium-hafnium alloys
US2123628A (en) Copper base alloys
US2142671A (en) Copper alloy
US2136919A (en) Copper alloys of improved characteristics
US2161467A (en) Alloy
US2139497A (en) Copper alloy
US2847303A (en) Copper-base alloys
US2169188A (en) Copper base alloy
US2142672A (en) Copper base alloy
US2164065A (en) Copper chromium magnesium alloy
US2136918A (en) Copper alloys
US2137283A (en) Copper alloys
US2123629A (en) Alloy
US2135254A (en) Copper alloys
US2145792A (en) Contacting element