US2120303A - Gain control device - Google Patents

Gain control device Download PDF

Info

Publication number
US2120303A
US2120303A US138112A US13811237A US2120303A US 2120303 A US2120303 A US 2120303A US 138112 A US138112 A US 138112A US 13811237 A US13811237 A US 13811237A US 2120303 A US2120303 A US 2120303A
Authority
US
United States
Prior art keywords
transformer
circuit
frequency
transformers
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US138112A
Inventor
Ullbricht Gunther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken AG
Original Assignee
Telefunken AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken AG filed Critical Telefunken AG
Application granted granted Critical
Publication of US2120303A publication Critical patent/US2120303A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/22Automatic control in amplifiers having discharge tubes

Definitions

  • This invention relates to gain control devices and more particularly to electrical circuits such as used in radio apparatus as well as for .voltage regulators and other control devices.
  • the circuit arrangement may include one or a plurality of transformers tuned to a desired audio-,frequency and so dimensioned that the direct current component of the rectified high frequency or audio-frequency varies the initial magnetization in the transformer and at the'same time varies the natural frequency response of the transformer itself.
  • Other elements may be provided in the circuit in combination with the transformer so as to obtain output energy of varying amplitudes and of varying frequency selective characteristics.
  • the device presently to be described iscapable of use as an automatic volume control device in radio transmitters vor receivers. It is also useful as a voltage regulator. Again itmay be used in connectionwith radio receivers such ascarried on board an aircraft wherein it is required that the pilot shall be able to listen to communications such as instructions for guiding himin his flight and also for obtaining bearings and for following a directional beam as when makin-ga blind landing.
  • the device itself is verysimple in construction and avoids a certain amount of duplication of apparatus such as was heretofore considered necessary in order to fulfill all of the required functions of the apparatus that was duplicated.
  • transformer '1 this primary beingshunted by a condenser vC for tuning purposes.
  • the secondary of the transformer .T feeds to an amplifier tube B, the output. circuit for which may include any desired utilization device.
  • FIG. 1 There-are also shown in Fig. 1, two transformers l and2, the secondaries of which are in series withthe secondary winding of the transformer T.
  • the primary windings of. the transformers I and 2 are not traversed byjdirect current components of the output energy from thetub-e A because such components are excluded by the capacitor 8..
  • the complete array of transformers i, 2 and T, or as designated in the other modifications i, '2 and 3, may be 39 provided with alternative connecting arrangements'so that the different functions of the apparatus may be performed at different times with slight changes in these connections
  • the plate current through the rectifier tubeA determines the magnitude of the. initial magnetizatin of the iron'core in the transformer T. As the magnetization approaches saturation detuning occurs. hence the gain in the succeeding.
  • ain'- plifier stage is controlled by the amplitude of the high frequency input energy applied to the detector A.
  • the range of variationin the transformation ratio through the transformer T is equalto 1 r :45
  • the secondary side of this transformer has no load,d being the damping-component of the resonance circuit.
  • Thevalue of "d can easily R be maintained within 5% so that'the degree of amplification can therewith be varied upto twenty times the value of d. It follows from this thatit is possible to obtain avery steep and narrow resonance curve in the characteristic of 155 quencies.
  • the design of the circuit shown in Fig. 1 is adapted to pass a considerable direct current component through the transformer T and the detector tube A.
  • This detector tube A is not necessarily of the triode type but other forms of rectifier may be used if desired.
  • the high frequency detector stage is followed by one or more audio-frequency detector and amplifier stages.
  • the audio-frequency amplifier stages following the demodulator and a stage of second detection may be of any well known construction and it will be understood by those skilled in. the art that in this case the discharge tube B may serve as a second detector and it may have interposed between its input and the secondary of the transformer T one or more stages of intermediate frequency amplification if desired.
  • the audio-frequency of the fundamental wave is passed through this detector and the high frequency waves are suppressed.
  • the low frequency output may be doubled.
  • my invention may be used in an audio-frequency amplifier without reference to the question of whether the low frequency is or is not a modulation superimposed upon a carrier wave.
  • My invention has particular utility in systems wherein radiated signals of a predetermined high frequency are received, but where these signals are differently modulated for different purposes.
  • a guiding beam may be used, the field strength of which serves after rectification for actuating an indicating instrument thereby toshow the distance between the aircraft and the transmitter.
  • the gain in the amplifier of the receiver shall be held at a constant ratio sothat the indications may be made in accordance with the received field intensity of the signals.
  • an automatic volume control device is very desirable. For such purposes, even though the high frequency carrier wave may be differently modulated. as compared with the modulations for the directional beam, it is possible to apply the volume control methods herein shown without destroying the effectiveness of the directional beam systern.
  • Fig. 2 illustrates one preferred method of carrying out the invention for obtaining control of the gain with respect to certain low frequencies without controlling the gain for other low fre-
  • the circuit shows a detector A the same as in Fig. 1, but the output circuit from this tube includes a choke coil 4 leading to a tuned circuit which comprises the primary of the transformer 3 and a variable condenser 5.
  • the anode potential is applied to the tube A through the primary winding of the transformer 3 and through the choke coil 4.
  • shunt with the choke coil 4 is a circuit arrangement comprising primary windings of two transformers I and 2, each shunted by a suitable condenser 6 and 1 respectively and this entire shunt circuit is coupled to the anode of the tube A through a condenser 8 which prevents the flow of direct current through the windings of the transformers I and 2.
  • a directional indicator of any well known type may be made operable in the ouput circuits connected to'the transformers I and 2.
  • two slightly overlapping directional beams may be modulated respectively by low frequencies f1 and f2 to which the circuits I-5 and 21 are made resonant respectively.
  • an indicating instrument G may be provided with opposing coils and so connected to the secondaries of the transformers I and 2 (through am-' plifiers, if desired) as to cause a deflection of the needle to either side of the mid-position point) depending upon the ratio between the amplitudes of the received modulations of the two directional signals.
  • any deviation of the aircraft from a course midway between the axes of the two directional beams may be indicated.
  • the energy developed in the secondary of the transformer 3 is, however, gain controlled in the same manner as described above in connection with Fig. 1.
  • the primary of the transformer 3 in parallel with the condenser may, therefore, be tuned to a given modulation frequency different from the modulation frequencies which are to be received without gain control. If the average current through the coil 3 is increased, the iron core becomes saturated and the inductance decreases so that the amplification of low frequencies is reduced, although the amplification of high frequencies is not reduced to an appreciable extent.
  • An electrical circuit having an alternating current rectifier, a resonant circuit connected to the output side of said rectifier and having a natural frequency which renders it variably responsive to modulation-frequency currents from said rectifier, means including a transformer having a primary winding in said resonant circuit and having a saturable magnetic core for varying the frequency response characteristic of said resonant circuit in dependence upon the amplitude of the direct current component of the energy traversing said primary Winding, a second transformer whose primary is in circuit with the primary of the first said transformer, and means including a blocking condenser for excluding direct current components from the primary of the second said transformer only.
  • a circuit arrangement having an alternating current rectifier, an iron core transformer in the output circuit of said rectifier, said transformer being tuned to a low frequency and so dimensioned that its frequency response characteristic is rendered variable in accordance with the degree of saturation of its core, a second transformer having a primary winding in circuit between one of the terminals of the primary winding of the first said transformer and the output circuit of said rectifier, and means for blocking the flow of direct current through the primary of the second said transformer.
  • a circuit arrangement comprising a demodulating discharge tube having a high frequency input circuit and a low frequency output circuit, a plurality of series connected primary windings for respectively different and differently tuned iron core transformers, said primary windings being fed with low frequency currents from the output circuit of said discharge tube, means for excluding direct current components from at least one of said transformer primaries, thereby to render the transformation ratio linear therein, and means for admitting direct current components to another of said transformer primaries thereby to vary its impedance in dependence upon the degree of saturation of its transformer core.

Landscapes

  • Amplifiers (AREA)

Description

June 14, 1938. G. ULLBRXCHT 2,120,303
GAIN CONTROL DEVICE Filed April 21, 1937 may FREQUENCY A 5 UT/L/ZA r/0/v 051/105 AAAAAA GAIN- CONTROLLED OUTPUT INPUT v 1 f OUTPUT CIRCUITS FED W/ TH LINEAR GA IN ENERGY GA/N CONTROLLED OUTPUT INVENTOR GUNTHER ULLBRICHT ATTORN EY =atented June 14, 1938 UNITED STATES GAIN CONTROL DEV ICE "Giinther'Ullbricht, Berlin, Germany, assignorto Telefunken Geselischaftfiir Drahtlose Telegraphic in. b. 11., Berlin, Germany, a corporation of Germany Application April 21, 1937, Serial No. 138,112 In Germany April 3, 1936 5 Claims.
This invention relates to gain control devices and more particularly to electrical circuits such as used in radio apparatus as well as for .voltage regulators and other control devices.
It is among the objects of my invention to provide'a circuit arrangement having a frequency response characteristic such that the gain ratio is controlled by variations in the low frequency component of the applied input energy. The circuit arrangement may include one or a plurality of transformers tuned to a desired audio-,frequency and so dimensioned that the direct current component of the rectified high frequency or audio-frequency varies the initial magnetization in the transformer and at the'same time varies the natural frequency response of the transformer itself. Other elements may be provided in the circuit in combination with the transformer so as to obtain output energy of varying amplitudes and of varying frequency selective characteristics.
The device presently to be describediscapable of use as an automatic volume control device in radio transmitters vor receivers. It is also useful as a voltage regulator. Again itmay be used in connectionwith radio receivers such ascarried on board an aircraft wherein it is required that the pilot shall be able to listen to communications such as instructions for guiding himin his flight and also for obtaining bearings and for following a directional beam as when makin-ga blind landing.
Among the advantages to be derived from the use of my invention it may be mentioned that the device itself is verysimple in construction and avoids a certain amount of duplication of apparatus such as was heretofore considered necessary in order to fulfill all of the required functions of the apparatus that was duplicated.
My invention will now be described in detail, reference being made to the accompanying draw-- ing, in which transformer '1, this primary beingshunted by a condenser vC for tuning purposes. The secondary of the transformer .Tfeeds to an amplifier tube B, the output. circuit for which may include any desired utilization device.
There-are also shown in Fig. 1, two transformers l and2, the secondaries of which are in series withthe secondary winding of the transformer T. The primariesof the transformers l ,and 2 ;con-, stitute inductive portions of two resonant circuits, which circuits include the variable capacitors ".6 and! respectively. The primary windings of. the transformers I and 2 are not traversed byjdirect current components of the output energy from thetub-e A because such components are excluded by the capacitor 8.. Where the secondaries of the three transformershl and Tare series connected, as shown in Figure l, andall' feed to the grid of a single .amplifier tube B; the advantages of furnishing .a portion ,of this input energy through the transformers I and 2 are not so much apparent as inthe othermodifications of my invention shownin Figs. 2 and .3. These fur 'ther advantages will, therefore, be brought out 'in more detail in describing the other modifications. It is to ,be. understood, however, that in order to provide standard equipment which shall have a variety. of different uses. the complete array of transformers i, 2 and T, or as designated in the other modifications i, '2 and 3, may be 39 provided with alternative connecting arrangements'so that the different functions of the apparatus may be performed at different times with slight changes in these connections The plate current through the rectifier tubeA determines the magnitude of the. initial magnetizatin of the iron'core in the transformer T. As the magnetization approaches saturation detuning occurs. hence the gain in the succeeding. ain'- plifier stage is controlled by the amplitude of the high frequency input energy applied to the detector A. The range of variationin the transformation ratio through the transformer T is equalto 1 r :45
provided the secondary side of this transformer has no load,d being the damping-component of the resonance circuit. Thevalue of "d can easily R be maintained within 5% so that'the degree of amplification can therewith be varied upto twenty times the value of d. It follows from this thatit is possible to obtain avery steep and narrow resonance curve in the characteristic of 155 quencies.
the transformer T and its associated condenser C.
The design of the circuit shown in Fig. 1 is adapted to pass a considerable direct current component through the transformer T and the detector tube A. This detector tube A is not necessarily of the triode type but other forms of rectifier may be used if desired.
It is within the scope of the invention to provide a plurality of audio-frequency control devices in cascade, each similar to the one shown in Fig. 1. In this case the high frequency detector stage is followed by one or more audio-frequency detector and amplifier stages. The audio-frequency amplifier stages following the demodulator and a stage of second detection may be of any well known construction and it will be understood by those skilled in. the art that in this case the discharge tube B may serve as a second detector and it may have interposed between its input and the secondary of the transformer T one or more stages of intermediate frequency amplification if desired.
When using a one-way rectifier for the audiofrequency detectors the audio-frequency of the fundamental wave is passed through this detector and the high frequency waves are suppressed. When two-way rectification is provided the low frequency output may be doubled.
Obviously my invention may be used in an audio-frequency amplifier without reference to the question of whether the low frequency is or is not a modulation superimposed upon a carrier wave.
My invention has particular utility in systems wherein radiated signals of a predetermined high frequency are received, but where these signals are differently modulated for different purposes. For example, in receiving apparatus for guiding an aircraft to a blind landing a guiding beam may be used, the field strength of which serves after rectification for actuating an indicating instrument thereby toshow the distance between the aircraft and the transmitter. In this case it is essential that the gain in the amplifier of the receiver shall be held at a constant ratio sothat the indications may be made in accordance with the received field intensity of the signals. On the other hand, where the receiving apparatus is to be used at times for other purposes, as in communications between the transmitter and the air pilot, an automatic volume control device is very desirable. For such purposes, even though the high frequency carrier wave may be differently modulated. as compared with the modulations for the directional beam, it is possible to apply the volume control methods herein shown without destroying the effectiveness of the directional beam systern.
Hitherto it would have been necessary to provide two separate receivers for the different functions which are tobe fulfilled as described above, one of the receivers being provided with an automatic volume control device and the other being without such a device. My invention makes it possible, however, to combine these essential functions in one receiver. This is particularly true where the received signals are modulated with different low frequencies for the different functions.
Fig. 2 illustrates one preferred method of carrying out the invention for obtaining control of the gain with respect to certain low frequencies without controlling the gain for other low fre- The circuit shows a detector A the same as in Fig. 1, but the output circuit from this tube includes a choke coil 4 leading to a tuned circuit which comprises the primary of the transformer 3 and a variable condenser 5. The anode potential is applied to the tube A through the primary winding of the transformer 3 and through the choke coil 4.
In shunt with the choke coil 4 is a circuit arrangement comprising primary windings of two transformers I and 2, each shunted by a suitable condenser 6 and 1 respectively and this entire shunt circuit is coupled to the anode of the tube A through a condenser 8 which prevents the flow of direct current through the windings of the transformers I and 2.
With respect to the frequencies which traverse the tuned circuits I6 and 2'I, it will be seen that these are not gain-controlled in the transformers I and 2. Therefore, the energy developed in the secondaries of the transformers I and 2 possesses amplitude variations which bear a linear ratio to the input energy applied to the detector A.
By using signals of two different modulation frequencies and by tuning the circuits I-S and 2-1 respectively to these modulation frequencies, a directional indicator of any well known type may be made operable in the ouput circuits connected to'the transformers I and 2. Thus, two slightly overlapping directional beams may be modulated respectively by low frequencies f1 and f2 to which the circuits I-5 and 21 are made resonant respectively. Then, for example, an indicating instrument G may be provided with opposing coils and so connected to the secondaries of the transformers I and 2 (through am-' plifiers, if desired) as to cause a deflection of the needle to either side of the mid-position point) depending upon the ratio between the amplitudes of the received modulations of the two directional signals. Thus any deviation of the aircraft from a course midway between the axes of the two directional beams may be indicated.
The energy developed in the secondary of the transformer 3 is, however, gain controlled in the same manner as described above in connection with Fig. 1. The primary of the transformer 3 in parallel with the condenser may, therefore, be tuned to a given modulation frequency different from the modulation frequencies which are to be received without gain control. If the average current through the coil 3 is increased, the iron core becomes saturated and the inductance decreases so that the amplification of low frequencies is reduced, although the amplification of high frequencies is not reduced to an appreciable extent.
Where it is desired that different functions shall be performed in accordance with the low modulation frequencies of the received energy, it is, of course, within the scope of my invention to provide separate and distinct circuits, each including the secondary windings of the respec particularly upon the principles involved in the carrying out of my invention in order to show how automatic gain control may be provided as a result of varying the amplitude of the direct current component traversing the winding of a transformer in circuit with the output circuit of a rectifier. Such a transformer has been shown in connection with one or more transformers not traversed by the direct current component and, therefore, adapted to function without distortion. It will be appreciated by those skilled in the art that numerous applications of the invention are possible and that the circuit arrangements herein shown and described are merely illustrative.
I claim:
1. An electrical circuit having an alternating current rectifier, a resonant circuit connected to the output side of said rectifier and having a natural frequency which renders it variably responsive to modulation-frequency currents from said rectifier, means including a transformer having a primary winding in said resonant circuit and having a saturable magnetic core for varying the frequency response characteristic of said resonant circuit in dependence upon the amplitude of the direct current component of the energy traversing said primary Winding, a second transformer whose primary is in circuit with the primary of the first said transformer, and means including a blocking condenser for excluding direct current components from the primary of the second said transformer only.
2. A circuit arrangement having an alternating current rectifier, an iron core transformer in the output circuit of said rectifier, said transformer being tuned to a low frequency and so dimensioned that its frequency response characteristic is rendered variable in accordance with the degree of saturation of its core, a second transformer having a primary winding in circuit between one of the terminals of the primary winding of the first said transformer and the output circuit of said rectifier, and means for blocking the flow of direct current through the primary of the second said transformer.
3. An arrangement according to claim 2 and having a choke coil directly in. series between the output circuit of said rectifier and the interconnection from one to the other of the two transformer primaries.
4. A circuit arrangement comprising a demodulating discharge tube having a high frequency input circuit and a low frequency output circuit, a plurality of series connected primary windings for respectively different and differently tuned iron core transformers, said primary windings being fed with low frequency currents from the output circuit of said discharge tube, means for excluding direct current components from at least one of said transformer primaries, thereby to render the transformation ratio linear therein, and means for admitting direct current components to another of said transformer primaries thereby to vary its impedance in dependence upon the degree of saturation of its transformer core.
5. A circuit arrangement according to claim 4 and having a direction finding indicator responsive to output energy from at least one of said transformers from which direct current is excluded, and a radio receiver responsive to output energy from the transformer having a variable impedance.
GU'NTHER ULLBRICI-IT.
US138112A 1936-04-03 1937-04-21 Gain control device Expired - Lifetime US2120303A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2120303X 1936-04-03

Publications (1)

Publication Number Publication Date
US2120303A true US2120303A (en) 1938-06-14

Family

ID=7985879

Family Applications (1)

Application Number Title Priority Date Filing Date
US138112A Expired - Lifetime US2120303A (en) 1936-04-03 1937-04-21 Gain control device

Country Status (1)

Country Link
US (1) US2120303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495795A (en) * 1944-03-20 1950-01-31 Int Standard Electric Corp Altimeter
US2541040A (en) * 1946-02-05 1951-02-13 Fed Telecomm Lab Inc Radio range beacon
US20020157604A1 (en) * 1997-09-05 2002-10-31 James Ainsworth Powder spray coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495795A (en) * 1944-03-20 1950-01-31 Int Standard Electric Corp Altimeter
US2541040A (en) * 1946-02-05 1951-02-13 Fed Telecomm Lab Inc Radio range beacon
US20020157604A1 (en) * 1997-09-05 2002-10-31 James Ainsworth Powder spray coating

Similar Documents

Publication Publication Date Title
Sturley Radio receiver design
GB539793A (en) Improvements in or relating to fading compensation in radio receivers
US2273098A (en) Ultra high frequency receiver
US2640939A (en) Phase detector
GB536917A (en) Improvements in or relating to modulated-carrier signal receivers of the homodyne type
US2120303A (en) Gain control device
US2363288A (en) Electrical apparatus
US2259891A (en) Frequency modulated wave detector
US2333990A (en) Tuning indication system
US2359684A (en) Loop input system for radio receivers
US1711658A (en) Current-controlling and static-reducing system
US2528182A (en) Frequency discriminator network
US2341240A (en) Frequency discriminator network
US3255414A (en) Modulation-demodulation tuning control system using plural winding transformer and phase sensitive servo loop
GB880673A (en) Improvements in or relating to diversity radio receiving arrangements
US2545232A (en) Wave inverter
US2533803A (en) Audio controlled limiter
Wheeler Automatic volume control for radio receiving sets
US2606250A (en) Frequency discriminator network
US2528206A (en) Wide dynamic range detector circuit
US2151747A (en) Receiving system
US2170475A (en) Automatic fidelity control
US1761049A (en) Interference reducing means for radio receiving apparatus
US2054892A (en) Automatic fidelity control circuits
US2364723A (en) F-m control track operation