US2057652A - Line casting and composing machine - Google Patents

Line casting and composing machine Download PDF

Info

Publication number
US2057652A
US2057652A US584387A US58438732A US2057652A US 2057652 A US2057652 A US 2057652A US 584387 A US584387 A US 584387A US 58438732 A US58438732 A US 58438732A US 2057652 A US2057652 A US 2057652A
Authority
US
United States
Prior art keywords
line
shaft
bar
lever
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US584387A
Inventor
Louis M Potts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Teletype Corp
Original Assignee
Teletype Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teletype Corp filed Critical Teletype Corp
Priority to US584387A priority Critical patent/US2057652A/en
Priority to US670251A priority patent/US2062332A/en
Priority to US720409A priority patent/US1996081A/en
Priority to US721657A priority patent/US2121048A/en
Priority to US724025A priority patent/US2123200A/en
Application granted granted Critical
Publication of US2057652A publication Critical patent/US2057652A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41BMACHINES OR ACCESSORIES FOR MAKING, SETTING, OR DISTRIBUTING TYPE; TYPE; PHOTOGRAPHIC OR PHOTOELECTRIC COMPOSING DEVICES
    • B41B7/00Kinds or types of apparatus for mechanical composition in which the type is cast or moulded from matrices

Definitions

  • This invention 'relates to line casting and composing machines and particularly to mechanisms for operating and controlling such machines.
  • An important object of this invention is the provision of a comparatively simple, reliable and sturdy mechanism for the automatic control of line casting machines, which may be readily applied to commercial line casting and composing machines without material alterations of said machines and without impairing their use as manual controlled devices.
  • the commercial line casting machines upon which the present invention may be applied will be referred to hereinafter as the principal machine while the present invention will be referred to as the control unit or appliance.
  • the unit comprises generally a signal controlled mechanism that is responsive to either various permutations of transverse perforations of a control tape' or to corresponding electrical impulses and a selector mechanism that is responsive to the signal controlled mechanism and operates to select one of a plurality of matrix or function bars.
  • Actuating mechanism deriving its power from the principal machine functions to move the selected one of the plurality of bars whereby the latter is made to complete the -particular performance for which it was selected.
  • Certain of the plurality of bars are adapted to release matrices from the storage magazine of the principal machine and certain others of them are adapted to execute special functions such as to initiate the movement of the assembling elevator of the principal machine or t0 control functions in the control unit itself.
  • Line casting machines are characteristically complex mechanisms and'may therefore be subjected to relatively high' factors of error during given periods of operation.
  • the structure of the present invention has been provided with several safety devices whereby, in the event of any irregular operation or disorder, such as, for example, jamming of matrices in transit or premature elevator operation, the transmission of operating signals by a recordr reader ⁇ is automatically suspended and remains so until a local supervisor manually restores the machine to properj operating condition.
  • the unit is preferably equipped with control (ci. iss-1s) 'y 2? 'lt-Q' mechanism already referred to, whereby the machine may be operated from a remote electrical signaling source, as by the use of selector mechanism as disclosed fully in Patent No. 1,970,567, issued Angustv 2l, 1934.
  • control ci. iss-1s
  • selector mechanism as disclosed fully in Patent No. 1,970,567, issued Angustv 2l, 1934.
  • a removable keyboard which may be conveniently installed above the selector bars is also provided so that in the event it is desired to manually operate a line casting machine equipped with the present invention this may be done without interfering with the automatic control mechanism.
  • Fig. 1 is a perspective view of a principal machine with parts eliminated showing the application of the present invention thereto.
  • Fig. 2 is a plan view of the keyboard. control mechanism with certainlparts broken away.
  • Fig. 3 is a sectional View taken approximately on line 3-3 of Fig.' 2.
  • Fig. 4 is a right side elevational view of the keyboard mechanism with parts broken away.
  • Fig. 4a is a detail sectional view illustrating a push bar in actuated position.
  • Fig. 5 is a sectional view taken approximately on line 5 5 of Fig. 2.
  • Fig-5a is a diagram of a simple control circuit used in coordinating the several parts of the presentl invention.
  • Fig. 5b is a circuit diagram illustrating a method of operation featuring a system for electrically controlling a line casting machine.
  • Fig. 6 is a side elevational viewwith parts broken away illustrating the record reader.
  • Fig. 7 is a sectional view taken approximately on une 1-1 of Figi 2.
  • Fig. 8 is a perspective view of the control mechanism with parts broken away.
  • Fig. 9 is a detail sectional view taken approximately on line 9 9 of Fig. 2. l
  • Fig. 9 a is a fragmentary perspective view illustrating the seventh bar shift mechanism.
  • Fig. 10 is a detail sectional view of the automatic channel shift mechanism and is taken approximately on line ill-i of Fig. 2.
  • Fig. 11 is a detail plan view of the channel shift mechanism.
  • Fig. 12 is a transverse sectional detail view illustrating one form of application of a magazine shift mechanism.
  • Fig. 13 is a transverse sectional detail view similar to Fig. 12, but somewhat enlarged illustrating a modified application of a magazine shift mechanism.
  • Fig. 14 is a detail sectional view taken approximately on line
  • Fig. 14a is a fragmentary detail elevation of a mechanism for quadding out a line in response to a single signal.
  • Fig. 14h is a sectional view taken 'on line i4b
  • Fig. 15 is a detail plan view of the short-long line interceptor illustrated in Fig. 14.
  • Fig. 16 is a perspective view with parts broken.
  • Fig. 17 is a perspective view of a circuit breaker mechanism.
  • Figs. 18 and 19 are detail sectional views of the removable keyboard. v
  • Fig. 20 is a detail sectional view illustrating a feature of the present invention for determining the rail of the assembling frame upon which subsequently selected matrices shall assemble.
  • Fig. 21 is a sectional view taken approximately on line 2
  • Fig. 21a is a detail sectional view taken on line 2id-Zia of Fig. 20.
  • Fig. 22 is a detail view of a modified form of the invention illustrated in Fig. 20.
  • Fig. 22a is a perspective view of an assembler block with parts broken away to show the operation of the movable shift rail.
  • Fig. 23 is a detail sectional view illustrating a modied form of record reader.
  • Fig. 1 illustrates generally frame work 3
  • the preferred mode of control for this invention is by a perforated record strip 32 which may be prepared by suitable perforating mechanism in the manner fully described in Patent No. 2,000,029, issued May 7, 1935. After preparation,l the tape 32 is fed through a record reader 33 in a step-by-step mannerl whereby each transverse row of perforations is mechanically translated to a corresponding positionment of code bars 34 (Fig. 2).
  • the selector bar 35 individual to the particular code perforations in the tape is released into operative relationwith a push bar 36 which is in turn actuated to effect the release of a selected matrix or to perform a special function depending on the character of the selection.
  • the record reader 33 carries a set of feelers 45 each of which registers opposite one of the perforations of a. transverse row. 'Ihe feelers 45 and their associated tail rods 46 are spring urged to assume the dotted line position as indicated in Fig. 3 when permitted to do so by the occurrence of a hole in the particular position of the tape 32. When; however, no hole is presented the elements 45 for those particular positions across the tape remain in the solid line position as shown.
  • the unit derives all of its operating power from the principal machine through the medium of a driving pulley 31 attached to the intermediate shaft 38 which drives pulley wheel 39 by means of a belt 4
  • Pulley wheel 39 is secured to a main drive shaft 42 which is constantly rotated during the time that the principal machine is in operation and which transmits a similar, but somewhat slower motion to an -auxiliary drive shaft 43 by means of the gear train 44.
  • the ratio between the driving pulley 31 and the driven pulley 39, or in other words, the speed at which the control unit may be operated, is dependent upon the speed at which the principal machine is .capable of being operated.
  • the record reader mechanism is operated by a cam shaft 41 which is an extension of the auxiliary drive shaft 43.
  • Main drive shaft 42 has an extension shaft 48, while a stub drive shaft 49 gear driven as at from the main drive shaft 42 is provided with a cam sleeve 52 (Fig. 5).
  • a cam sleeve 52 Fig. 5
  • Figs. 2, 3 and 5 attention is directed -to the frame structure 3
  • Two transverse ribs 54 and 55 serve to support some of the mechanism as well as to reinforce the rectangular portion 53.
  • an angular bracket 56 At the rearward side of the frame 3
  • FIG. 5 Another rectangular frame 53 superimposed upon Ythe rectangular portion 53 of the frame 3
  • this frame 56 serves as a supporting fixture for the selector bars 35 while the bracket 59 correspondingly maintains the push bars or weights 36 in a position at one end and above the inner extremities of the selector bars.
  • the code bars 34 in varying combinations', as they are controlled by the record reader 33, one of the selector bars 35 is urged into its dotted position, as indicated, by the action of an associated spring 6
  • Each of the several selector bars is confined to a limited, longitudinal and parallel movement by having at its foremost end an elongated slot 13 through whichis placed a rod 14, and by having at several points throughout its length'transverse supporting combs 15.
  • the forward movement of the bars 35 is denitely limited by the abutment of its shouldered portion 16 and the forward edge of the transverse bar 11.
  • the code bars 34 are reset to a normal position (Fig. 3) at each rotation of the cam shaft 41.
  • cam 18, which is secured to shaft 41 makes a rotation it permits bell crank 19 to respond to lthe urge of its spring by presenting the nadir or low part of its cam surface to the roller 90, but with the continued rotation of the shaft 41 a rise in the cam 18 returns the bell crank 19 and its resetting bail 8
  • the cam 18 since the shaft 41 makes a complete revolution in response to each signal, the cam 18 operates to reset the code bars at the same frequency.
  • Figs. '7 and 8 attention is again directed to the lifting bail 62 whose function, as described above, is to lift the push bars 36 as they are selected'so that they operate corresponding matrix release reeds 66, Fig. 1.
  • a rocker shaft 83 secured to said ears, and intermediate the ends is a pivot lug 84 to which is connected a link 85.
  • a lever Y 86 is pivotally mounted on the transverse rib 54 of the framework and is pivotally articulated to the other end of the link 85.
  • the free end of the lever 06 carries a cam roller 81 which follows the peripheral surface of cam 88 as it is rotated by the cam shaft 48 and imparts thereby a reciprocal motion to the' lifting bail 62.
  • Spring 89 acting upon the link maintains the roller 81 constantly against its cam 88.
  • each is equipped with an extending lug 9
  • a convenient mode of manually controlling the machine in the absence of the/removable keyboard, since it would then be necessary only to displace the desired push bars by hand which maybe done by pushing the lug 9
  • the cam rod 68 is pivoted at its extremities which are 'suitably journalled in the framework.
  • a link 92 is pivotally connected to an ear 93 integral with the cam rod 68 and at its opposite end is pivotally articulated to a first class lever 94 which is freely mounted on shaft 48.
  • the opposite end of the lever 94 carries a cam roller 95 disposed to engage the peripheral edge of cam 96 of the cam shaft 41.
  • Spring 91 urges the cam roller 95 against cam 96 and in cooperation with it imparts a timed, reciprocal movement to the cam rod 68.
  • shafts 41 and 48 are extensions of shafts 43 and 42, respectively.
  • Shaft 43 is adapted to be coupled with extension shaft 41 through the medium of a spring urged tooth clutch 98 the slidable member 99 of' which carries a disengaging cam projection
  • 02 is mounted below the clutch, and an armature
  • 06 carries a setting roller
  • 05 is normally held in position to disengage the clutch 98, as indicated in Fig.
  • the shaft 42 maintains a driving engagement with shaft 48 through the medium of a tooth clutch
  • This clutch is provided with a lever
  • shaft 41 is controlled by the magnet
  • 28 is provided for each bar 34 to lock it in its extreme right position, but when operated by counterclockwise rotation against the action of its spring
  • is provided for each trigger lever
  • 33 On the left end of shaft 41 are two cams-
  • 32 engages a roller
  • 35 carries a bracket
  • 33 acts upon a roller
  • 25 is connected to the link
  • electrical signals transmitted from a suitable source such as the tape transmitter illustrated in Fig. 5b may be made to control the device in a manner generally similar to that described above.
  • 48 at the outer ends thereof are supported in a block
  • This mode of operation is in tended as a convenience for testing, adjusting or correcting errors in connection with the foregoing methods of operation.
  • matrix 80 is released from its magazine in the usual manner, with which the -the 'features that relate to composing and line setting control.
  • the present invention also includes control for the line casting operations of the principal machine.
  • the drive shaft 42 carries secured to* it a worm gear
  • a cam sleeve 52, Fig. 5, f the stub shaft 49 is adapted to be driven by the stub shaft through the medium of a toothclutch
  • differs in one respect, however, from the other clutches. Instead of there being but one lever for disengaging the clutch there are two; namely,
  • the driven shaft 52 may be larrested in either of two'posltions spaced 180 apart from each other.
  • 63 is eifected upon the return of thedelivery slide arm 224 after a delivery operation, while the release of y lever
  • 66 has pivotally secured to it one end of a push'rod
  • 12 is pivotally connected to the lower end of an elevator shaft
  • 12 is provided with a segment
  • 12 is pivotally connected to a depending arm 18
  • 82 extends in the direction of the assembling elevator
  • 82 terminates with a fork
  • 39 is secured to a stub shaft 19
  • 99 tends to normally maintain the latter member angularly in its extreme counterclockwise or starting position.
  • 95 in moving forward causes the rotation of the ratchet
  • 81 to which it is secured are normally maintained in the position indicated in full lines in Fig. 15, that is, before any spaceba-nds are released.
  • 86 is drawn leftwardly and the assembly, including arm
  • 51 affords a trackway into which the assembled matrices are received
  • a measuring device is associated with the assembler slide
  • 98 Secured to said slide is a clamp
  • 89 - is disposed in the longitudinal path described by the plate
  • the plate may pass above the pin.
  • This device intercepts the movement of the elevator when a line that is either too short to be expanded to measure or too long to be accommodated has been set up on the assembly block. supposing a short line to have been set up and an elevator signal comes through for raising the block
  • 91 will only have advanced in the direction of arrow 29
  • 85 will be in one or another of the positions in its arcuate path depending on. the number of space bands that have been released to comprise the particular line. This position varies from the solid line to the dotted line as indicated in the proportion of space bands from zero to the maximum available or usable.
  • 99 will over-ride the range of the pin
  • the expansion of the space bands constitutes no l'Iii consideration since the line is already too long,- hence the rear edge 205 of the plate
  • the pin will then be permitted to rise behind the plate
  • the only time that the elevator is permitted to deliver its charge is when the plate
  • the area represented by the surface of the plate thus constitutes an index of the expansibility of the space bands with respect to the length of line assembed.
  • This bar 201 differs structurally from the matrix selector bars 35 by terminating with a lug 2
  • this elevator selector bar 201 is also supplied with two appendages one of which engages a lug 209 of a bent member 2
  • 2 pivotally supports a third class lever 2
  • the force for actuating said lever is communicated to it by a bell crank 2I6, spring urged away from it by a spring 236, Fig. 17, but actuated to engage it when a revolving pin 2
  • 4 is provided with a notch 222 and is so designed that when the rack 2I2 is in its normal position and the bell crank 2
  • the rack 2 I2 moves into its actuated position then the arm'223 of the bell crank 2
  • the pin 2 I9 is in the upward position, approximately as shown in Fig.
  • a link 229 is connected to the bail at 23
  • a xed rod 235 passes between the forks 236 and thereby supports the free end of the beam 234 which has intermediate its extremities a pawl 231 spring urged in a counterclockwise direction to engage a depending leg 238 of the clutch lever
  • the other of the two L shaped arms 226 is secured to a bushing loosely mounted on the shaft 223 Fig. 8.
  • a leg 245 extends from this bushing and is normally disposed to clear a lug 246 integral with the long arm'241 of the bell crank
  • Quadding-out mechanism Where a sentence is terminatedin the middle of a line or where for any other reason it becomes desirable to complete a line with a blank space the usual practice is to release a suitable For different line lengths it is only necessary to.
  • each type of letter or character matrix 80 is provided with a separate channel in the storage magazine.
  • the several matrices are a few (the em quad for example) that are more frequently used than the rest, so much so that ofttimes the capacity of a single matrix channel is not suiiicient to accommodate the number of occurrences that such number of space matrices. such as em quads.
  • a mechanism illustrated in Figs. 14a and 14h whereby a line may be thus lled out with em quads automatically and in response to but a single signal.
  • the em quad push bar 36 is provided with a extension 360 over which normally rests one arm of a T lever 36
  • the upper end of bar 363 is provided with a cam surface adapted to cooperate with a corresponding surface of a horizontally slidable bar v364 which carries an adjustable abutment clamp 365.
  • a depending arm 366 is secured to the slide
  • each 4half-revolution of the large gear 252 and lever 254 which occurs during the composition of one line of type will prepare one or the other of the l channels containing the frequently used matrices 89, and the succeeding half-revolution will prepare the other, since the code bar 249 as indicated above is vequipped with a pair of projections 259 for each set of channels to be controlled, and since these projections are so spaced that during each of the two positions that the bar 249 assumes one of these projections 250 blocks one of the pairoi selector bars while the other is not blocked but permitted to move into operative position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Control Devices (AREA)

Description

Oct. 13, 1936. M. PoTTS LINE CASTING AND COMPOSING MACHINE 15 sheets-sheet 1 Filed Jan. 2, 1952 lll ILILLUJ INVENTOR LOUIS M. DOTTS BYJ/ ATTORNEY ct. 13, 1936. 1 M. PoTTs LINE CASTINGl AND COMPOSING MACHINE Filed Jan. 2, 1932 15 Shree(,S-Sh'el"I 2- Hrw Si LL CLIS, 1936. M' POT-rs 2,057,652
LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1932 13 SheetS-SheMl 3 INvlsN'roR LOUIS M. POTTS 'ArroRNEY Uct. 13, 1936. L. M. |=oTTSy I LINE CASTING AND COMPOSING MACHINE 15 Sheets-Sheet 4 Filed Jan. 2, 1932 ATTORNEY L.` M. POTTS LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1932 13 Sheets-Sheet 5 INVENTOR LOUIS M. POTTS BUP?? ATTORNE Oct. 13, 1936. L. M. PoTTs LINE CASTING AND COMPOSING'MACHINE Filed Jan. 2, 1932 13 Sheets-Sheet 6 INVENTOR LOUIS M. DOTTS ATTORNEY Oct. 13, 1936. L. M. POT-rs,
LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1952 INVENTOR LOUIS M. DOTTS 15 sheets-sheet 7 ATTORNE Oct. 13, 1936. L. M. POTTS LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1952 13 Sheets-Sheet 8 HG. j]
INVENTOR LOUIS M. POTTS BYJ/f? ATTORNEY Get. 13, 1936. L. M. PoTTS LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1932 l5 Sheets-Sheet 9 INVENTOR Lows M. DOTTS BVM ATTORNEY L. M. POTTS Oct. 13, 1936.
LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1932 13 Sheets-Sheet 10 ummm@ lll IIIIIJ INVENTOR Lows M. POT- rs BLV/p ATTORN Y Oct. 13, 1936. 1 M. PoTTs LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1952 13 Sheets-Sheet 11 NW AMM@ @www3 mg f Oct. 13, 1936. L. M. PoTTs LINE CASTING AND COMPOSING MACHINE Filed Jan. 2, 1952 13 sheets-sheet 12 3/6 3/6 `3/7 l) f U l INVENTOR LOUIS M. DOTTS L. M. POTTS LINE CASTING AND COMPOSING MACHINE oct. 13, 1936.A
13 Sheets-Sheet 13 Filed Jan. 2, 1952 INVENTOR LOUIS M. DOTTS 3U/f6 ATTORNEY Patented Oct.. 13, 1936 Louis M. Potts, Evanston, Ill., assigner to Teletype Corporation, Chicago, Ill., a corporation of Delaware Application January 2, 1932, Serial N0. 584,387
' 71 Claims.
This invention 'relates to line casting and composing machines and particularly to mechanisms for operating and controlling such machines.
An important object of this invention is the provision of a comparatively simple, reliable and sturdy mechanism for the automatic control of line casting machines, which may be readily applied to commercial line casting and composing machines without material alterations of said machines and without impairing their use as manual controlled devices.
Other objects o`f this invention are such as will appear in the course of the following description and in the hereunto appended claims and include the novel combinations and subcombinations hereinafter described. y
For convenience inA description, the commercial line casting machines upon which the present invention may be applied will be referred to hereinafter as the principal machine while the present invention will be referred to as the control unit or appliance.
The unit comprises generally a signal controlled mechanism that is responsive to either various permutations of transverse perforations of a control tape' or to corresponding electrical impulses and a selector mechanism that is responsive to the signal controlled mechanism and operates to select one of a plurality of matrix or function bars. Actuating mechanism deriving its power from the principal machine functions to move the selected one of the plurality of bars whereby the latter is made to complete the -particular performance for which it was selected. Certain of the plurality of bars are adapted to release matrices from the storage magazine of the principal machine and certain others of them are adapted to execute special functions such as to initiate the movement of the assembling elevator of the principal machine or t0 control functions in the control unit itself.
Line casting machines are characteristically complex mechanisms and'may therefore be subjected to relatively high' factors of error during given periods of operation. The structure of the present invention has been provided with several safety devices whereby, in the event of any irregular operation or disorder, such as, for example, jamming of matrices in transit or premature elevator operation, the transmission of operating signals by a recordr reader `is automatically suspended and remains so until a local supervisor manually restores the machine to properj operating condition.
The unit is preferably equipped with control (ci. iss-1s) 'y 2? 'lt-Q' mechanism already referred to, whereby the machine may be operated from a remote electrical signaling source, as by the use of selector mechanism as disclosed fully in Patent No. 1,970,567, issued Angustv 2l, 1934. A removable keyboard which may be conveniently installed above the selector bars is also provided so that in the event it is desired to manually operate a line casting machine equipped with the present invention this may be done without interfering with the automatic control mechanism.
It will be observed that the installation o f the present invention upon a standard line casting machine, such as the commercially well known machines, involves but slight adaptations or changesl from the standard equipment provided with either of these devices. The space occupied by this mechanism is but slightly greater than that occupied by the standard manual keyboard. Thus, the conversion of a manually controlled device to one which is automatically controlled requires but slight sacrice of space.
Certain variations exist in the manner in'which some special functions are manually performed in several different models of standard line casting machines. l The present invention, while generally adaptable to the several of these models, Varies specifically in some of its details of attachment. However, the selection mechanism of the present device as well as the timing arrangement of certain of its essential parts are so versatile in design that the same equipment may be adapted to control any of several standard models.
A better understanding of the present invention may be obtained from the following description taken in conjunction with the accompanying drawings wherein,
Fig. 1 is a perspective view of a principal machine with parts eliminated showing the application of the present invention thereto.
Fig. 2 `is a plan view of the keyboard. control mechanism with certainlparts broken away.
Fig. 3 is a sectional View taken approximately on line 3-3 of Fig.' 2.
Fig. 4 is a right side elevational view of the keyboard mechanism with parts broken away.
Fig. 4a is a detail sectional view illustrating a push bar in actuated position.
Fig. 5 is a sectional view taken approximately on line 5 5 of Fig. 2.
Fig-5a. is a diagram of a simple control circuit used in coordinating the several parts of the presentl invention.
Fig. 5b is a circuit diagram illustrating a method of operation featuring a system for electrically controlling a line casting machine.
Fig. 6 is a side elevational viewwith parts broken away illustrating the record reader.
Fig. 7 is a sectional view taken approximately on une 1-1 of Figi 2.
Fig. 8 is a perspective view of the control mechanism with parts broken away.
Fig. 9 is a detail sectional view taken approximately on line 9 9 of Fig. 2. l
Fig. 9 a is a fragmentary perspective view illustrating the seventh bar shift mechanism.
Fig. 10 is a detail sectional view of the automatic channel shift mechanism and is taken approximately on line ill-i of Fig. 2.
Fig. 11 is a detail plan view of the channel shift mechanism.
Fig. 12 is a transverse sectional detail view illustrating one form of application of a magazine shift mechanism.`
Fig. 13 is a transverse sectional detail view similar to Fig. 12, but somewhat enlarged illustrating a modified application of a magazine shift mechanism.
Fig. 14 is a detail sectional view taken approximately on line |4-|4 of Fig. 2 illustrating a short-long line interceptor device.
Fig. 14a is a fragmentary detail elevation of a mechanism for quadding out a line in response to a single signal.
Fig. 14h is a sectional view taken 'on line i4b|4b of Fig. 14a.
Fig. 15 is a detail plan view of the short-long line interceptor illustrated in Fig. 14.
Fig. 16 is a perspective view with parts broken.
away showing the assembling elevator control mechanism.
Fig. 17 is a perspective view of a circuit breaker mechanism.
Figs. 18 and 19 are detail sectional views of the removable keyboard. v
Fig. 20 is a detail sectional view illustrating a feature of the present invention for determining the rail of the assembling frame upon which subsequently selected matrices shall assemble.
Fig. 21 is a sectional view taken approximately on line 2|2| of Fig. 20.
Fig. 21a. is a detail sectional view taken on line 2id-Zia of Fig. 20.
Fig. 22 is a detail view of a modified form of the invention illustrated in Fig. 20.
Fig. 22a is a perspective view of an assembler block with parts broken away to show the operation of the movable shift rail.
Fig. 23 is a detail sectional view illustrating a modied form of record reader.
Referring to the drawings in which like reference characters designate similar parts throughout the drawings, Fig. 1 illustrates generally frame work 3| of the appliancecomprislng the present invention, as well as several of the prominent operating mechanisms. The preferred mode of control for this invention is by a perforated record strip 32 which may be prepared by suitable perforating mechanism in the manner fully described in Patent No. 2,000,029, issued May 7, 1935. After preparation,l the tape 32 is fed through a record reader 33 in a step-by-step mannerl whereby each transverse row of perforations is mechanically translated to a corresponding positionment of code bars 34 (Fig. 2). In accordance with each such positionment of the code bars 34, the selector bar 35 individual to the particular code perforations in the tape is released into operative relationwith a push bar 36 which is in turn actuated to effect the release of a selected matrix or to perform a special function depending on the character of the selection.
The record reader 33 carries a set of feelers 45 each of which registers opposite one of the perforations of a. transverse row. 'Ihe feelers 45 and their associated tail rods 46 are spring urged to assume the dotted line position as indicated in Fig. 3 when permitted to do so by the occurrence of a hole in the particular position of the tape 32. When; however, no hole is presented the elements 45 for those particular positions across the tape remain in the solid line position as shown.
The unit derives all of its operating power from the principal machine through the medium of a driving pulley 31 attached to the intermediate shaft 38 which drives pulley wheel 39 by means of a belt 4|. Pulley wheel 39 is secured to a main drive shaft 42 which is constantly rotated during the time that the principal machine is in operation and which transmits a similar, but somewhat slower motion to an -auxiliary drive shaft 43 by means of the gear train 44. The ratio between the driving pulley 31 and the driven pulley 39, or in other words, the speed at which the control unit may be operated, is dependent upon the speed at which the principal machine is .capable of being operated.
The record reader mechanism is operated by a cam shaft 41 which is an extension of the auxiliary drive shaft 43. Main drive shaft 42 has an extension shaft 48, while a stub drive shaft 49 gear driven as at from the main drive shaft 42 is provided with a cam sleeve 52 (Fig. 5). Thus is indicated in a general way the distribution of the driving and operating power.
Referring especially to Figs. 2, 3 and 5 attention is directed -to the frame structure 3| having a rectangular portion 53 which may be secured to the keyboard supporting base of the standard line casting machine. Two transverse ribs 54 and 55 serve to support some of the mechanism as well as to reinforce the rectangular portion 53. At the rearward side of the frame 3| Aand securely fastened thereto is an angular bracket 56 having la. depending portion 51.
Another rectangular frame 53 superimposed upon Ythe rectangular portion 53 of the frame 3| is provided at its rearmost side with an upright bracket 59. As is besty indicated in Fig. 5 this frame 56 serves as a supporting fixture for the selector bars 35 while the bracket 59 correspondingly maintains the push bars or weights 36 in a position at one end and above the inner extremities of the selector bars. For each movement of the code bars 34 in varying combinations', as they are controlled by the record reader 33, one of the selector bars 35 is urged into its dotted position, as indicated, by the action of an associated spring 6| (Fig. 5).
Selector mechanism the mechanical connection betweenthe releaseI reeds 66 and various standard matrix release mechanisms is shown in Figs. 12 and 13. Upon 75 Cil the return movement of the bail 62 the push bar 36 is permitted to gravitate back to its normal position, augmented to some extent by spring 61 which primarily serves to pull it inwardly toward its solid line position and also by springs individually associated with the release reeds 66 of the principal machine. Before this occurs the selected bar `35 is restored to its solid line position by a restoring cam rod 68 and is thus held momentarily until a new positionment of the code bars 34 blocks it by interposing projections 69 instead of an alignment of notches 1| in the path of movement of its teeth 12. An overlap is vafforded between the operation of the push bars 36 and their respective selector bars 35 which corresponds to the overlap provided by the well known cam and rubber roller release means of the commercial linecasting machines. The present construction is a more accurate and positive performance, however, and is effective as follows. When upon the selective movement of a bar 35 a push bar 36 is displaced and is raised into actuating position as shown in Fig. 4a it is maintained in this position by the engagement of bar 60 with its forward edge thereby permitting its corresponding selector bar 35 to be reset preparatory to the next selection. The spring 61, comprising a universal coupling between the selector and push bars, does not interfere with the independent action of either o f them.
Each of the several selector bars is confined to a limited, longitudinal and parallel movement by having at its foremost end an elongated slot 13 through whichis placed a rod 14, and by having at several points throughout its length'transverse supporting combs 15. The forward movement of the bars 35 is denitely limited by the abutment of its shouldered portion 16 and the forward edge of the transverse bar 11.
The code bars 34 are reset to a normal position (Fig. 3) at each rotation of the cam shaft 41. As cam 18, which is secured to shaft 41, makes a rotation it permits bell crank 19 to respond to lthe urge of its spring by presenting the nadir or low part of its cam surface to the roller 90, but with the continued rotation of the shaft 41 a rise in the cam 18 returns the bell crank 19 and its resetting bail 8|, to its extreme left hand posi tion, thereby permitting of a new selection of the code bars 34. Thus, since the shaft 41 makes a complete revolution in response to each signal, the cam 18 operates to reset the code bars at the same frequency.
With particular reference to Figs. '7 and 8 attention is again directed to the lifting bail 62 whose function, as described above, is to lift the push bars 36 as they are selected'so that they operate corresponding matrix release reeds 66, Fig. 1. At each end of the bail 62 is an ear, 82 through which passes a rocker shaft 83 secured to said ears, and intermediate the ends is a pivot lug 84 to which is connected a link 85. A lever Y 86 is pivotally mounted on the transverse rib 54 of the framework and is pivotally articulated to the other end of the link 85. The free end of the lever 06 carries a cam roller 81 which follows the peripheral surface of cam 88 as it is rotated by the cam shaft 48 and imparts thereby a reciprocal motion to the' lifting bail 62. Spring 89 acting upon the link maintains the roller 81 constantly against its cam 88. v
In the preferred construction of the push bars 36 each is equipped with an extending lug 9|, Fig. 3 upon which is indicated the particular letter to which it pertains. In this manner there is provided a convenient mode of manually controlling the machine in the absence of the/removable keyboard, since it would then be necessary only to displace the desired push bars by hand which maybe done by pushing the lug 9| thereof.
The cam rod 68 is pivoted at its extremities which are 'suitably journalled in the framework. A link 92 is pivotally connected to an ear 93 integral with the cam rod 68 and at its opposite end is pivotally articulated to a first class lever 94 which is freely mounted on shaft 48. The opposite end of the lever 94 carries a cam roller 95 disposed to engage the peripheral edge of cam 96 of the cam shaft 41. Spring 91 urges the cam roller 95 against cam 96 and in cooperation with it imparts a timed, reciprocal movement to the cam rod 68.
Reference is again made to Fig. 2. As already indicated, shafts 41 and 48 are extensions of shafts 43 and 42, respectively. Shaft 43 is adapted to be coupled with extension shaft 41 through the medium of a spring urged tooth clutch 98 the slidable member 99 of' which carries a disengaging cam projection |0| illustrated in Fig. 9. A release electro-magnet |02 is mounted below the clutch, and an armature |03 pivoted at |04 is adapted to be influenced by electro-magnet |02. A lever |05 pivoted at |06 carries a setting roller |01 and isl provided with a suitable cam engaging portion |08 which is adapted to lie in the path of the projection |0| as it is revolved and to engage a beveled side thereof so that by the camming action of the lever |05 upon the projection |0| the slidable member 99 of the clutch is thereby disengaged from the secured member |09. The lever |05 is normally held in position to disengage the clutch 98, as indicated in Fig. 9, by the armature |03, but upon the energization of the electro-magnet |02 the armature |03 is moved out of position and the lever |05 -is permitted to yield to the influence of its spring l and be moved out of engagement with l'the cam projection |0i. After the armature |03 is released by its magnet, the continued rotation of 'the shaft 41 carries cam 2 into engagement with the resetting roller |01 of the lever and working against the action of spring resets the lever to its normal and engagement positions where it is so held by the armature |03.
The shaft 42 maintains a driving engagement with shaft 48 through the medium of a tooth clutch ||3 whichis similar to clutch 98 just described. The release of the movable member of this clutch whereby is effected its engagement with the secured member, is mechanically controlled from the aforementioned shaft in the following manner. This clutch is provided with a lever ||4 Fig. 9 carrying a resetting roller ||5 operative in the same manner as the lever |05 and roller |01 of the clutch 98. Instead of an armature, however, there isa simple vlever ||6 pivotally linked to a trigger ||1 one end of which is disposed in the path of rotationof apex ||8 of a release cam |9 on shaft 41. so positioned on its shaft that shortly after it is started int-o rotation it engages the trigger ||1 to correspondingly release shaft 42 for rotation, but since this latter shaft has a somewhat higher speed of rotation the two are brought to stop position at the end of each revolution at nearly A the same time. Thus it will be understood that shaft 41 is controlled by the magnet |02 and that shaft 48 is controlledA from shaft 41.
When the unit is to be operated by hand as explained above in connection with the push Thiscamis' bar lugs 9|, the shaft 48 is released by a special arrangement. In that case the movement of a push bar 36 rocks a universal bar |00 Fig. '1 which is connected to the lever H6 by a link 0. Thus the shaft 48 is released to rotate and to effect the movement of the bail 62.
From the foregoing description it should now be clear how that part of the'mechanism operates that relates to the release of matrices from their storage magazines, but for purposes of organizing the several functions involved the operation 4will again be summarized in connection with the followingdescription.
Let it be assumed that a set of transverse perforations in the tape 32 has presented itself over the record reader feelers 45. In accordance with each hole or absence thereof the corresponding feeler 45 will assume an elevated position or remain in a depressed position as shown in Fig. 3. Since each feeler 45 has connected to it, by disc and socket connection as at |22, a rod 46; the latter assumes a corresponding position. Each of these rods 46 has integrally therewith a lug |24 adapted, when the rod 46 is up, to present itself into the path of the oscillating hammer bail l25. As viewed in Fig. 3 the code bars 34 are each urged to the left by individual coil springs |26. A trigger lever |21 pivoted at |28 is provided for each bar 34 to lock it in its extreme right position, but when operated by counterclockwise rotation against the action of its spring |29, it permits the movement of its code bar 34 as influenced by the spring |26. A pin 13| is provided for each trigger lever |21 and is adapted to transmit the lateral movement of an associated one of the rods 46 thereto.
In this -manner those rods 46 which are in the upward position pursuant to a particular code combination of perforations and present their lugs into the path of the hammer bail |25 will be pivoted, by the impact of said bail, about their connection |22 and will through the pins |3| impart a corresponding movement to the trigger levers |21 thereby releasing the code bars 34 thereof. 'Ihe remaining rods not being in position to be engaged by the\hammer bail |25, their corresponding code bars remain in their right hand position. l
On the left end of shaft 41 are two cams- |32 and |33. As also indicated in Fig. 3 the cam |32 engages a roller |34 carried by a vertically sliding support |35 supported in the record reader frame and in cooperation with the springs |36 (Fig. 6) imparts a reciprocating movement tol said support. The upper end ,of the support |35 carries a bracket |31 which engages the projecting portions |38 of the feeler levers 45` and on its downward movement it carries all of the feelers with it. On its upward movement the bracket permits the feelers to rise Ain response to the urge of their individual springs |39 and l'to position themselves in accordance with the perforations in the tape 32.
The other cam |33 acts upon a roller |4| of a bell crank |42, Fig. 6, and is opposed by a spring |43 connected to a link |44 which is pivoted to the bell crank |42. The hammer bail |25 is connected to the link |44 and this manner of said armatures causes a corresponding movement of the rods 46. In this manner electrical signals transmitted from a suitable source such as the tape transmitter illustrated in Fig. 5b may be made to control the device in a manner generally similar to that described above.
Spring loaded plungers |41 having push bu ton terminals |48 at the outer ends thereof are supported in a block |49. They are so spaced that the opposite ends |5| thereof abut the rods 46, each to each, so that by depressing any of these plungers one may impart the same movement to said rods 46 manually that may be produced electrically or mechanically in either of the methods aforementioned. This mode of operation is in tended as a convenience for testing, adjusting or correcting errors in connection with the foregoing methods of operation.
No matter which of the several methods of actuating the record reader mechanism may be used, the subsequent operations are the same. In all cases a definite positionment is effected upon the several code bars 34. This results in the alignment of a transverse row vof notches 1| Figs. 5 and 9 in the several code bars and the movement to the right of a selector bar 35 into the particular alignment when permitted to do so by the clockwise oscillation of the cam rod 68 as best illustrated in Fig. 5. This movement is urged by the individual spring 6| and continues until the shoulder 16 abuts the transverse bar 11 whereupon the corresponding push bar 36 is displaced to assume the position indicated in dotted lines. At this time the bail 62 revolves clockwise and its lip 63 hitting the depending leg 64 thrusts 'the bar 36 upwardly to actuate the matrix release reed 66./
Following this a. matrix 80 is released from its magazine in the usual manner, with which the -the 'features that relate to composing and line setting control. In addition to this, however, the present invention also includes control for the line casting operations of the principal machine.
Elevator mechanism e Attention is now directed to Figs. l, 3, 5, 8, 16 and 17. The drive shaft 42 carries secured to* it a worm gear |58 which is adapted to drive a worm wheel |59 fixed to the stub shaft 49 located below and at right angles to the drive shaft. A cam sleeve 52, Fig. 5, f the stub shaft 49 is adapted to be driven by the stub shaft through the medium of a toothclutch |6| generally similar to the clutches 98 and ||3 aforementioned. As best indicated in Figs.v 10 and 11, this clutch |6| differs in one respect, however, from the other clutches. Instead of there being but one lever for disengaging the clutch there are two; namely,
5 |62 and |63.`. Thus, the driven shaft 52 may be larrested in either of two'posltions spaced 180 apart from each other. As will be explained hereinafter in connection with the elevator safety mechanism, the release of lever |63 is eifected upon the return of thedelivery slide arm 224 after a delivery operation, while the release of y lever |62 is eifected at the instance of anlevator signal by the trigger2|3 A't each of these events the release of the respective levers |62 or |63 causes engagement of clutch |6| for a 180 revolution of the shaft 52.
A cam I 5| secured for rotation with said driven shaft 52 engages a roller |65 carried by a bell crank lever |65 pivoted at |61 to the depending portion 51 of the framework. The other arm |68 of the bell crank |66 has pivotally secured to it one end of a push'rod |69 the other end |11 of which is pivotally connected to one arm of another bell crank |12. In order to render said push rod resiliently yieldable it has intermediate its extremities a dash pot |13 and a coil spring |141 disposed to normally maintain said rod in extended position. The other arm of the bell crank |12 is pivotally connected to the lower end of an elevator shaft |15. In this manner the rotation of the cam |61 is adapted, through the linkage described, to raise and permit the lowering of the assembly elevator |56 through the shaft |15.
The proper time for raising the elevator |56 is when its assembly block |51 has received a full load of matrices 80 and space bands so as to be able to cast a full measure line. Any load that is too long must be rejected else it will lock the casting machine while one that is too short should also be rejected otherwise the mold will be unable to retain it. To safe-guard against either of these contingencies there is provided herewith a measuring mechanism and safety means indicated hereinafter as the short-long line interceptor. The preferred form of this device is illustrated in detail in Figs. 14 and l5. The bell crank |12 is provided with a segment |16 having a notch 11 in its periphery into engagement with which a pawl |19 pivoted at |19 is urged by a spring 203 when permitted to do so. The opposite end of the pawl |12 is pivotally connected to a depending arm 18| of a bushing |82 supported for pivotal as well as longitudinally slidable movement upon a vertical stud shaft |83. An arm |911 secured to said bushing |82 extends in the direction of the assembling elevator |51 with a slight upward incline and terminates with a vertical pin |85. Another arm |86 secured to the bushing |82 terminates with a fork |31 adapted to straddle the threads |59 of and be moved by a feed worm |89. The worm |39 is secured to a stub shaft 19| journaled in al yoke |92. A torsional spring |93 secured to one bow of the yoke |92 and to the worm |99 tends to normally maintain the latter member angularly in its extreme counterclockwise or starting position. On the opposite end of the shaft 19| is secured a ratchet wheel |941 which is rotated one tooth distance foreach horizontal movement of the space band selector bar |95. Thus every time a signal is received for dropping a space band, a pawl |95 carried by the space band selector bar |95 in moving forward causes the rotation of the ratchet |944 one tooth distance while a holding pawl |90 maintains it against the tendencies of spring |93 until released. Arm |86 and its associated feeler arm |81 to which it is secured are normally maintained in the position indicated in full lines in Fig. 15, that is, before any spaceba-nds are released. As the worm |88 is rotated, arm |86 is drawn leftwardly and the assembly, including arm |86, is then pivoted about shaft |83 in a. clockwise direction.
The assembling block |51 affords a trackway into which the assembled matrices are received,
while a measuring device is associated with the assembler slide |91 and is adapted to be moved along with the matrices and serves as a visual guide to the operator for ending the line as well as for proper justication thereof. Secured to said slide is a clamp |98 the lower end of which carries a triangular plate |99 of a particular shape, materially significant, as will be indicated in the description of its performance. The vertical pin |l of arm |89 -is disposed in the longitudinal path described by the plate |99 during its movement while matrices are being assembled, but normally a trifle below the plane in which the plate moves as illustrated in Fig. 14
so that during composing operation the plate may pass above the pin.
This device intercepts the movement of the elevator when a line that is either too short to be expanded to measure or too long to be accommodated has been set up on the assembly block. supposing a short line to have been set up and an elevator signal comes through for raising the block |51. In such case the stick |91 will only have advanced in the direction of arrow 29| to a point approaching but notreaching the pin |95. The pin |85 will be in one or another of the positions in its arcuate path depending on. the number of space bands that have been released to comprise the particular line. This position varies from the solid line to the dotted line as indicated in the proportion of space bands from zero to the maximum available or usable. 1f in such a case enough space bands have been released so that their combined expansion is sumcient to expand the length of the line to fullline dimension then the pin |85 will have attained a position to be engaged by the plate |99 Fig. 15. 1f, however, an insuiiicient number of space bands have been so released the pin will operate vertically unobstructed by the plate. Thus it will be seen that as the composed line length increases the plate moves farther in the direction of the arrow and fewer space bands will sufce to accommodate the requirement of' engaging the pin |55 with the plate |99. Conversely as the number of space bands in a particular line is increased a fewer number of matrices 99 will be accommodated due to the greater expansion of the space bands.
While the elevator |55 is down as in Fig. 14, the tooth 292 of the pawl lever |19 rests upon the peripheral surface of the hell crank segment |16 but as soon as the latter begins to revolve, the tooth willtslipinto the notch |11 as urged by spring 293, and the rear end of the pawl |13 which is connected to the bushing |82 will force the latter member upwardly provided, however, that plate |99 does not overlap the pin |25. If the pin is overlapped by the plate the interference by the latter will prevent the bushing |52 from sliding upwardly and the pawl lever from entering into the segment notch |11. In opposite manner a short line with insumcient space bands, permitting of no engagement of the pin |85 by the plate |99 permits the pawl `|19 to drop into the notch. |11 to arrest the movement of bell crank |12. During such a condition the continued movement of the elevator cam |66 imparting a rotation to bell crank |66 causes a compression of spring |111 while piston 299 (Fig. 16) moves into the far end of its dash pot |12.
Suppose, however, instead of the line being too short, that it is `too long. In that event, the plate |99 will over-ride the range of the pin |85 and will assume a-position; for example, such as indicated in dotted lines in Fig. 15. In this case the expansion of the space bands constitutes no l'Iii consideration since the line is already too long,- hence the rear edge 205 of the plate |99 is approximately a straight line instead of being inclined as in the case of the forward edge 206. The pin will then be permitted to rise behind the plate |99 affording thereby a similar interception of the bell crank and elevator |56. Thus, the only time that the elevator is permitted to deliver its charge is when the plate |99 overlaps the pin'I85. The area represented by the surface of the plate thus constitutes an index of the expansibility of the space bands with respect to the length of line assembed. y
During the time that the elevator |56 and its assembling block |51 are in transit further release of matrices 80 and space bands must be arrested otherwise they are discharged out of the chute onto the iioor since the assembled block is not there to receive them. This interruption is automatically controlled in the present device by mechanism whereby when operation of the elevator is begun, the control tape 32, or rather the feed mechanism 33 therefor, is stopped. Particular reference is had to Figs. 2, 8, 16 and 17. When a signal comes through for operating the elevator mechanism, a particular selector bar 201 (Figs. 16 and 17) is selected and moves rearwardly as already explained in connection with matrix selector bars. This bar 201 differs structurally from the matrix selector bars 35 by terminating with a lug 2|0 as does the bar indicated in Fig. 9, and by having no push rod 36 in conjunction. As can be seen, the movement of the bail 62 will then raise the bar 201 bodily. This movement is permitted by the special ofi-setI construction 208 which amply clears the transverse bar 11. In addition this elevator selector bar 201 is also supplied with two appendages one of which engages a lug 209 of a bent member 2|| which in turn is secured to a shiftable rack 2|2, and the other of which engages a clutch release trigger 2|3 r(Fig. 8). In its forward movement bar 201 moves rack 2| 2, laterally while in its upward movement, upon the operation of bail 62 it effects the release of the trigger 2|3 which is-pivotally connected to th'e clutch release lever |62 aforementioned and also illustrated in Fig. 10.
Rack 2|2 pivotally supports a third class lever 2|4 the free end 2| 5 of which is adapted to close a set of spring contacts 2I6 through the medium of a longitudinally slidable switch arm 2|1. The force for actuating said lever is communicated to it by a bell crank 2I6, spring urged away from it by a spring 236, Fig. 17, but actuated to engage it when a revolving pin 2|9 c against the lower arm 22| of the bell crank 2I8, Fig. 17. 'I'he lever 2|4 is provided with a notch 222 and is so designed that when the rack 2I2 is in its normal position and the bell crank 2|8 is actuated by pin '2|9, the upper arm 223 does not pass into the notch 222y but engages the shoulder 220 of the lever 2I4-'causing it to be moved and through switch arm 2I1 close the contact springs 2I6. When the rack 2 I2 moves into its actuated position then the arm'223 of the bell crank 2| 8 registers with the notch 222 and thus arm 223 does not impart movement to the lever 2 I4. During the normal stop position of the shaft 52, the pin 2 I9 is in the upward position, approximately as shown in Fig. 17` so that the contacts 2I6 are normally closed as shown inl Fig. 5a, but during the other stop position the pin 2 I9 is out of the way thereby permitting spring 230 to Withdraw end 223 of bell crank 2 I8 from notch 220 and permitting the contacts 2I6 to remain opened. Immediately following an elevator signal the elevator selector bar 201 moves forward, as described,and as it is raised by the bail 62 the clutch |6| through trigger 2|3'and lever |62 is released and shaft 52 starts to rotate.
` After the shaft 52 is rotated by the engagement of clutch |6| it proceeds 180 and is again stopped by the other clutch lever |63 as explained above. This second stop position is maintained pending a signal from the principal machine that the elevator |56 has been relieved of the matrices by the delivery slide, and that the machine is ready 'to proceed with another line composition'. This signal is received from the delivery slide arm 224 in the following manner. The assembling elevator proceeds upwardly with its load of matrices 80 for casting a slug. When it reaches the top of its travel it releases the delivery slide arm 224 which is pivoted just below the frame of the elevator. This arm 224 while in its normal position maintains two L shaped control levers 225 and 226 in the positon indicated in Fig. 8 but when released permits them to be pivoted into the position indicated in dotted lines in Fig. 14.
One of the arms 225v is secured to a bail 221 pivoted on a shaft 228. A link 229 is connected to the bail at 23|, to a propelling spring without numeral, Fig. 16, and to one end of a rst class lever 232 Fig. 16 which is suitably mounted on a. stud shaft 233 secured in a wall 51, while the other end of the lever 232 is pivotally connected to a beam 234 the opposite end of which is bifurcated (Fig. 10). A xed rod 235 passes between the forks 236 and thereby supports the free end of the beam 234 which has intermediate its extremities a pawl 231 spring urged in a counterclockwise direction to engage a depending leg 238 of the clutch lever |63. In moving to the right as viewed in Fig. 10 the pawl yields' and passes under the legv 236 but in moving to the left it is adapted to engage the leg and thereby release the clutch |6| when shaft 52 has been arrested in its operative stop position (as distinguished from its normal stop position). In this manner the return movement of the slide arm 224 releases the clutch permitting another revolutionof the shaft 52 and the return of the assembling elevator |56 after having completed the delivery of a load of matrices to the mold.
When the'assembling elevator is returning toward' the conclusion of the performance, the bell crank lever |12 is restored to the normal position indicated in solid lines in Figs. 3 and 16. When this occurs a pin 239 projecting from the side of segment |16 of the bell crank |12 engages a depending portion 24| of a long slide bar 242 the other end 243 of which supports the bell crank 2|8 v(Fig. 17) and pulls it longitudinally so as to dispose the bell crank 2|8 into the range of the switch lever 2|4. In this 'connection it will be noted that another member 244 projecting from the segment |16 is adapted to engage the depending portion 24| of the slide bar 242 when the elevator is up and the bell crank is in its dotted position. Thislatter performance pushes the slide bar 242 and the bell crank 12 connected to it out of range of engagement with the switch arm 2 I i. The reason for this control of the switch 2 1 from the elevator mechanism is so that'the restoring of the cam shaft 52 to normal by the movement of the delivery slide arm 224 and the consequent disposal of the cam pin 2I9 into contact closing position does not close the operating circuit but that engagement of pin |39 with depending portion 24| operates slide box 242 to draw bell crank 2|8 and its end 223 into engagement with shoulder 220, thus rotating the lever 2|4 to operate the sliding switch arm 2 I1 to close the switch 2|1,,the closing of the switch 2|6 thus being made to await the complete readiness of the assembling elevator |56 and block |51 thereby assuring that all of the several operating parts of the principal vmachine are in normal position and that the machine is ready to continue with the line composition.
The other of the two L shaped arms 226 is secured to a bushing loosely mounted on the shaft 223 Fig. 8. A leg 245 extends from this bushing and is normally disposed to clear a lug 246 integral with the long arm'241 of the bell crank |12 (Fig. 14), when the latter member is rotated during operation of the elevator. On the contingency, however, of the delivery slide arm 224 being withheld from returning, as by a jamming of the matrices 80 subsequently to their discharge and before delivery to the mold or for any other reason, this leg 245 urged by spring 248 will then continue to assume the position y indicated in dotted lines, another operation of the elevator thereby being prevented and also the delivery of another load of matrices and the possible further complication that would otherwise ensue.
Quadding-out mechanism Where a sentence is terminatedin the middle of a line or where for any other reason it becomes desirable to complete a line with a blank space the usual practice is to release a suitable For different line lengths it is only necessary to.
adjust clamp 365 in accordance with correspond- ,ring markings on the bar 364.
M ulti-channel shift As is well known in the art, each type of letter or character matrix 80 is provided with a separate channel in the storage magazine. Among the several matrices are a few (the em quad for example) that are more frequently used than the rest, so much so that ofttimes the capacity of a single matrix channel is not suiiicient to accommodate the number of occurrences that such number of space matrices. such as em quads. In
accordance with the present invention there is provided a mechanism illustrated in Figs. 14a and 14h whereby a line may be thus lled out with em quads automatically and in response to but a single signal.
This feature of the invention forms the subject matter of a divisional application Serial No. 720,409, filed April 13. 1934.
The em quad push bar 36 is provided with a extension 360 over which normally rests one arm of a T lever 36| land which lever is thereby'restrained from responding to the clockwise torq'ue imparted to it by spring 362. Over another arm of the lever 36| there is vertically disposed a ywedge, bar 363 capable of limited longitudinally slidable movement. The upper end of bar 363 is provided with a cam surface adapted to cooperate with a corresponding surface of a horizontally slidable bar v364 which carries an adjustable abutment clamp 365. A depending arm 366 is secured to the slide |91 and is adapted to engage clamp 365 at a predetermined time with respect to a line composition and to move bar' 364 and thereby cam vertical bar 363 downwardly to rotate lever 36| counterclcckwise and against the action of its spring 362.
In operation. when the em quad push bar 36 is Vvselected and moved intothe position indicated in dotted lines in Fig. 14h the extension 360 ls thereby removed from interference with lever 36| and the latter member is permitted to rotate lclockwise-(Fig. 14a) to-assume its dotted line tion and to be actuated continuously by the bail a character may have in the course 'of a single cycle of operation. To remedy such a situation two channels are providedto contain each class of such frequently used matrices and an' alternative shift bar 249 which operates as an extra code bar as indicated in Fig. 5. This particular bar is so designed that it will interfere with none but the selection of the frequently used matrices and this is accomplished by providing it with.
notches in all but the positions in which the particular selector bars are concerned. There being two channels to be thus alternatively controlled there are accordingly two selector bars, one for each channel 'which in Aturn are controlled by a bar 249 operating to block one or the other of these selector bars in accordance withwhether it is moved to one side or the other. Thevmovement of the bar 249 is made regularly and alternately by operation of the elevator cam shaft -52 upon which is secured a gear 25| which engages and drives a larger gear 252, twice the size of th smaller 25| so that the latter makes two revolutions to each one of that made by the former. Crank 253 (Fig. 10) splined to the same vshaft as the large gear 252 engages an elongated slot of one arm of a bell crank lever 254 of which the other arm 255 terminating with a disc 256 is articulated to the special code bar 249.
In accordance with this arrangement each 4half-revolution of the large gear 252 and lever 254 which occurs during the composition of one line of type, will prepare one or the other of the l channels containing the frequently used matrices 89, and the succeeding half-revolution will prepare the other, since the code bar 249 as indicated above is vequipped with a pair of projections 259 for each set of channels to be controlled, and since these projections are so spaced that during each of the two positions that the bar 249 assumes one of these projections 250 blocks one of the pairoi selector bars while the other is not blocked but permitted to move into operative position.
The foregoing feature is claimed in copending divisional application Serial No. 724,025, filed May 5, 1934.
Matrix-rail shift On vmost line casting machine matrices there are provided two types of letters orcharactera
US584387A 1932-01-02 1932-01-02 Line casting and composing machine Expired - Lifetime US2057652A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US584387A US2057652A (en) 1932-01-02 1932-01-02 Line casting and composing machine
US670251A US2062332A (en) 1932-01-02 1933-05-10 Line casting and composing machine
US720409A US1996081A (en) 1932-01-02 1934-04-13 Linecasting and composing machine
US721657A US2121048A (en) 1932-01-02 1934-04-21 Line casting and composing machine
US724025A US2123200A (en) 1932-01-02 1934-05-05 Line casting and composing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US584387A US2057652A (en) 1932-01-02 1932-01-02 Line casting and composing machine

Publications (1)

Publication Number Publication Date
US2057652A true US2057652A (en) 1936-10-13

Family

ID=24337114

Family Applications (1)

Application Number Title Priority Date Filing Date
US584387A Expired - Lifetime US2057652A (en) 1932-01-02 1932-01-02 Line casting and composing machine

Country Status (1)

Country Link
US (1) US2057652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2455279A (en) * 1944-12-28 1948-11-30 Wilbert J Swatzell Long or short line assembly elevator stop
US2869717A (en) * 1953-06-24 1959-01-20 Mergenthaler Linotype Gmbh Typographical composing machine
US3291292A (en) * 1964-10-28 1966-12-13 Mohr Lino Saw Company Tape controlled saw positioning means for linecasting machines
DE1256225B (en) * 1961-05-08 1967-12-14 Harris Intertype Corp Die release device on a typographic line setting and casting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2455279A (en) * 1944-12-28 1948-11-30 Wilbert J Swatzell Long or short line assembly elevator stop
US2869717A (en) * 1953-06-24 1959-01-20 Mergenthaler Linotype Gmbh Typographical composing machine
DE1256225B (en) * 1961-05-08 1967-12-14 Harris Intertype Corp Die release device on a typographic line setting and casting machine
US3291292A (en) * 1964-10-28 1966-12-13 Mohr Lino Saw Company Tape controlled saw positioning means for linecasting machines

Similar Documents

Publication Publication Date Title
US2057652A (en) Line casting and composing machine
US1970566A (en) System and apparatus for composing machines
US2091286A (en) Control unit for line casting and composing machines
USRE21543E (en) potts
GB379830A (en) Improvements in or relating to apparatus for target practice
US2247162A (en) Start-stop code transmitter
US2284666A (en) Printing telegraph apparatus
US2494232A (en) Telegraphic apparatus of the starting-stopping type
US2129948A (en) Printing telegraph control mechanism
US1652087A (en) Cash register
US2273032A (en) Dual magazine control
US2212443A (en) Address-printing machine
US2006860A (en) Control unit for linecasting and composing machines
US2058137A (en) Typographic keyboard mechanism
US2394681A (en) Printing telegraph apparatus
US3373858A (en) Drawbar arrangement for selector bar translators
US2411496A (en) Power operated typewriting machine
US2310967A (en) Printing telegraph apparatus
US1665594A (en) Telegraph printer
US2456726A (en) Translating device
US2355657A (en) Printing telegraph apparatus
US2639416A (en) Counting relay
US2144938A (en) Regenerator for telegraph signals
US1717230A (en) Printing machine
US2148549A (en) Automatic control of quadding and centering devices