US2023512A - Duplex metal article - Google Patents

Duplex metal article Download PDF

Info

Publication number
US2023512A
US2023512A US694445A US69444533A US2023512A US 2023512 A US2023512 A US 2023512A US 694445 A US694445 A US 694445A US 69444533 A US69444533 A US 69444533A US 2023512 A US2023512 A US 2023512A
Authority
US
United States
Prior art keywords
metal
coating
base
aluminous
duplex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US694445A
Inventor
Robert H Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Priority to US694445A priority Critical patent/US2023512A/en
Application granted granted Critical
Publication of US2023512A publication Critical patent/US2023512A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/933Sacrificial component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components

Definitions

  • This invention relates to duplex metal articles, and it is particularly concerned with the production of an improved duplex metal comprising a base of aluminous metal (aluminum or aluminum 5 alloy) provided on one or more of its surfaces with an aluminous metal coating resistant to deep pitting by corrosion.
  • aluminous metal aluminum or aluminum 5 alloy
  • duplex metals particularly of the type comprising a core of strong aluminum alloy provided with a coating consisting of pure aluminum or an aluminum alloy more resistant to corrosive attack than the core metal.
  • the coating in these duplex metals is formed of a, single layer of metal of substantial thickness which constitutes an appreciable part. of the total thickness of the duplex metal.
  • a local action takes place which may cause relatively rapid penetration through the coating to the base metal, forming pits which are relatively deep and of small circumference.
  • the surface appearance of the duplex metal is materially impaired by this type of corrosion and the protection afforded the base metal is often .25 partially destroyed.
  • a further object of my invention is to provide an improved duplex metal article having an aluminous metal base provided with an aluminous metal coating sub- 35 stantially resistant to pitting which retains a relatively smooth, even surface appearance under corrosive conditions. More particularly, it is an object of my invention to provide an improved duplex metal article consisting of ari aluminous 40 metal base provided with a coating composed of a plurality of aluminous metal layers or laminations.
  • an aluminous metal base be provided with a laminated coating con- 45 sisting of two or more layers of aluminous'metal in which each layer possesses an electrode potential greater than that of the base metal and in which. the successive layers of the laminated coating are so arranged that the electrode po-' 50 tential of the coating increases progressively from which penertatethrough the coating to the base metal, the corrosive attack'spreads laterally after penetrating the first layer of the laminated coating and does not penetrate the second or successive layers of thecoating material until the layer 5 first penetrated is extensively corroded in a lateral direction.
  • the proper choice and arrangement of the aluminous metals to be used'in combination depends upon a predetermined knowledge of the electrode potential of the various aluminous metals. These difierent potentials are readily measured, in accordance with the methods long known in the art, against a standard electrode. If the electrode potentials of the layers of the aluminous metal coating are electronegative with respect to the standard electrode, it is not neces-. sary that the base metal be electropositive withrespect to the'standard electrode, but only that the base metal be less electronegative than the coating metal, and that the layers of the coating be successively, more electronegative than the base metal. Therefore, throughout this speciflcation and claims, when I say that the electrode potential of the various layers of the coating should be higher than that of the base metal, I
  • the aluminous metals of the various 40 layers of the coating should be more electronegative with respect to the standard electrode than is the base metal. While no fixed potential difference is required between the electrode potential of the aluminous metal base and the coating, or between any two adjacent layers of the coating, it is desirable that there be a relatively wide difference in the electrode potential of any two adjacent layers, since I have found that with greater difierence in electrode potential corrosive attack proceeds laterally to a greater extent and spreads the corrosion over a wider surface area, thus producing a material with greater resistance to penetration by pitting. A convenient standard electrode for measuring may be readily produced.
  • the followthe potentials above mentioned may be readily structural, properties, may be any aluminum .alselected from those now in regular use for simloy having the properties which it is'desired to ilar measurements.
  • a. calomel electrode it is desired that the article, have high strength has been selected as a standard. In measuring and hardness, an alloy 0. the duralumin type alloy to be tested is made one element of an elec- 0 below mentioned; or if it is desired to obtain trolytic cell. The calomel electrode is made the an article which combines the properties of exother element.
  • the electrolyte a normal solution of sodium chloride containing 0.3 per cent by D, E, or F below mentioned maybe used. Also, weight .of hydrogen peroxide.
  • the circuit is other alloys possessing known combinations of closed and the potential dificerence of the eleproperties may be employed, such as any of the ments is measured on a potentiometer.
  • the calfollowing: omel electrode used is made up in the usual way w f mercury 11!
  • the aluimnous metals to be used in forming Commercial aluminum the laminations of the composite coating metal E 1.25 manganese. may be aluminum or substantially any of its 5;; mganesell-omagnesmm- 0.7 s ilicon, 1.25 magnesium, 0.25 chromium.
  • alloys of suitable electrode potential For the purpose of forming'laminations of suitably graded electrode potentials I have found it particularly convenient to use alloys of aluminum and one or ffi figf more of the metals silver, tin,indium,bismuth, cal- N.- 10 silicon. I
  • the composite coating metal prepared as above described may possess sufiicient ed application.
  • a composite laminated structure may be produced in which there is no single layer from which the structure derives its physical properties.
  • a coating metal prepared as above described is useful without application to a base.
  • the duplex metal articles of my invention contemplate articles which derive their strucing amounts of metals of the class'above de scribed best serve the general purpose of this invention in producing the electrode potential desired without materially impairing other detural properties from the properties of the alushfable properties of the aluminuma'noys' minous metals forming each of the layers, as well Percent"'---. as such duplex'metal articles as derive their structural properties for the purpose of its intend- If, for examp'e,
  • the aluminum may be used as the base, such as alloys A, B, or
  • the working with intermediate heating incident by the use of a greater number of laminat1ons A to such forming operations tends to improve the suitable method of forming such a material is bond between th1aminafins coating and to first form a pack of superimposed sheets of between the coatmg the base metalthe various aluminous metals which are to con-
  • the duplex metal articles of my invention may stitute the individual laminations, and then by a b Provided on any Or all of their exlwsed rolling operation reduce the thickness of the pack surfaces with Protective mposite coating to the desired thickness.
  • the composite coating metal may be formed of any desired number of laminations of any desired thickness. In' general, however, the surface appearance is better retained if the individual laminations are extremely thin and the desired thickness of the coating metal is built up articles of my invention derives its principal for example, of an alloy consisting of aluminum
  • the layer 3 may consist of an alloy of aluminum and 0.05 per cent tin, the layer 6 being formed of analloy of aluminum, 0.05 per cent tin, and 0.05
  • a duplex metal article consisting of a base of aluminous metal provided with a coating consisting of a plurality of aluminous metal layers, each of said layers having an electrode potential greater than that of the base metal and having said layers arranged in the order of increasi electrode potential from the base metal to the surface of said article.
  • a duplex metal article consisting of a base of aluminous metal provided with a laminated aluminous metal coating composed of a plurality of aluminous metal layers, each of said layers having a dverent electrode potential and all of said layers having electrode potentials greater than that of the base metal, said laminated coating having an electrode potential which increases progressively through successive layers from the base metal to the outer surface of said article.
  • a duplex metal article consisting of a base of aluminous metal provided with a laminated aluminous metal coating having an electrode po- 5 tential which increases throughout its thickness from the base metal to the outer surface of said article and being resistant to penetration by corrosion, said coating being composed of a plurality of extremely thin aluminous metal layers, each 10 of said layers consisting predominantly of aluminum and at least one of the class of metals silver, cadmium, zinc, platinum, calcium, barium, strontium, gallium, indium, bismuth and tin, each of said layers having an electrode potential greater than that of the base metal.
  • a duplex metal article consisting of a base of aluminous metal provided with a lated aluminous metal coating having an electrode potential which increases throughout its thickness from the base metal to the outer surface of said article and being resistant to penetration by corrosion said coating being composed of a plurality of extremely thin aluminous metal layers, each of said layers consisting predominantly of aluminum and at least one of the classof metals silver,
  • each of said layers having an electrode potential greater than that of the base metal and greater than that of substantially pure aluminum.

Description

DUPLEX METAL ARTICLE Filed 001;. 20. 1933 INVENTOR R obs/ff). Bro wn BY Patented Dec. 10, 1935 'UNITED- STATES PATENT OFFICE" DUPLEX METAL ARTICLE Robert H. Brown, New Kensington, Pa., assignor to Aluminum Company of America, Pittsburgh, Pa., a corporation of Pennsylvania Application October 20, 1933, Serial No. 694,445
Claims. (01. 29-181) This invention relates to duplex metal articles, and it is particularly concerned with the production of an improved duplex metal comprising a base of aluminous metal (aluminum or aluminum 5 alloy) provided on one or more of its surfaces with an aluminous metal coating resistant to deep pitting by corrosion.
It has heretofore been proposed to produce aluminous duplex metals, particularly of the type comprising a core of strong aluminum alloy provided with a coating consisting of pure aluminum or an aluminum alloy more resistant to corrosive attack than the core metal. The coating in these duplex metals is formed of a, single layer of metal of substantial thickness which constitutes an appreciable part. of the total thickness of the duplex metal. Upon exposure of such material to corrosive conditions, a local action takes place which may cause relatively rapid penetration through the coating to the base metal, forming pits which are relatively deep and of small circumference. The surface appearance of the duplex metal is materially impaired by this type of corrosion and the protection afforded the base metal is often .25 partially destroyed.
It is an object of the present invention to overcome the difiiculty of pitting in duplex metal surfaces and to provide an improved duplex metal article in which corrosive attack is distributed 30 over a relatively wide surface area before penetrating to a substantial depth. A further object of my invention is to provide an improved duplex metal article having an aluminous metal base provided with an aluminous metal coating sub- 35 stantially resistant to pitting which retains a relatively smooth, even surface appearance under corrosive conditions. More particularly, it is an object of my invention to provide an improved duplex metal article consisting of ari aluminous 40 metal base provided with a coating composed of a plurality of aluminous metal layers or laminations. 1
I have discovered that if an aluminous metal base be provided with a laminated coating con- 45 sisting of two or more layers of aluminous'metal in which each layer possesses an electrode potential greater than that of the base metal and in which. the successive layers of the laminated coating are so arranged that the electrode po-' 50 tential of the coating increases progressively from which penertatethrough the coating to the base metal, the corrosive attack'spreads laterally after penetrating the first layer of the laminated coating and does not penetrate the second or successive layers of thecoating material until the layer 5 first penetrated is extensively corroded in a lateral direction. This effect is the direct result of the selection and arrangement of the materials of the successive layers of my improved duplex metal article with regard to the electrode poten- 10 tial of the aluminous metal employed in each layer. The electrode potential of the surface or other layer being always greater than that of the layer next below it, at any point where any two of these layers are exposed in contact with a 15 corroding medium, the voltaic action set up causes a: preferential attack of the metal of higher electrode potential, thus protecting the layer of lower electrode potential. v
In forming the duplex metal articles of my in- 20 vention the proper choice and arrangement of the aluminous metals to be used'in combination depends upon a predetermined knowledge of the electrode potential of the various aluminous metals. These difierent potentials are readily measured, in accordance with the methods long known in the art, against a standard electrode. If the electrode potentials of the layers of the aluminous metal coating are electronegative with respect to the standard electrode, it is not neces-. sary that the base metal be electropositive withrespect to the'standard electrode, but only that the base metal be less electronegative than the coating metal, and that the layers of the coating be successively, more electronegative than the base metal. Therefore, throughout this speciflcation and claims, when I say that the electrode potential of the various layers of the coating should be higher than that of the base metal, I
mean that the aluminous metals of the various 40 layers of the coating should be more electronegative with respect to the standard electrode than is the base metal. While no fixed potential difference is required between the electrode potential of the aluminous metal base and the coating, or between any two adjacent layers of the coating, it is desirable that there be a relatively wide difference in the electrode potential of any two adjacent layers, since I have found that with greater difierence in electrode potential corrosive attack proceeds laterally to a greater extent and spreads the corrosion over a wider surface area, thus producing a material with greater resistance to penetration by pitting. A convenient standard electrode for measuring may be readily produced. In general, the followthe potentials above mentioned may be readily structural, properties, may be any aluminum .alselected from those now in regular use for simloy having the properties which it is'desired to ilar measurements. For the-purposes of this deobtain inthe finished article. scription'of the invention a. calomel electrode it is desired that the article, have high strength has been selected as a standard. In measuring and hardness, an alloy 0. the duralumin type alloy to be tested is made one element of an elec- 0 below mentioned; or if it is desired to obtain trolytic cell. The calomel electrode is made the an article which combines the properties of exother element. The electrolyte a normal solution of sodium chloride containing 0.3 per cent by D, E, or F below mentioned maybe used. Also, weight .of hydrogen peroxide. The circuit is other alloys possessing known combinations of closed and the potential dificerence of the eleproperties may be employed, such as any of the ments is measured on a potentiometer. The calfollowing: omel electrode used is made up in the usual way w f mercury 11! Contact W h 11181121110115 011101111 Alloy Composition-Percentage byweight-Bslancealuminum and in contact with this a normal potassium chloride solution saturated with mercurous chlo- Mapper,1258mmojmanganesemsmagnesmm A ride 3 efipper, silicon,. 0.75 manganese, 0.5 magnesium.
8 con, magnesium. The aluimnous metals to be used in forming Commercial aluminum the laminations of the composite coating metal E 1.25 manganese. may be aluminum or substantially any of its 5;; mganesell-omagnesmm- 0.7 s ilicon, 1.25 magnesium, 0.25 chromium.
5 silicon.
4.0 copper, 0.5 magnesium, 2.0 nickel.
4.5 copper, 0.8 silicon, 0.8 manganese.
0.8 copper, 0.8 nickel, 12.5 silicon, 1.2 magnesium.
alloys of suitable electrode potential. For the purpose of forming'laminations of suitably graded electrode potentials I have found it particularly convenient to use alloys of aluminum and one or ffi figf more of the metals silver, tin,indium,bismuth, cal- N.- 10 silicon. I
0.- 4.5 copper, 5.0 silicon.
cium, barium, strontium, cadmium, zinc, platinum, and gallium in varying amounts. As is described Q-- in my copending U. S. Patent application, Serial No. 694,444, filed October 20, 1933, these metals have the property of increasing the electrode potential of aluminous metals without otherwise modifying their desirable properties, when added thereto in relatively small amounts. Consequently, by the addition of progressively increasing amounts of these metals to successive layers of the composite coating metal a coating material having the desired electrode potential properties l4 silicon, 2.0 nickel, 1.0 magnesium.
6.0 copper, 1.0 tin.
7.0 copper, 7.0 nickel, 7.0 silicon.
. 6.0 magnesium, 1.5 nickel, 1.0 manganese.
In some cases the composite coating metal prepared as above described may possess sufiicient ed application. In such case a composite laminated structure may be produced in which there is no single layer from which the structure derives its physical properties. In fact, it has been found that for certain applications a coating metal prepared as above described is useful without application to a base. It is to be understood, therefore, that the duplex metal articles of my invention contemplate articles which derive their strucing amounts of metals of the class'above de scribed best serve the general purpose of this invention in producing the electrode potential desired without materially impairing other detural properties from the properties of the alushfable properties of the aluminuma'noys' minous metals forming each of the layers, as well Percent"'---. as such duplex'metal articles as derive their structural properties for the purpose of its intend- If, for examp'e,
6 v the electrode potential in question, the aluminum may be used as the base, such as alloys A, B, or
treme ductility with workability, alloys of the type sflver Q02 to principal structural properties from a single base Cadmium 0.05 to 5.0 layerv m gnu (mg to In forming the duplex metal articles of my in- Caloium (L1 to L0 vention, in which a relatively thin laminated coat- Barmm {M to 2 ing is applied to a metal base having desired strucs m to L0 .tural properties, any of the known methods of Gallium 0.02 to 2.0 forming such duplex metal articles may be used. Indium 0.02 to 29 One method which I have found particularly Bismuth mg to L0 satisfactory is to cast the base alloy against the Tin (m2 to 05 I formed laminated coating metal, as described in zinc 02 to 101) the patent of E. H. Dix, No. 1,865,089, issued June 28, 1932.. The article may then, if desired, be mechanically worked, as for example by rolling or drawing or other suitable operation, to form the particular type of duplex metal article desired, such as sheet, rod, or other form of material. The working with intermediate heating incident by the use of a greater number of laminat1ons A to such forming operations tends to improve the suitable method of forming such a material is bond between th1aminafins coating and to first form a pack of superimposed sheets of between the coatmg the base metalthe various aluminous metals which are to con- The duplex metal articles of my invention may stitute the individual laminations, and then by a b Provided on any Or all of their exlwsed rolling operation reduce the thickness of the pack surfaces with Protective mposite coating to the desired thickness. This reduction produces m For example there is Shown in the drawextremely thin laminations in the finished coating a duplex metal article wmprising base of ing metaL I an aluminum structural alloy provided on its The base or core metaL-that is to say the layer p and bottom S ac with a laminated Coator body of metal irom which the duplex metal ing metal 2 and The ba e I may e d.
The composite coating metal may be formed of any desired number of laminations of any desired thickness. In' general, however, the surface appearance is better retained if the individual laminations are extremely thin and the desired thickness of the coating metal is built up articles of my invention derives its principal for example, of an alloy consisting of aluminum The layer 3 may consist of an alloy of aluminum and 0.05 per cent tin, the layer 6 being formed of analloy of aluminum, 0.05 per cent tin, and 0.05
per cent bismuth. I
I claim as my invention:
1. A duplex metal article consisting of a base of aluminous metal provided with a coating consisting of a plurality of aluminous metal layers, each of said layers having an electrode potential greater than that of the base metal and having said layers arranged in the order of increasi electrode potential from the base metal to the surface of said article.
2. A duplex metal article consisting of a base of aluminous metal provided with a laminated aluminous metal coating composed of a plurality of aluminous metal layers, each of said layers having a diilerent electrode potential and all of said layers having electrode potentials greater than that of the base metal, said laminated coating having an electrode potential which increases progressively through successive layers from the base metal to the outer surface of said article.
3. A duplex, metal article consisting of a base of aluminous metal provided with a laminated aluminous metal coating having an electrode potential which increases throughout its thickness iii-om the base metal to the outer surface of said article, said coating being resistant to pene= tration by corrosion.
4. A duplex metal article consisting of a base of aluminous metal provided with a laminated aluminous metal coating having an electrode po- 5 tential which increases throughout its thickness from the base metal to the outer surface of said article and being resistant to penetration by corrosion, said coating being composed of a plurality of extremely thin aluminous metal layers, each 10 of said layers consisting predominantly of aluminum and at least one of the class of metals silver, cadmium, zinc, platinum, calcium, barium, strontium, gallium, indium, bismuth and tin, each of said layers having an electrode potential greater than that of the base metal.
5. A duplex metal article consisting of a base of aluminous metal provided with a lated aluminous metal coating having an electrode potential which increases throughout its thickness from the base metal to the outer surface of said article and being resistant to penetration by corrosion said coating being composed of a plurality of extremely thin aluminous metal layers, each of said layers consisting predominantly of aluminum and at least one of the classof metals silver,
cadmium, zinc, platinum, calcium, barium, strontium, gallium, indium, bismuth and tin, each of said layers having an electrode potential greater than that of the base metal and greater than that of substantially pure aluminum.
. ROBERT H. BROWN.
US694445A 1933-10-20 1933-10-20 Duplex metal article Expired - Lifetime US2023512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US694445A US2023512A (en) 1933-10-20 1933-10-20 Duplex metal article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US694445A US2023512A (en) 1933-10-20 1933-10-20 Duplex metal article

Publications (1)

Publication Number Publication Date
US2023512A true US2023512A (en) 1935-12-10

Family

ID=24788856

Family Applications (1)

Application Number Title Priority Date Filing Date
US694445A Expired - Lifetime US2023512A (en) 1933-10-20 1933-10-20 Duplex metal article

Country Status (1)

Country Link
US (1) US2023512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743516A (en) * 1952-06-02 1956-05-01 Glacier Co Ltd Production of composite material for the manufacture of plain bearings
US2821014A (en) * 1951-05-31 1958-01-28 Aluminum Co Of America Composite aluminous metal article
US3290125A (en) * 1963-11-13 1966-12-06 Olin Mathieson Composite sheet metal article
FR2704871A1 (en) * 1993-05-07 1994-11-10 Kobe Steel Ltd Heat exchanger tube for an LNG vaporiser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2821014A (en) * 1951-05-31 1958-01-28 Aluminum Co Of America Composite aluminous metal article
US2743516A (en) * 1952-06-02 1956-05-01 Glacier Co Ltd Production of composite material for the manufacture of plain bearings
US3290125A (en) * 1963-11-13 1966-12-06 Olin Mathieson Composite sheet metal article
FR2704871A1 (en) * 1993-05-07 1994-11-10 Kobe Steel Ltd Heat exchanger tube for an LNG vaporiser
ES2112705A1 (en) * 1993-05-07 1998-04-01 Kobe Seiko Sho Efectuando Tran Heat exchanger tube for lng vaporizer

Similar Documents

Publication Publication Date Title
US1997165A (en) Duplex metal article
US2011613A (en) Magnesium duplex metal
US2746134A (en) Duplex metal sheet or article
US2023512A (en) Duplex metal article
US1997166A (en) Duplex metal article
GB702188A (en) Improvements in or relating to plain bearings
US3418090A (en) Composite aluminum article
US2726436A (en) Metal-clad aluminum alloys
US2982017A (en) Method of protecting magnesium with a coating of titanium
US3721535A (en) Composite copper alloy
US3567943A (en) Radioactive plating for radioactive foils
US2017757A (en) Duplex metal article
US2048288A (en) Zinc base alloy
US2000115A (en) Alloy
US2982019A (en) Method of protecting magnesium with a coating of titanium or zirconium
US2100545A (en) Welding electrode
US1975778A (en) Duplex metal article
US1716599A (en) Mechanically-worked zinc product
US2208186A (en) Veneer plate of aluminum alloy
US3057049A (en) Alloy and composite stock
US1832733A (en) Zinc base alloy and wrought products made therefrom
US3861884A (en) Composite metal article
US3579313A (en) Composite of steel and aluminum containing zinc and boron,and a cable sheath made therefrom
US1984151A (en) Alloy
Van Rooyen et al. Atmospheric corrosion behavior of some nickel alloys