US20230340622A1 - Method for breeding self-compatible potatoes - Google Patents

Method for breeding self-compatible potatoes Download PDF

Info

Publication number
US20230340622A1
US20230340622A1 US18/348,953 US202318348953A US2023340622A1 US 20230340622 A1 US20230340622 A1 US 20230340622A1 US 202318348953 A US202318348953 A US 202318348953A US 2023340622 A1 US2023340622 A1 US 2023340622A1
Authority
US
United States
Prior art keywords
self
compatible
rnase
plant
potato
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/348,953
Inventor
Sanwen HUANG
Chunzhi ZHANG
Zhongmin Yang
Die TANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agricultural Genomics Institute at Shenzhen of CAAS
Original Assignee
Agricultural Genomics Institute at Shenzhen of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agricultural Genomics Institute at Shenzhen of CAAS filed Critical Agricultural Genomics Institute at Shenzhen of CAAS
Priority to US18/348,953 priority Critical patent/US20230340622A1/en
Publication of US20230340622A1 publication Critical patent/US20230340622A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/827Solanum tuberosum [potato]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • A01H1/045Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the invention relates to the technical field of genetic breeding, in particular to a method for breeding self-compatible potatoes.
  • Potatoes have comprehensive nutrition, the potato crop is the most important tuber food crop in the world, and it plays an important role in solving the global food crisis.
  • two structural obstacles have been restricting the sustainable development of the potato industry: 1) cultivated potatoes are mainly autotetraploids, and the genetic analysis is very complicated, leading to long breeding cycles; 2) the asexuality reproduction of tetraploid potatoes by using potato blocks has the disadvantages of low reproduction coefficient (1:10), high cost of germplasm resource, and being easy to carry pests and diseases.
  • scientists from different countries have called for further domestication of potatoes at the diploid level to change them into seed propagation crops.
  • diploid potatoes exist extensively in nature. The latest taxonomic research has divided potatoes into 4 cultivars and 107 wild varieties, 70% of them are diploid potatoes. Fully exploiting the genetic variation in these diploid resources will greatly promote the genetic improvement of potatoes.
  • the Sli gene is derived from wild potatoes, and the introduction of Sli gene into cultivars often results in many undesirable traits, such as the long length of stolons (greater than 1 meter), and high content of the toxic substance solanine, etc. Moreover, these undesirable traits are controlled by multiple genes, and it is difficult to eliminate them in practical breeding work. Therefore, the problem to be solved in the art is how to overcome the problem of self-incompatibility of diploid potatoes.
  • the present invention provides a method for breeding self-compatible potatoes, the method includes the following steps:
  • the diploid potato resources are screened by artificial self-pollination at the flowering stage, and the self-compatible variety material PG6359 is finally obtained. Since the self-incompatibility is controlled by S-RNase gene at the S site, we firstly test whether the S-RNase gene of PG6359 is mutated. Among different potato variety materials, the polymorphism of S-RNase gene is very high, and the similarity of amino acids is 32.9%-94.5%. It is difficult to obtain the full-length sequence of S-RNase gene by homologous cloning method. Moreover, the S-RNase gene is specifically and highly expressed in style, so we successfully clone the S-RNase gene in PG6359 by transcriptome sequencing.
  • the S-RNase gene at the S site refers to a nuclease specifically expressed in the stigma, and the nuclease can degrade ribosomal RNA in pollen tubes of the same S genotype, thereby inhibiting the extension of the pollen tubes in stigma and causing self-incompatibility.
  • the transcriptome sequencing method in step (1) comprises: firstly extracting RNA by utilizing the style of PG6359, and performing the transcriptome sequencing by Illumina HiSeq X Ten platform to obtain 2 Gb of sequencing data; de novo assembling the transcriptome data by Trinity software, and calculating the expression of each transcript by RSEM software; then performing BLAST by utilizing the known S-RNase protein sequence in the potato reference genome, and selecting the sequence with an alignment reliability E value less than 1E-5 and an expression level FPKM value greater than 200 as a candidate sequence of the S-RNase gene; finally based on the alignment results, designing amplification primers to amplify the full length of the S-RNase gene of PG6359, and determining its expression by qPCR.
  • step (2) the F 1 single plant is used as a female parent, and the self-incompatible material B is used as a male parent to perform crossing and obtain a self-compatible F 1 generation.
  • a total of two S-RNase full-length sequences of PG6359 are obtained by using the method according to the present invention. Based on RSEM calculations, the expression level of S s11 is 59.42, and the expression level of S s12 is 5124.98; there is a differential of 100 times. With verification by qPCR, the expression level of S s12 is 400 times as much as that of S s11 . Since S-RNase gene has nuclease activity, and it can degrade ribosomal RNA in pollen of the same S genotype, thereby inhibiting the extension of the pollen tube. The expression level of S s11 found in the present invention is relatively low, and it may not be able to exert the effect of inhibiting the extension of the pollen tube.
  • the genotypes of the selfing offspring single plants are S s11 S s12 and S s11 S s11 , but no S s12 S s12 genotype is found. This indicates that due to normal expression of the S s12 gene in the stigma, the pollen tube containing S s12 is inhibited from extending, and the low-expressing S s11 gene cannot reject the pollen containing the S s11 genotype, thereby resulting in self-compatibility.
  • the S s11 gene of PG6359 can be introduced into other self-incompatible materials by hybridization, and the self-incompatible materials can be changed into self-compatible materials.
  • sequence of the upstream primer of the amplification primers is represented by SEQ ID NO:3
  • sequence of the downstream primer of the amplification primers is represented by SEQ ID NO:4.
  • Another aspect of the present invention provides a polynucleotide comprising or consisting of the following sequence:
  • homologous sequence is a polynucleotide having about 60% or more, about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more identity to the nucleotide represented by SEQ ID NO:1; or
  • Another aspect of the present invention provides a potato plant, and a plant part, a tuber, a tuber part, a seed, or a plant cell thereof, wherein it comprises the above polynucleotide.
  • the potato plant, the plant part, tuber, tuber part, seed, or the plant cell thereof is a self-compatible material.
  • the expression level of the S-RNase gene in the potato plant, and the plant part, tuber, tuber part, seed, or the plant cell thereof is less than 100 by RSEM calculation; preferably, the expression level of the S-RNase gene is less than 60, and more preferably, the expression level of the S-RNase gene is close to zero.
  • a nucleotide sequence of the S-RNase allele represented by SEQ ID NO:1 (S s11 ), or a complementary sequence, degenerate sequence, homologous sequence thereof is expressed.
  • nucleotide sequence of the S-RNase allele represented by SEQ ID NO:1 (S s11 ) or a complementary sequence, degenerate sequence, homologous sequence thereof; or represented by SEQ ID NO:2 (S s12 ) or a complementary sequence, degenerate sequence, homologous sequence thereof is expressed.
  • the homologous sequence may be a polynucleotide obtained by hybridizing to a nucleotide sequence in SEQ ID NO: 1 or SEQ ID NO: 2 or a complementary sequence thereof under stringent conditions, or a fragment thereof;
  • the “stringent conditions” described herein may be any of a low stringent condition, a medium stringent condition, and a high stringent condition; and preferably a high stringent condition.
  • the “low stringent conditions” may be conditions of 30° C., 5 ⁇ SSC, 5 ⁇ Denhardts solution, 0.5% SDS, 52% formamide
  • the “medium stringent conditions” may be conditions of 40° C., 5 ⁇ SSC, 5 x Denhardts solution, 0.5% SDS, 52% formamide
  • the “high stringency conditions” may be conditions of 50° C., 5 ⁇ SSC, 5 x Denhardts solution, 0.5% SDS, 52% formamide.
  • the hybridizable polynucleotide also may be such a homologous polynucleotide, when calculated by using homology search softwares such as FASTA and BLAST and the default parameters set by the system, it has about 60% or more, about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more , 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more , 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more , 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.
  • the nucleotide sequence homology may be determined by using Karlin and Altschul's algorithm rules BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990; Proc. Natl. Acad. Sci. USA 90: 5873, 1993).
  • Programs BLASTN and BLASTX based on the rules of the BLAST algorithm have been developed (Altschul S F, et al: J Mol Mol Biol 215: 403, 1990).
  • Another aspect of the present invention provides a method for generating self-compatible potatoes, which comprises performing selfing by using a potato plant comprising the above polynucleotide, or the above potato plant, or a potato plant produced by a plant part, a tuber, a tuber part, a seed or a plant cell thereof as parent.
  • Another aspect of the present invention provides a method for generating self-compatible potatoes, which comprises performing hybridization by using a potato plant comprising the above polynucleotide, or a potato plant produced by a plant part, a tuber, a tuber part, a seed or a plant cell thereof as the first parent A, so that the offspring comprises the above polynucleotide.
  • hybridization is performed by using a potato plant comprising the above polynucleotide as the first parent A, and a self-incompatible material B as a second parent.
  • backcross is performed by using offspring comprising the above polynucleotide as the first parent, and a self-incompatible material B as a second parent, so as to obtain a self-compatible material with a genetic background of the material B.
  • F 1 is used as the female parent, and self-incompatible material B is used as the male parent for backcrossing to obtain the FB 1 generation plants.
  • genotype detection an individual F 2 containing the S s11 gene is obtained; further, F 2 is used as the female parent, and self-incompatibility material B is used as the male parent to perform backcross; after multiple generations of backcrossing, then performing another generation of self-crossing, a new self-incompatible material with a genetic background of the material B may be obtained.
  • the S-RNase genotype of the female parent contains S s11 , and preferably, the S-RNase genotype of the female parent is S s11 S s11 .
  • Another aspect of the present invention provides a potato plant, or a plant part, tuber, tuber part, and seed thereof produced by the above breeding method.
  • Another aspect of the present invention provides a method for manufacturing a commercial plant product, which comprises: obtaining the above potato plant, and a plant part, a tuber, a tuber part, a seed or a plant cell thereof to manufacture the commercial plant products, wherein the plant products are selected from the group consisting of: fresh whole potatoes, French fries, potato chips, dehydrated potato materials, potato flakes, and potato granules.
  • Another aspect of the present invention provides a food made from a potato plant, a tuber or a tuber part which is produced by growing of the above potato plant, and a plant part, a tuber, a tuber part, or a plant cell or a seed thereof.
  • the food is a sliced potato tuber food.
  • the food is a group consisting of French fries, potato chips, and baked potatoes.
  • the invention adopting the above technical solutions has the following beneficial effects: it enables to overcome the self-incompatibility of diploid potatoes, and the present invention does not require the introduction of any wild potato gene fragments, thereby avoiding linkage drag, and providing a basis for the rapid creation of a diploid potato inbred line.
  • the highly polymorphic S-site described herein is the S-RNase protein, which has multiple morphologies, for example, S s11 and S s12 are two different morphologies with different amino acid sequences.
  • the S-RNase described herein may represent both the S-RNase protein and the gene determining the expression of the S-RNase protein, and the specific reference may be inferred from the contextual understanding.
  • S s11 and S s12 may either respectively represent a variant form of the S-RNase protein, or respectively represent the gene determining the variant form, and the specific reference may be inferred from the contextual understanding.
  • the expression level of the S-RNase gene described herein refers to the content of mRNA transcribed by S-RNase gene.
  • a method for breeding self-compatible potatoes disclosed in the present invention includes the following steps:
  • S-RNase sequences of PG6359 Two full-length S-RNase sequences of PG6359 are obtained. Based on RSEM calculations, the expression level of S s11 is 59.42, and the expression level of S s12 is 5124.98; there is a differential of 100 times. With verification by qPCR, the expression level of S s12 is 400 times as much as that of S s11 . Since S-RNase gene has nuclease activity, and it can degrade ribosomal RNA in pollen of the same S genotype, thereby inhibiting the extension of the pollen tube. The expression level of S s11 found in the present invention is relatively low, and it may not be able to exert the effect of inhibiting the extension of the pollen tube.
  • a method for breeding self-compatible potatoes disclosed in the present invention includes the following steps:
  • the transcriptome sequencing method in step (1) comprises: firstly extracting RNA by utilizing the style of PG6359, and performing the transcriptome sequencing by Illumina HiSeq X Ten platform to obtain 2 Gb of sequencing data; de novo assembling the transcriptome data by Trinity software, and calculating the expression of each transcript by RSEM software; then performing BLAST by utilizing the known S-RNase protein sequence in the potato reference genome, and obtaining a candidate sequence of the S-RNase allele in the transcriptome data; finally based on the alignment results, designing amplification primers to amplify the full length of the S-RNase gene of PG6359, and determining its expression by qPCR.
  • step (2) the F 1 single plant is used as a female parent, and the self-incompatible material B is used as a male parent to perform backcrossing; then performing genotype detection for the resulting BC 1 generation material to obtain the individual containing S s11 gene as the female parent, and continuing to backcross with the self-incompatible material B; after multiple generations of backcrossing, then performing another generation of self-crossing, a new self-compatible material with a genetic background of the material B may be obtained.
  • sequence of the upstream primer of the amplification primers is represented by SEQ ID NO:3
  • sequence of the downstream primer of the amplification primers is represented by SEQ ID NO:4.
  • the selected amplification primers have strong specificity and can amplify the full-length sequence of S-RNase gene very well and completely.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is a method for breeding self-compatible potatoes, including the following steps: (1) selecting a self-compatible potato variety material and referring to it as PG6359, and cloning the S-RNase gene of PG6359 through the transcriptome sequencing method; and (2) obtaining two full-length sequences of the S-RNase gene from the cloned S-RNase gene in step (1) and referring to them as Ss11 and Ss12 respectively, and after carrying out an artificial self-pollination for the variety material PG6359, selecting the variety material having the genotype of Ss11Ss11 from the offspring as the female parent, and selecting a self-incompatible material as the male parent, and then obtaining a self-compatible F1 generation by hybridization. The invention overcomes the self-incompatibility of diploid potatoes, and does not require the introduction of any wild potato gene fragments, thereby avoiding linkage drag, and providing a basis for the rapid creation of a diploid potato inbred line.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/922,829, filed on Jul. 7, 2020, which is a continuation-in-part of International Application No PCT/CN2019/082197 (filed on Apr. 11, 2019), which claims the benefit and priority of Chinese patent application No. CN201810611716.3 (filed on Jun. 14, 2018) and application No. CN201910069945.1 (filed on Jan. 24, 2019), each of which is incorporated herein by reference in its entirety and for all purposes.
  • REFERENCE TO AN ELECTRONIC SEQUENCE LISTING
  • The contents of the electronic sequence listing (CU756SequenceListing.xml; Size: 6,606 bytes; and Date of Creation: Jul. 7, 2023) is herein incorporated by reference in its entirety.
  • TECHNICAL FIELD
  • The invention relates to the technical field of genetic breeding, in particular to a method for breeding self-compatible potatoes.
  • BACKGROUND
  • Potatoes have comprehensive nutrition, the potato crop is the most important tuber food crop in the world, and it plays an important role in solving the global food crisis. However, two structural obstacles have been restricting the sustainable development of the potato industry: 1) cultivated potatoes are mainly autotetraploids, and the genetic analysis is very complicated, leading to long breeding cycles; 2) the asexuality reproduction of tetraploid potatoes by using potato blocks has the disadvantages of low reproduction coefficient (1:10), high cost of germplasm resource, and being easy to carry pests and diseases. In this case, scientists from different countries have called for further domestication of potatoes at the diploid level to change them into seed propagation crops. The genetics of diploid potatoes is simpler than that of tetraploid potatoes, and the coefficient of seed propagation is higher (1:5000), the seeds are convenient for storage and transportation and substantially do not carry diseases and pests. In fact, diploid potatoes exist extensively in nature. The latest taxonomic research has divided potatoes into 4 cultivars and 107 wild varieties, 70% of them are diploid potatoes. Fully exploiting the genetic variation in these diploid resources will greatly promote the genetic improvement of potatoes.
  • However, most of the diploid potatoes are self-incompatible, this severely limits the selection of inbred lines. Self-incompatibility of diploid potatoes belongs to gametophytic self-incompatibility, and is controlled by a high polymorphic S site. For a long time, researchers have been looking for self-compatible diploid potatoes. In 1998, Japanese researcher Hosaka reported a self-compatible wild potato line, Solanum chacoense chc525-3, which contains a Sli gene (S-locus inhibitor) inhibiting the self-incompatibility and leading to self-compatibility. However, the Sli gene is derived from wild potatoes, and the introduction of Sli gene into cultivars often results in many undesirable traits, such as the long length of stolons (greater than 1 meter), and high content of the toxic substance solanine, etc. Moreover, these undesirable traits are controlled by multiple genes, and it is difficult to eliminate them in practical breeding work. Therefore, the problem to be solved in the art is how to overcome the problem of self-incompatibility of diploid potatoes.
  • SUMMARY
  • In order to solve the technical problem of self-incompatibility of diploid potatoes, the present invention provides a method for breeding self-compatible potatoes, the method includes the following steps:
      • (1) selecting a self-compatible potato variety material and referring to it as PG6359, and cloning the S-RNase gene of PG6359 through the transcriptome sequencing method;
      • (2) obtaining two full-length sequences of the S-RNase gene from the cloned S-RNase gene in step (1) and referring to them as Ss11 and Ss12 respectively, wherein the gene sequence of Ss11 is represented by SEQ ID NO:1, and the gene sequence of Ss12 is represented by SEQ ID NO:2; and after carrying out an artificial self-pollination for the variety material PG6359, selecting the variety material having the genotype of Ss11 Ss11 from the offspring as the female parent and referring to it as material A, and selecting a self-incompatible material as the male parent and referring to it as material B, then obtaining a self-compatible F1 generation by hybridization; performing genotype detection for the F1 generation to confirm that the F1 generation contains the Ss11 gene, and detecting that the F1 individuals are self-compatible after self-pollination of the F1 generation.
  • The diploid potato resources are screened by artificial self-pollination at the flowering stage, and the self-compatible variety material PG6359 is finally obtained. Since the self-incompatibility is controlled by S-RNase gene at the S site, we firstly test whether the S-RNase gene of PG6359 is mutated. Among different potato variety materials, the polymorphism of S-RNase gene is very high, and the similarity of amino acids is 32.9%-94.5%. It is difficult to obtain the full-length sequence of S-RNase gene by homologous cloning method. Moreover, the S-RNase gene is specifically and highly expressed in style, so we successfully clone the S-RNase gene in PG6359 by transcriptome sequencing. The S-RNase gene at the S site refers to a nuclease specifically expressed in the stigma, and the nuclease can degrade ribosomal RNA in pollen tubes of the same S genotype, thereby inhibiting the extension of the pollen tubes in stigma and causing self-incompatibility.
  • Further, the transcriptome sequencing method in step (1) comprises: firstly extracting RNA by utilizing the style of PG6359, and performing the transcriptome sequencing by Illumina HiSeq X Ten platform to obtain 2 Gb of sequencing data; de novo assembling the transcriptome data by Trinity software, and calculating the expression of each transcript by RSEM software; then performing BLAST by utilizing the known S-RNase protein sequence in the potato reference genome, and selecting the sequence with an alignment reliability E value less than 1E-5 and an expression level FPKM value greater than 200 as a candidate sequence of the S-RNase gene; finally based on the alignment results, designing amplification primers to amplify the full length of the S-RNase gene of PG6359, and determining its expression by qPCR.
  • Further, in step (2), the F1 single plant is used as a female parent, and the self-incompatible material B is used as a male parent to perform crossing and obtain a self-compatible F1 generation.
  • A total of two S-RNase full-length sequences of PG6359 are obtained by using the method according to the present invention. Based on RSEM calculations, the expression level of Ss11 is 59.42, and the expression level of Ss12 is 5124.98; there is a differential of 100 times. With verification by qPCR, the expression level of Ss12 is 400 times as much as that of Ss11. Since S-RNase gene has nuclease activity, and it can degrade ribosomal RNA in pollen of the same S genotype, thereby inhibiting the extension of the pollen tube. The expression level of Ss11 found in the present invention is relatively low, and it may not be able to exert the effect of inhibiting the extension of the pollen tube. Furthermore, we carry out artificial self-pollination for PG6359, and obtain a large number of selfing offspring. Finally it is found that, the genotypes of the selfing offspring single plants are Ss11Ss12 and Ss11Ss11, but no Ss12Ss12 genotype is found. This indicates that due to normal expression of the Ss12 gene in the stigma, the pollen tube containing Ss12 is inhibited from extending, and the low-expressing Ss11 gene cannot reject the pollen containing the Ss11 genotype, thereby resulting in self-compatibility. The Ss11 gene of PG6359 can be introduced into other self-incompatible materials by hybridization, and the self-incompatible materials can be changed into self-compatible materials.
  • Further, the sequence of the upstream primer of the amplification primers is represented by SEQ ID NO:3, and the sequence of the downstream primer of the amplification primers is represented by SEQ ID NO:4.
  • Another aspect of the present invention provides a polynucleotide comprising or consisting of the following sequence:
  • (1) the nucleotide sequence represented by SEQ ID NO:1; or
  • (2) the complementary sequence, degenerate sequence, or homologous sequence of SEQ ID NO:1,
  • wherein the homologous sequence is a polynucleotide having about 60% or more, about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more identity to the nucleotide represented by SEQ ID NO:1; or
  • (3) a polynucleotide hybridizing to a nucleotide sequence of SEQ ID NO: 1 under stringent conditions and encoding a protein having S-RNase enzyme activity, or a complementary sequence thereof.
  • Another aspect of the present invention provides a potato plant, and a plant part, a tuber, a tuber part, a seed, or a plant cell thereof, wherein it comprises the above polynucleotide.
  • In a specific embodiment of the present invention, the potato plant, the plant part, tuber, tuber part, seed, or the plant cell thereof is a self-compatible material.
  • In a specific embodiment of the present invention, the expression level of the S-RNase gene in the potato plant, and the plant part, tuber, tuber part, seed, or the plant cell thereof is less than 100 by RSEM calculation; preferably, the expression level of the S-RNase gene is less than 60, and more preferably, the expression level of the S-RNase gene is close to zero.
  • In a specific embodiment of the present invention, a nucleotide sequence of the S-RNase allele represented by SEQ ID NO:1 (Ss11), or a complementary sequence, degenerate sequence, homologous sequence thereof is expressed.
  • In a specific embodiment of the present invention, another nucleotide sequence of the S-RNase allele represented by SEQ ID NO:1 (Ss11) or a complementary sequence, degenerate sequence, homologous sequence thereof; or represented by SEQ ID NO:2 (Ss12) or a complementary sequence, degenerate sequence, homologous sequence thereof is expressed.
  • In a specific embodiment of the present invention, the homologous sequence may be a polynucleotide obtained by hybridizing to a nucleotide sequence in SEQ ID NO: 1 or SEQ ID NO: 2 or a complementary sequence thereof under stringent conditions, or a fragment thereof;
  • The “stringent conditions” described herein may be any of a low stringent condition, a medium stringent condition, and a high stringent condition; and preferably a high stringent condition. Exemplarily, the “low stringent conditions” may be conditions of 30° C., 5×SSC, 5×Denhardts solution, 0.5% SDS, 52% formamide; the “medium stringent conditions” may be conditions of 40° C., 5×SSC, 5 x Denhardts solution, 0.5% SDS, 52% formamide; and the “high stringency conditions” may be conditions of 50° C., 5×SSC, 5 x Denhardts solution, 0.5% SDS, 52% formamide. Those skilled in the art will understand that the higher the temperature, the more homologous polynucleotides may be obtained. In addition, a person skilled in the art may select a comprehensive result produced by a plurality of factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration that affect the rigor of the hybridization, so as to achieve the corresponding rigor.
  • In addition, the hybridizable polynucleotide also may be such a homologous polynucleotide, when calculated by using homology search softwares such as FASTA and BLAST and the default parameters set by the system, it has about 60% or more, about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more , 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more , 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more , 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more identity to a polynucleotide encoding the phosphoglycerate kinase of the present invention.
  • The nucleotide sequence homology may be determined by using Karlin and Altschul's algorithm rules BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990; Proc. Natl. Acad. Sci. USA 90: 5873, 1993). Programs BLASTN and BLASTX based on the rules of the BLAST algorithm have been developed (Altschul S F, et al: J Mol Mol Biol 215: 403, 1990). When BLASTN is used to analyze the base sequence, for example, the parameters are: score =100, and wordlength=12; when BLAST and Gapped BLAST programs are used, the default parameter values may be set for using the system of each program.
  • Another aspect of the present invention provides a method for generating self-compatible potatoes, which comprises performing selfing by using a potato plant comprising the above polynucleotide, or the above potato plant, or a potato plant produced by a plant part, a tuber, a tuber part, a seed or a plant cell thereof as parent.
  • Another aspect of the present invention provides a method for generating self-compatible potatoes, which comprises performing hybridization by using a potato plant comprising the above polynucleotide, or a potato plant produced by a plant part, a tuber, a tuber part, a seed or a plant cell thereof as the first parent A, so that the offspring comprises the above polynucleotide.
  • In a specific embodiment of the present invention, hybridization is performed by using a potato plant comprising the above polynucleotide as the first parent A, and a self-incompatible material B as a second parent.
  • In a specific embodiment of the present invention, backcross is performed by using offspring comprising the above polynucleotide as the first parent, and a self-incompatible material B as a second parent, so as to obtain a self-compatible material with a genetic background of the material B.
  • For example, F1 is used as the female parent, and self-incompatible material B is used as the male parent for backcrossing to obtain the FB1 generation plants. With genotype detection, an individual F2 containing the Ss11 gene is obtained; further, F2 is used as the female parent, and self-incompatibility material B is used as the male parent to perform backcross; after multiple generations of backcrossing, then performing another generation of self-crossing, a new self-incompatible material with a genetic background of the material B may be obtained.
  • In a specific embodiment of the present invention, the S-RNase genotype of the female parent contains Ss11, and preferably, the S-RNase genotype of the female parent is Ss11Ss11.
  • Another aspect of the present invention provides a potato plant, or a plant part, tuber, tuber part, and seed thereof produced by the above breeding method.
  • Another aspect of the present invention provides a method for manufacturing a commercial plant product, which comprises: obtaining the above potato plant, and a plant part, a tuber, a tuber part, a seed or a plant cell thereof to manufacture the commercial plant products, wherein the plant products are selected from the group consisting of: fresh whole potatoes, French fries, potato chips, dehydrated potato materials, potato flakes, and potato granules.
  • Another aspect of the present invention provides a food made from a potato plant, a tuber or a tuber part which is produced by growing of the above potato plant, and a plant part, a tuber, a tuber part, or a plant cell or a seed thereof.
  • In a specific embodiment of the present invention, the food is a sliced potato tuber food.
  • In a specific embodiment of the present invention, the food is a group consisting of French fries, potato chips, and baked potatoes.
  • The invention adopting the above technical solutions has the following beneficial effects: it enables to overcome the self-incompatibility of diploid potatoes, and the present invention does not require the introduction of any wild potato gene fragments, thereby avoiding linkage drag, and providing a basis for the rapid creation of a diploid potato inbred line.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Explanation:
  • The highly polymorphic S-site described herein is the S-RNase protein, which has multiple morphologies, for example, Ss11 and Ss12 are two different morphologies with different amino acid sequences. The S-RNase described herein may represent both the S-RNase protein and the gene determining the expression of the S-RNase protein, and the specific reference may be inferred from the contextual understanding. Similarly, Ss11 and Ss12 may either respectively represent a variant form of the S-RNase protein, or respectively represent the gene determining the variant form, and the specific reference may be inferred from the contextual understanding.
  • The expression level of the S-RNase gene described herein refers to the content of mRNA transcribed by S-RNase gene.
  • EXAMPLE 1
  • A method for breeding self-compatible potatoes disclosed in the present invention includes the following steps:
      • (1) performing artificial self-pollination for more than 200 diploid potatoes at flowering stage, selecting a self-compatible potato variety material and referring to it as PG6359, and cloning the S-RNase gene of PG6359 through the transcriptome sequencing method;
      • (2) obtaining two full-length sequences of the S-RNase gene from the cloned S-RNase gene in step (1) and referring to them as Ss11 and Ss12 respectively, wherein the gene sequence of Ss11 is represented by SEQ ID NO:1, and the gene sequence of Ss12 is represented by SEQ ID NO:2; and after carrying out an artificial self-pollination for the variety material PG6359, selecting the variety material having the genotype of Ss11Ss11 from the offspring as the female parent and referring to it as material A, and selecting a self-incompatible material as the male parent and referring to it as material B, then obtaining a self-compatible F1 generation by hybridization; performing genotype detection for the F1 generation to confirm that the F1 generation contains the Ss11 gene, and determining that all the F1 individuals are self-compatible after self-pollination of the F1 generation.
  • Two full-length S-RNase sequences of PG6359 are obtained. Based on RSEM calculations, the expression level of Ss11 is 59.42, and the expression level of Ss12 is 5124.98; there is a differential of 100 times. With verification by qPCR, the expression level of Ss12 is 400 times as much as that of Ss11. Since S-RNase gene has nuclease activity, and it can degrade ribosomal RNA in pollen of the same S genotype, thereby inhibiting the extension of the pollen tube. The expression level of Ss11 found in the present invention is relatively low, and it may not be able to exert the effect of inhibiting the extension of the pollen tube. In order to verify this hypothesis, we carry out artificial self-pollination for PG6359, and obtain a large number of selfing offspring. After detection of the S genotypes for 201 offspring, it is found that the genotypes of 105 single plants are Ss11Ss12, and the genotypes of 96 single plants are Ss11Ss11, but no Ss12Ss12 genotype is found. This indicates that due to normal expression of the Ss12 gene in the stigma, the pollen tube containing Ss12 is inhibited from extending, and the low-expressing Ss11 gene cannot reject the pollen containing the Ss11 genotype, thereby resulting in self-compatibility. Since all the offspring of PG6359 contain the lower expression Ss11 gene, they should theoretically be self-compatible. After performing self-pollination for the offspring, it is found that except for several materials without blooming or having poor pollen vitality, the other materials are self-compatible.
  • The operation methods without specific illustration in this Example all belong to the prior art, so they are not explained too much here.
  • EXAMPLE 2
  • A method for breeding self-compatible potatoes disclosed in the present invention includes the following steps:
      • (1) selecting a self-compatible potato variety material and referring to it as PG6359, and cloning the S-RNase gene of PG6359 through the transcriptome sequencing method;
      • (2) obtaining two full-length sequences of the S-RNase gene from the cloned S-RNase gene in step (1) and referring to them as Ss11 and Ss12 respectively, wherein the gene sequence of Ss11 is represented by SEQ ID NO:1, and the gene sequence of Ss12 is represented by SEQ ID NO:2; and after carrying out an artificial self-pollination for the variety material PG6359, selecting the variety material having the genotype of Ss11Ss11 from the offspring as the female parent and referring to it as material A, and selecting a self-incompatible material as the male parent and referring to it as material B, then obtaining a self-compatible F1 generation by hybridization; performing genotype detection for the F1 generation to confirm that the F1 generation contains the Ss11 gene, and detecting that the F1 individuals are self-compatible after self-pollination of the F1 generation.
  • Particularly, the transcriptome sequencing method in step (1) comprises: firstly extracting RNA by utilizing the style of PG6359, and performing the transcriptome sequencing by Illumina HiSeq X Ten platform to obtain 2 Gb of sequencing data; de novo assembling the transcriptome data by Trinity software, and calculating the expression of each transcript by RSEM software; then performing BLAST by utilizing the known S-RNase protein sequence in the potato reference genome, and obtaining a candidate sequence of the S-RNase allele in the transcriptome data; finally based on the alignment results, designing amplification primers to amplify the full length of the S-RNase gene of PG6359, and determining its expression by qPCR.
  • Further in step (2), the F1 single plant is used as a female parent, and the self-incompatible material B is used as a male parent to perform backcrossing; then performing genotype detection for the resulting BC1 generation material to obtain the individual containing Ss11 gene as the female parent, and continuing to backcross with the self-incompatible material B; after multiple generations of backcrossing, then performing another generation of self-crossing, a new self-compatible material with a genetic background of the material B may be obtained.
  • Two full-length S-RNase sequences of PG6359 are obtained in the invention. Based on RSEM calculations, the expression level of Ss11 is 58.42, and the expression level of Ss12 is 5814.98; there is a differential of 100 times. With verification by qPCR, the expression level of Ss12 is 400 times as much as that of Ss11. It should be explained here that the expression data of Ss11 and Ss12 are obtained from multiple times of parallel experiments. With RSEM calculation and qPCR verification, it can be accurately determined that the expression level of Ss11 is indeed low, and the low-expressing Ss11 gene cannot reject the pollen containing the Ss11 genotype, thereby resulting in self-compatibility.
  • Further, the sequence of the upstream primer of the amplification primers is represented by SEQ ID NO:3, and the sequence of the downstream primer of the amplification primers is represented by SEQ ID NO:4. The selected amplification primers have strong specificity and can amplify the full-length sequence of S-RNase gene very well and completely.
  • The operation methods without specific illustration in this Example all belong to the prior art, so they are not explained too much here.
  • The above descriptions are merely preferred Examples of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent substitution, or improvement made within the spirit and principle of the present invention shall be encompassed in the protection scope of the present invention.

Claims (19)

What is claimed is:
1. A self-compatible diploid potato plant or part thereof, comprising a Ss11 S-RNase allele encoding a transcript 95% or more identical to SEQ ID NO:1, and lacking a Ss12 S-RNase allele encoding a transcript 95% or more identical to SEQ ID NO:2.
2. The self-compatible diploid potato plant or part thereof of claim 1, wherein the plant is an inbred.
3. The self-compatible diploid potato plant or part thereof of claim 1, wherein the plant is homozygous for the Ss11 S-RNase allele.
4. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss11 S-RNase allele encodes a transcript 98% or more identical to SEQ ID NO:1.
5. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss11 S-RNase allele encodes a transcript 99% or more identical to SEQ ID NO:1.
6. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss11 S-RNase allele encodes a transcript 100% identical to SEQ ID NO:1.
7. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss11 S-RNase allele is from potato variety PG6359.
8. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss12 S-RNase allele encodes a transcript 98% or more identical to SEQ ID NO:2.
9. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss12 S-RNase allele encodes a transcript 99% or more identical to SEQ ID NO:2.
10. The self-compatible diploid potato plant or part thereof of claim 1, wherein the Ss12 S-RNase allele encodes a transcript 100% identical to SEQ ID NO:2.
11. The self-compatible diploid potato plant or part thereof of claim 6, wherein the Ss12 S-RNase allele encodes a transcript 100% identical to SEQ ID NO:2.
12. The self-compatible diploid potato plant or part thereof of claim 1, wherein the part thereof is a tuber or seed.
13. The self-compatible diploid potato plant or part thereof of claim 11, wherein the part thereof is a tuber or seed.
14. A food product comprising materials from tuber of the self-compatible diploid potato plant of claim 1.
15. The food product of claim 14, wherein the food product is selected from the group consisting of fresh whole potatoes, French fries, potato chips, dehydrated potato material, potato flakes and potato granules.
16. A method for manufacturing a commercial plant product, which comprises: obtaining a tuber, a tuber part of the self-compatible diploid potato plant or part thereof of claim 1, manufacturing the commercial plant product, wherein the plant product is selected from the group consisting of fresh whole potatoes, French fries, potato chips, dehydrated potato materials, potato flakes, and potato granules.
17. A complementary DNA molecule comprising a sequence 95% or more identical to SEQ ID NO:1.
18. The complementary DNA molecule of claim 17, comprising the sequence of SEQ ID NO:1.
19. A method of overcoming self-incompatibility of diploid potato, comprising: (i) crossing a first self-compatible diploid potato plant having a Ss11Ss11 genotype at the S-RNase locus with a second self-incompatible diploid potato plant; (ii) introgressing the Ss11Ss11 genotype to the second diploid potato plant to convert the second diploid potato plant from self-incompatible to self-compatible.
US18/348,953 2018-06-14 2023-07-07 Method for breeding self-compatible potatoes Pending US20230340622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/348,953 US20230340622A1 (en) 2018-06-14 2023-07-07 Method for breeding self-compatible potatoes

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201810611716.3A CN108849471A (en) 2018-06-14 2018-06-14 One kind making the self-compatible method of potato
CN201810611716.3 2018-06-14
CN201910069945.1A CN109548646B (en) 2018-06-14 2019-01-24 Method for making potato self-compatible
CN201910069945.1 2019-01-24
PCT/CN2019/082197 WO2019237808A1 (en) 2018-06-14 2019-04-11 Self-compatibility method for potatoes
US16/922,829 US11746390B2 (en) 2018-06-14 2020-07-07 Method for breeding self-compatible potatoes
US18/348,953 US20230340622A1 (en) 2018-06-14 2023-07-07 Method for breeding self-compatible potatoes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/922,829 Continuation US11746390B2 (en) 2018-06-14 2020-07-07 Method for breeding self-compatible potatoes

Publications (1)

Publication Number Publication Date
US20230340622A1 true US20230340622A1 (en) 2023-10-26

Family

ID=64338199

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/922,829 Active 2039-09-05 US11746390B2 (en) 2018-06-14 2020-07-07 Method for breeding self-compatible potatoes
US18/348,953 Pending US20230340622A1 (en) 2018-06-14 2023-07-07 Method for breeding self-compatible potatoes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/922,829 Active 2039-09-05 US11746390B2 (en) 2018-06-14 2020-07-07 Method for breeding self-compatible potatoes

Country Status (4)

Country Link
US (2) US11746390B2 (en)
EP (1) EP3718396A4 (en)
CN (2) CN108849471A (en)
WO (1) WO2019237808A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750061B (en) * 2018-04-08 2022-06-03 中国农业科学院农业基因组研究所 Method for overcoming self-incompatibility of diploid potatoes
CN108849471A (en) 2018-06-14 2018-11-23 中国农业科学院农业基因组研究所 One kind making the self-compatible method of potato
WO2020226499A1 (en) * 2019-05-07 2020-11-12 Agventure B.V. Self-compatibility in cultivated potato
CN110938120B (en) * 2019-12-04 2021-12-03 中国农业科学院农业基因组研究所 StSCI protein for changing self-incompatibility of diploid potato material
CN110894539B (en) * 2019-12-04 2022-01-25 云南师范大学 Method for identifying self-compatibility of diploid potatoes
CN116803248A (en) * 2022-03-16 2023-09-26 中国农业科学院深圳农业基因组研究所 Self-incompatible doubled haploid potato line, breeding method thereof, hybrid potato and seed production method thereof
CN116463455B (en) * 2023-06-15 2023-08-29 云南师范大学 Method for analyzing and identifying potato S-RNase genotype and related primers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA032461B9 (en) * 2009-10-26 2019-09-30 Агвентуре Б.В. Hybrid seed potato breeding
CN105052724A (en) * 2015-07-24 2015-11-18 中国农业科学院蔬菜花卉研究所 Method for improving self-pollination seed setting percentage of diploid potatoes and application of method
CN108849471A (en) * 2018-06-14 2018-11-23 中国农业科学院农业基因组研究所 One kind making the self-compatible method of potato

Also Published As

Publication number Publication date
EP3718396A4 (en) 2021-06-02
CN109548646A (en) 2019-04-02
CN109548646B (en) 2022-08-12
US20200385819A1 (en) 2020-12-10
CN108849471A (en) 2018-11-23
EP3718396A1 (en) 2020-10-07
WO2019237808A1 (en) 2019-12-19
US11746390B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US11746390B2 (en) Method for breeding self-compatible potatoes
Shang et al. A super pan-genomic landscape of rice
Tang et al. Genome evolution and diversity of wild and cultivated potatoes
Kang et al. Genomic insights into the origin, domestication and diversification of Brassica juncea
Deng et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding
Salojärvi et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Guo et al. Genomic analyses of diverse wild and cultivated accessions provide insights into the evolutionary history of jujube
Bao et al. Genome architecture and tetrasomic inheritance of autotetraploid potato
Kulkarni et al. Molecular mapping of QTLs for yield related traits in recombinant inbred line (RIL) population derived from the popular rice hybrid KRH-2 and their validation through SNP genotyping
Tan et al. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach
Zhang et al. Candidate genes for first flower node identified in pepper using combined SLAF-seq and BSA
US10383295B2 (en) Methods of creating drought tolerant corn plants using markers linked to cold shock domain-containing proteins and compositions thereof
US11505803B2 (en) Genetic markers associated with drought tolerance in maize
Chen et al. Comparative population genomics of bread wheat (Triticum aestivum) reveals its cultivation and breeding history in China
BR112017026015B1 (en) METHODS FOR SELECTING A CORN PLANT WITH RESISTANCE TO STALK ROT CAUSED BY ANTHRACNOSIS AND METHOD FOR INTROGRESSING A QTL ALLELE ASSOCIATED WITH RESISTANCE TO STALK ROT CAUSED BY ANTHRACNOSIS INTO A CORN PLANT
Chikh-Rouhou et al. Melon (Cucumis melo L.): Genomics and breeding
Singh et al. Broadening the horizon of crop research: A decade of advancements in plant molecular genetics to divulge phenotype governing genes
Li et al. A review of genetic mechanisms of early maturity in cotton (Gossypium hirsutum L.)
US10212898B2 (en) Plants with an intense fruit phenotype
US10590491B2 (en) Molecular markers associated with Mal de Rio Cuarto Virus in maize
WO2019197408A1 (en) Genes associated with resistance to wheat yellow rust
Long et al. Assembly of chromosome-scale and allele-aware autotetraploid genome of the Chinese alfalfa cultivar Zhongmu-4 and identification of SNP loci associated with 27 agronomic traits
Okada DNA markers and the molecular mechanism of self-(in) compatibility in Japanese pear (Pyrus pyrifolia Nakai)
Cao et al. Discovery of a key gene associated with fruit maturity date and analysis of its regulatory pathway in peach
Zhang et al. Haplotype-resolve genome assembly and resequencing provide insights into the origin and domestication of modern rose

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION