US20230310291A1 - Photoprotective composition comprising a glycine betaine derivative - Google Patents

Photoprotective composition comprising a glycine betaine derivative Download PDF

Info

Publication number
US20230310291A1
US20230310291A1 US18/007,079 US202118007079A US2023310291A1 US 20230310291 A1 US20230310291 A1 US 20230310291A1 US 202118007079 A US202118007079 A US 202118007079A US 2023310291 A1 US2023310291 A1 US 2023310291A1
Authority
US
United States
Prior art keywords
photoprotective composition
skin
glycine betaine
photoprotective
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/007,079
Inventor
Francis Galle
Freddy PESSEL
Xavier Roussel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surfactgreen SAS
Original Assignee
Surfactgreen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surfactgreen SAS filed Critical Surfactgreen SAS
Assigned to SURFACTGREEN reassignment SURFACTGREEN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GALLE, Francis, PESSEL, Freddy, ROUSSEL, XAVIER
Publication of US20230310291A1 publication Critical patent/US20230310291A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the present invention relates to a photoprotective composition
  • a photoprotective composition comprising, in a physiologically acceptable medium, at least one photoprotective compound and a surfactant comprising at least one glycine betaine ester or amide derivative. It also relates to the cosmetic use of this photoprotective composition for protecting the skin against certain effects of UVA rays, and also to this photoprotective composition for its use in the protection of the skin against erythema due to UVB rays. Finally, it relates to the use of the abovementioned surfactant for increasing the resistance to sand of a photoprotective composition.
  • UV rays are known to be involved in the production of free radicals which themselves lead to various detrimental changes of the skin, including skin aging phenomena, skin dryness, and also the formation of pigment spots and unevennesses of the complexion.
  • the photoprotective compositions used for protecting the skin against the effects of UV rays are generally provided in the form of an emulsion, of oil-in-water or water-in-oil type, which contains, at various concentrations, one or more lipophilic organic screening agents and/or inorganic nanopigments of metal oxides, capable of selectively absorbing harmful UV radiation, these screening agents and their amounts being selected according to the sun protection factor sought.
  • the hydrophilic screening agents are present in the aqueous phase and the lipophilic screening agents (often in the majority) are present in the fatty phase.
  • emulsions generally include a large amount of oil necessary for the dissolution of the lipophilic UV screening agents and thus often exhibit a greasy and sticky feel liable to dissuade the consumer from their use.
  • oil-in-water emulsions are generally more appreciated by the consumer, in particular because of their pleasant feel and their presentation in non-fatty milk or cream form.
  • they also more easily lose their effectiveness against UV rays as soon as they come into contact with water, when swimming in the sea or in a swimming pool, under the shower or when practicing water sports, insofar as hydrophilic screening agents tend to dissolve in water. Consequently, the antisun compositions which contain them, alone or combined with lipophilic screening agents, no longer provide the initial protection sought.
  • antisun compositions often exhibit poor resistance to sand, which affects their effectiveness at the seaside since the user is discouraged from renewing the applications on sandy skin. The grains of sand stuck to the skin also cause irritation during rubbing actions.
  • biobased cationic agents the use has already been suggested of an esterquat, distearoylethyldimonium chloride or DSEDC (Varisoft® from Evonik), in compositions for protection of the skin, in particular in antisun compositions.
  • this compound can only be formulated in an acid medium and more specifically at a pH of less than 5 and generally of less than 4.5.
  • the pH of healthy skin which is determined by the constitution of the hydrolipidic film present at its surface, is on average 5.5. It would thus be desirable to have available compounds capable of being formulated in a wider pH range and in particular up to a pH of 5.5.
  • the abovementioned cationic surfactants are not easily compatible with anionic additives, some of which are commonly used as dispersants for UV screening agents, which further increases their formulation constraints.
  • These surfactants are furthermore biodegradable and exhibit a very low ecotoxicity, which is even lower than that of DSEDC.
  • long-chain glycine betaine ester or amide salts as is or in the form of surfactant compositions devoid of optionally cationized alkylpolyglycosides.
  • a subject matter of the invention is a photoprotective composition
  • a photoprotective composition comprising, in a physiologically acceptable medium, at least one photoprotective compound and a surfactant comprising at least one glycine betaine derivative of formula (1): [(CH 3 ) 3 N + -CH 2 -COZ-R] n X n- , where Z denotes an oxygen atom or an —NH group, R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2, it being understood that said photoprotective composition does not contain optionally cationized alkylpolyglycoside.
  • Another subject matter of the invention is the cosmetic use of the abovementioned photoprotective composition for protecting the skin against the effects of UVA rays chosen from: signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin.
  • UVA rays chosen from: signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin.
  • a further subject matter of the invention is a cosmetic method for protecting the skin against the effects of UVA rays chosen from: signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin, comprising the topical application, to the skin, of the abovementioned photoprotective composition.
  • Another subject matter of this invention relates to a photoprotective composition as defined above, for its use in the protection of the skin against erythema due to UVB rays.
  • Yet another subject matter of the present invention relates to the use of a surfactant as defined above for increasing the resistance to sand of a photoprotective composition.
  • the present invention relates to a photoprotective composition including at least one glycine betaine derivative of given formula.
  • photoprotective composition is understood to mean a composition including, in a physiologically acceptable medium, at least one photoprotective compound in an amount sufficient to block or absorb UV rays, preferably at least one organic or inorganic UVA and/or UVB screening agent. It generally confers, on the skin, protection against UV rays, determined by its Sun Protection Factor, of at least 15, indeed even of at least 30, for example a Sun Protection Factor of 15, 20, 30 or 50. It is a leave-on composition.
  • the term “leave-on” is understood to mean that the composition is suitable for being and intended to be applied to the skin and left in place for at least one hour, before being removed by rinsing with water and/or using a cleaning composition.
  • This photoprotective composition includes a surfactant based on at least one glycine betaine derivative, which is a glycine betaine ester or amide salt.
  • Glycine betaine ester salts can be obtained following a process comprising the successive stages consisting in:
  • the first stage of this process consists in esterifying glycine betaine, or trimethylglycine.
  • the glycine betaine can be of vegetable or synthetic origin. It is necessary to protonate it beforehand using an organic or inorganic acid, insofar as it exists in the zwitterionic form (presence of a carboxylate function).
  • the acid can in particular be chosen from inorganic acids, such as hydrochloric acid, sulfuric acid, perhydric acids, such as perchloric acid, and their mixtures.
  • organic acids such as alkyl sulfuric acids, for example decyl or lauryl sulfuric acid; arylsulfonic acids, such as benzenesulfonic acid or paratoluenesulfonic acid; alkylsulfonic acids, such as triflic acid, methanesulfonic acid, ethanesulfonic acid, decylsulfonic acid, laurylsulfonic acid or camphorsulfonic acid; sulfosuccinic acid; and their mixtures.
  • Lewis acids can also be used.
  • it is an alkylsulfonic acid and in particular methanesulfonic acid, insofar as it is easily biodegradable.
  • fatty alcohol is understood to mean a saturated or unsaturated, linear or branched (preferably linear), alcohol comprising from 8 to 24 carbon atoms.
  • fatty alcohols can be chosen from the group consisting of: octanol (C8:0), decanol (C10:0), undecanol (C11:0), lauryl alcohol (C12:0), myristyl alcohol (C14:0), cetyl alcohol (C16:0), palmitoleyl alcohol (C16:1), stearyl alcohol (C18:0), oleyl alcohol (C18:1), linoleyl alcohol (C18:2), linolenyl alcohol (C18:3), arachidyl alcohol (C20:0), arachidonyl alcohol (C20:4), behenyl alcohol (C22:0), 2-hexyldecanol, 2-octyldodecanol, 2-decyltetradecanol and their mixtures.
  • octanol C8:0
  • decanol C10:0
  • undecanol C11:0
  • lauryl alcohol
  • Mixtures of fatty alcohols which can be used can be produced from one or more vegetable oils and in particular from soybean, olive, sunflower, corn, palm, copra, cottonseed, linseed, wheat, safflower or rapeseed oil, for example.
  • one or more alcohols including from 16 to 22 carbon atoms and more preferentially a mixture of such fatty alcohols.
  • the esterification reaction is generally carried out in the absence of solvent.
  • the water produced during the reaction furthermore contributes to the dissolution of the glycine betaine in the reaction mixture.
  • this reaction it is possible, for example, to use from 0.8 to 6.0 equivalents, preferably from 0.8 to 2 equivalents, for example from 0.9 to 1.0 equivalent, or in an alternative form from 1.1 to 1.8 equivalents, preferentially in this case from 1.2 to 1.6 equivalents and better still from 1.3 to 1.5 equivalents of fatty alcohol or, in a second alternative form, from 4.0 to 6.0 equivalents, preferentially in this case from 4.5 to 5.5 equivalents and better still from 4.8 to 5.2 equivalents of fatty alcohol.
  • the reaction can be carried out under atmospheric pressure or preferably under reduced pressure, for example at a pressure of 10 to 600 mbar. The pressure will generally become lower as the chain length of the fatty alcohol involved increases.
  • the reaction medium is subsequently cooled to a temperature of 20 to 90° C.
  • composition includes at least one glycine betaine ester salt of formula [(CH 3 ) 3 N + -CH 2 -COOR] n X n- , where: X is an organic or inorganic anion, R is an alkyl radical corresponding to the fatty alcohol R-OH employed in the esterification reaction, and n has the value 1 or 2.
  • the anion X results from the acid employed in the first stage of the process and can thus in particular be a chloride, a sulfate, a perchlorate, an alkyl sulfate ion, in particular a decyl sulfate or lauryl sulfate ion, an arylsulfonate ion, in particular a benzenesulfonate or para-toluenesulfonate ion, an alkylsulfonate ion, in particular a triflate, methanesulfonate, ethanesulfonate, decylsulfonate, laurylsulfonate or camphorsulfonate ion, or a sulfosuccinate ion.
  • X is chosen from the alkylsulfonates and the arylsulfonates, in particular from the methanesulfonate, ethanesulfonate, triflate, para-toluenesulfonate and camphorsulfonate ions. It is advantageously the methanesulfonate ion.
  • the radical R can for its part be chosen from the octyl (C8:0), decyl (C10:0), undecyl (C11:0), lauryl (C12:0), myristyl (C14:0), cetyl (C16:0), palmitoleyl (C16:1), stearyl (C18:0), oleyl (C18:1), linoleyl (C18:2), linolenyl (C18:3), arachidyl (C20:0), arachidonyl (C20:4), behenyl (C22:0), 2-hexyldecyl, 2-octyldodecyl and 2-decyltetradecyl groups.
  • the surfactant composition obtained will comprise several glycine betaine ester salts.
  • a glycine betaine ester salt should thus be understood, in the context of this description and unless otherwise indicated, as referring to one or more of these salts.
  • This surfactant composition can be used as is in the present invention.
  • it generally includes from 15% to 85% by weight of glycine betaine ester salt.
  • surfactant is understood to mean both a glycine betaine ester salt as described here and the surfactant composition containing it, obtained as described above.
  • the surfactant composition includes:
  • the surfactant composition includes:
  • the surfactant composition does not include a constituent other than the components (a) to (e) above.
  • the above process can include an additional stage consisting in isolating the glycine betaine ester salt present in this composition, which can be used as is in the present invention.
  • the surfactant composition used according to the invention will comprise at least 90%, preferably at least 95%, indeed even at least 99%, by weight of glycine betaine derivative.
  • glycine betaine derivatives can be prepared following a process comprising the successive stages consisting in:
  • the first stage of this process consists of an esterification reaction of the glycine betaine, which can be carried out in a similar way to the production of the glycine betaine esters, except that use is made of one or more linear and/or branched C 4 -C 8 alcohol(s) in the presence of the acid, which can be chosen from those described above.
  • alcohols comprise butanol, pentanol, 3-methylbutan-1-ol (or isoamyl alcohol), fusel alcohol (mixture of pentanol, 2-methylbutan-1-ol and 3-methylbutan-1-ol), hexanol, heptanol, octanol and their mixtures.
  • butanol is understood to mean equally well in this description n-butanol, isobutanol and sec-butanol. Butanol, and more particularly n-butanol, is preferred for use in this invention.
  • This reaction is generally carried out in the absence of any solvent, the alcohol used constituting both the reactant and the medium. The water produced during the reaction also contributes to the dissolution of the glycine betaine in the reaction mixture.
  • Use may generally be made of from 1.1 to 20 equivalents, for example from 2 to 4 equivalents, of linear or branched C 4 -C 8 alcohol and of from 1.0 to 1.5 equivalents of sulfonic acid, for example from 1.0 to 1.2 equivalents and preferentially 1.1 equivalents of sulfonic acid, per 1 equivalent of glycine betaine.
  • the esterification can be carried out at a temperature of 100 to 180° C., preferentially of 100 to 160° C., more preferentially of 120 to 150° C. or of 130 to 160° C., at atmospheric pressure or under reduced pressure.
  • the product of the esterification reaction may or may not be treated so as to separate the salt of the glycine betaine ester formed from the reaction medium.
  • One or more C 8 -C 24 alkylamine(s) is/are subsequently added, either to the reaction medium or to the isolated ester.
  • examples of such amines are: octylamine, decylamine, laurylamine, tetradecylamine, hexadecylamine, octadecylamine, docosanylamine, eicosanylamine and their mixtures. It is preferred according to the invention to use one or more amines including from 16 to 22 carbon atoms and more preferentially a mixture of such amines.
  • the alkylamine is advantageously used in the molten form.
  • the amount of alkylamine(s) added can, for example, represent from 0.9 to 1.5 equivalents and preferably from 1.0 to 1.2 equivalents, per 1 equivalent of glycine betaine initially employed.
  • This aminolysis reaction is typically carried out at a temperature of 50 to 180° C. and preferably of 120 to 140° C., under reduced pressure, for example under a pressure of 1 to 30 mbar.
  • the alcohol is removed by distillation under reduced pressure. The aminolysis reaction and the distillation take place over a period of time of 1 to 7 hours, in particular of 3 to 5 hours.
  • the surfactant composition thus obtained is then recovered.
  • surfactant is understood to mean both a glycine betaine amide salt as described here and the surfactant composition containing it, obtained as described above.
  • This surfactant composition can be used as is in the present invention.
  • it generally includes from 60% to 98% by weight, for example from 70% to 80% by weight, of glycine betaine amide salt.
  • the constituent (b) can represent from 0% to 25% by weight, for example from 15% to 20% by weight, the constituent (c) from 0% to 15% by weight, for example from 5% to 10% by weight, and the constituent (d) from 0% to 5% by weight, with respect to the total weight of the surfactant composition.
  • the latter does not include a constituent other than the components (a) to (d) above.
  • the above process can include an additional stage consisting in isolating the glycine betaine amide salt present in this composition, which can be used as is in the present invention.
  • the surfactant composition will comprise at least 90%, preferably at least 95%, indeed even at least 99%, by weight of glycine betaine derivative.
  • the surfactant composition including a glycine betaine ester or amide salt as defined above, and/or the photoprotective composition comprising it, not to contain an optionally cationized alkylpolyglycoside.
  • glycine betaine ester salts and in particular the salts of esters including from 14 to 22 carbon atoms, preferably from 16 to 22 carbon atoms and more preferentially from 18 to 22 carbon atoms are preferred.
  • a photoprotective composition including a surfactant as described above, preferably in an amount of 1% to 15% by weight, more preferably of 2% to 8% by weight, with respect to the weight of the photoprotective composition, when it is a surfactant composition as described above.
  • the photoprotective composition generally includes from 0.5% to 8% by weight and preferentially from 1% to 5% by weight of glycine betaine derivative according to the invention.
  • the photoprotective composition includes a physiologically acceptable medium, that is to say a medium compatible with the skin, in particular a cosmetically acceptable medium, that is to say a medium which does not generate tingling or redness incompatible with a cosmetic use.
  • This medium preferably includes an aqueous phase, including water and/or glycerol, and a fatty phase to form an emulsion.
  • This emulsion can be of the oil-in-water (O/W), oil-in-glycerol, water-in-oil (W/O), water-in-glycerol or multiple (for example W/O/W) type. This emulsion is preferentially of the oil-in-water type.
  • the aqueous phase can additionally include at least one aqueous gelling agent.
  • aqueous gelling agent denotes a polymeric compound capable of immobilizing water molecules by becoming hydrated and of thus increasing the viscosity of the aqueous phase.
  • Such a gelling agent can be chosen from: polysaccharides, such as cellulose and its derivatives, modified starches, carrageenan, agar agar, xanthan gum and vegetable gums, such as guar, tara or locust bean gum; synthetic polymers and in particular optionally crosslinked sodium acrylate homopolymers, and also acrylic copolymers, in particular copolymers of sodium acrylate and/or of alkyl (meth)acrylate and/or of hydroxyalkyl (meth)acrylate and/or of (polyethoxy)alkyl (meth)acrylate, with optionally at least one other monomer, advantageously 2-acrylamido-2-methylpropanesulfonic acid (AMPS), these copolymers optionally being crosslinked; and their mixtures.
  • polysaccharides such as cellulose and its derivatives, modified starches, carrageenan, agar agar, xanthan gum and vegetable gums, such as guar, tara or locust bean
  • the fatty phase can comprise one or more volatile and/or nonvolatile oils.
  • volatile oils are branched alkanes, such as isododecane, and linear C 10 -C 13 alkanes. Mention may in particular be made, as nonvolatile oils, of:
  • esters of acids and of monoalcohols of monoesters, such as the coco-caprate/caprylate mixture, ethyl macadamiate, the ethyl ester of shea butter, isostearyl isostearate, isononyl isononanoate, ethylhexyl isononanoate, hexyl neopentanoate, ethylhexyl neopentanoate, isostearyl neopentanoate, isodecyl neopentanoate, isopropyl myristate, octyldodecyl myristate, isopropyl palmitate, ethylhexyl palmitate, hexyl laurate, isoamyl laurate, cetostearyl nonanoate, propylheptyl caprylate and their mixtures.
  • monoesters such as the coco-caprate
  • esters which can be used are diesters of acids and of monoalcohols, such as diisopropyl adipate, diethylhexyl adipate, diisopropyl sebacate and diisoamyl sebacate.
  • Examples of vegetable oils are in particular wheat germ, sunflower, linseed, argan, hibiscus, coriander, grape seed, corn, apricot, castor, shea, avocado, olive, soybean, sweet almond, palm, rapeseed, cottonseed, hazelnut, macadamia, jojoba, alfalfa, poppy, red kuri squash, sesame, pumpkin, blackcurrant, evening primrose, lavender, borage, millet, barley, quinoa, rye, safflower, candlenut, passionflower, muscat rose, echium, camelina or camellia oil.
  • the fatty phase can additionally comprise at least one fatty phase structuring agent.
  • fatty phase structuring agent is understood to mean a compound capable of thickening the oils contained in the composition, chosen in particular from waxes, fatty phase gelling agents and pasty fatty substances, and also their mixtures.
  • the photoprotective composition includes at least 20% by weight, preferably at least 30% by weight, more preferentially at least 40% by weight, indeed even at least 50% by weight, of oil(s).
  • the photoprotective composition can even comprise at least 60%, for example at least 70%, indeed even at least 80%, by weight of oil(s). This is because it has been observed that the glycine betaine derivatives according to the invention make it possible to confer a nongreasy, indeed even powdery, feel on these compositions, even though they include a high content of oil(s).
  • the photoprotective composition includes at least one organic or inorganic UV screening agent, or a mixture of them, preferably at least one insoluble UV screening agent.
  • UV screening agent is understood to mean any system capable of screening out UVA and/or UVB radiation.
  • insoluble UV screening agent is understood to mean, within the meaning of the present invention, UV screening agents which are insoluble in the cosmetic media generally used in antisun formulations and more particularly the solubility of which in water at 25° C. is less than 0.1% by weight and the solubility of which in liquid paraffin at 25° C. is less than 1% by weight.
  • UV screening agents can be UVB screening agents (absorption in the range from 290 to 320 nm), UVA screening agents (absorption in the range from 320 to 380 nm) or broad-spectrum screening agents (absorption in the range from 290 to 380 nm).
  • UVB screening agents abbreviations UVB screening agents
  • UVA screening agents abbreviations UVA screening agents
  • broad-spectrum screening agents abbreviations UV screening agents
  • the UV screening agents are generally used in the photoprotective composition according to the invention in an amount of 0.05% to 30% by weight, preferably of 5% to 25% by weight, more preferentially of 10% to 20% by weight, with respect to the total weight of the photoprotective composition.
  • this photoprotective composition additionally includes at least one antiaging active principle, in particular an active principle suitable for preventing and/or treating wrinkles, sagging of the skin and/or the formation of pigment spots, which can in particular be chosen from agents for combating free radicals or antioxidants, agents which stimulate the differentiation and/or the proliferation of keratinocytes and/or fibroblasts; agents which stimulate the synthesis of glycosaminoglycans and/or collagen and/or dermoepidermal anchoring fibrils and/or elastic fibers; agents which prevent the degradation of collagen and/or glycosaminoglycans and/or dermoepidermal anchoring fibrils and/or elastic fibers; antiglycation agents; depigmenting and/or melanogenesis-inhibiting agents; and their mixtures.
  • an antiaging active principle in particular an active principle suitable for preventing and/or treating wrinkles, sagging of the skin and/or the formation of pigment spots
  • agents for combating free radicals or antioxidants agents which stimulate the differentiation and
  • antiaging active principles are in particular: ascorbic acid, its salts, its ethers and its esters, in particular ascorbyl glucoside; adenosine; vegetable proteins and their hydrolysates; polypeptides and pseudodipeptides; silanes, such as methylsilanol mannuronate; ⁇ - and ⁇ -hydroxy acids; and their mixtures.
  • the photoprotective composition comprises at least one antioxidizing active principle, which makes it possible to limit the oxidative damage caused by UV rays, in particular vitamins, such as ascorbic acid and its derivatives and tocopherol and its derivatives, ubiquinone or coenzyme Q10, polyphenols, such as resveratrol and its derivatives, and also plant extracts containing them, in particular pomegranate, grape or green tea extracts; carotenoids, such as lycopene, and also plant extracts containing them; and their mixtures.
  • vitamins such as ascorbic acid and its derivatives and tocopherol and its derivatives, ubiquinone or coenzyme Q10
  • polyphenols such as resveratrol and its derivatives
  • plant extracts containing them in particular pomegranate, grape or green tea extracts
  • carotenoids such as lycopene, and also plant extracts containing them; and their mixtures.
  • the photoprotective composition according to the invention can also include at least one self-tanning agent, such as DHA and/or erythrulose.
  • at least one self-tanning agent such as DHA and/or erythrulose.
  • the photoprotective composition according to the invention can comprise at least one moisturizing or humectant agent, chosen for example from polyols, such as propylene glycol, glycerol, pentylene glycol, xylitol or sorbitol; urea; hyaluronic acid and its salts; amino acids; and their mixtures.
  • humectant agent chosen for example from polyols, such as propylene glycol, glycerol, pentylene glycol, xylitol or sorbitol; urea; hyaluronic acid and its salts; amino acids; and their mixtures.
  • the photoprotective composition according to the invention can additionally contain various constituents which can be dispersed in the fatty phase and/or in the aqueous phase which it includes, provided that these are compatible with topical application to the skin.
  • It can thus include at least one oil-in-water or water-in-oil emulsifier which is generally nonionic, such as polyoxyethylene esters, optionally polyethoxylated sorbitan esters, optionally polyethoxylated esters of fatty acids and of glycerol, sucrose esters, ethers of fatty alcohols and of sugar, such as alkyl glucosides, and their mixtures.
  • the emulsifiers can represent from 2% to 10% and preferably from 4% to 6% of the total weight of the composition.
  • the photoprotective composition does not include an emulsifier other than the surfactant composition described above.
  • the surfactant composition containing them in addition naturally includes a more or less large amount of fatty alcohol which confers noteworthy emulsifying properties on it.
  • the photoprotective composition according to the invention can additionally comprise additives chosen in particular from: pulverulent fillers; fragrances; sequestering agents; pH adjusters; preservatives; pigments; dyes; and their mixtures.
  • pH adjusters are acetic acid/sodium acetate and succinic acid/sodium succinate buffer solutions, sodium gluconate and sodium lactate.
  • the pH of the photoprotective composition can in particular be between 2 and 6, preferably between 4 and 5.5 and better still between 5 and 5.5.
  • the photoprotective composition can have a liquid or semiliquid consistency or a solid consistency. It can be provided in any form suitable for topical application to the skin and in particular in the milk, cream, lotion or gel form.
  • the photoprotective composition preferably comprises at least one propellant.
  • the photoprotective composition according to the invention is suitable for being and intended to be applied to the skin.
  • skin is understood to mean all of the skin of the body with the exclusion of the scalp and in particular the face, neck, neckline, hands, arms, legs and/or stomach.
  • It can be applied to the skin one or more times per day, for the purpose of protecting it against the effects of UV rays, in particular against erythema due to UVB rays, and/or to prevent and/or slow down the detrimental change in the appearance of the skin caused by its exposure to UVA rays, in particular to prevent and/or slow down signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin.
  • the surfactant according to the invention makes it possible to increase the resistance to sand of the photoprotective composition.
  • the capacity of resistance to sand of the photoprotective compositions according to the invention can be evaluated by applying 0.3 g of composition to the forearm of a panelist and then, after one minute, by spraying fine sand (30 ml) over the treated surface.
  • the modified application protocol described in the examples below can be used. The panelist subsequently claps his/her hands three times to remove the sand. The sand remaining on the forearm is then recovered by rinsing, dried and weighed.
  • the surfactant according to the invention can also increase the water resistance of the photoprotective composition. This is because the cationic charge of this surfactant exhibits a certain affinity for the keratin of the skin (overall negatively charged), thus making it possible to form a hydrophobic film on the skin (by virtue of the lipophilic chains of the surfactant) which creates a barrier to water.
  • the water resistance of the photoprotective compositions according to the invention can be measured according to two methods.
  • the first method the water resistance is evaluated in vitro by measuring the contact angle of a drop of water on a surface coated with the photoprotective composition.
  • the second method consists in carrying out the in vivo test recommended by COLIPA in “Guidelines for Evaluating Sun Product Water Resistance (December 2005)”, that is to say in measuring the ratio of the SPF after action of the water compared to the SPF before action of the water.
  • the SPF reflects the increase in the duration of solar irradiation made possible by using the composition.
  • the SPF is determined in vivo on human skin in accordance with the instructions of COLIPA.
  • the MED is the lowest dose of UV irradiation which, after 16-24 h, generates a slight but clear redness of the skin (sunburn, erythema).
  • the irradiation sources are generally xenon lamps.
  • the surfactant composition used according to the invention can additionally protect the skin against the cutaneous effects of external attacks.
  • external attacks is understood to mean in particular compositions for cleaning the skin, more particularly those containing at least one anionic surfactant, and/or environmental factors, such as atmospheric pollutants and/or electromagnetic radiation with a wavelength of between 280 and 500 nm, namely UV rays and blue light.
  • Pollutants but also UV rays and blue light, are in particular liable to lead to excessive production of free radials responsible for skin aging phenomena.
  • the main atmospheric pollutants which can have a deleterious effect on the skin are toxic gases (such as ozone, carbon monoxide, nitrogen oxides or sulfur oxides), heavy metals, present in particular in cigarette smoke (such as mercury, cadmium or lead), polycyclic aromatic hydrocarbons (or “PAHs”, such as benzopyrene) and fine particles, such as PM2.5, which are combustion residues on which a large amount of organic and inorganic compounds are adsorbed.
  • PAHs polycyclic aromatic hydrocarbons
  • PM2.5 fine particles
  • anionic surfactants and in particular the sulfates used in hygiene and cleaning products, themselves also tend to dry out the skin.
  • the surfactant described above can thus make it possible to prevent and/or slow down the detrimental change in the appearance of the skin caused by external attacks. It can thus also be used in leave-on cosmetic compositions, in particular cosmetic compositions for caring for the skin or for make up (such as a foundation).
  • Glycine betaine (1.0 eq) and a mixture of C 18 to C 22 fatty alcohols (5.0 eq) are introduced into a reactor.
  • the setpoint temperature in the mixture is fixed at 150° C. and the pressure is reduced down to a value of 60 mbar.
  • a 70% methanesulfonic acid solution (1.05 eq) is added to the reaction mixture.
  • the setpoint temperature is brought back to 150° C. and the pressure is maintained at a value of 30 mbar.
  • the reaction mixture is allowed to cool to 80° C., then the product is recovered, cooled down to ambient temperature, and constitutes the surfactant composition according to the invention, which includes the following constituents:
  • Composition A Hydroxyethylcellulose 0.5% 0.5% Glycerin 3.0% 3.0% Stearyl/Behenyl Betainate Mesylate (and) Stearyl/Behenyl Alcohol (1) 6.0% Behentrimonium Chloride 1.98% Arachidyl (and) Behenyl Alcohol 4.02% Methylene Bis-Benzotriazolyl Tetramethylbutylphenol (and) Aqua (and) Decyl Glucoside (and) Propylene Glycol (and) Xanthan Gum (2) 4.0% 4.0% Butyl Methoxydibenzoylmethane 3.0% 3.0% Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine 6.0% 6.0% Ethylhexyl Salicylate 3.0% 3.0% C12-15 Alkyl Benzoate 6.0% 6.0% Caprylic/Capric Triglycerides 6.0% 6.0% Butyrospermum Parkii Butter 2.0% 2.0% Persea
  • compositions A and B above The resistance to sand of compositions A and B above was evaluated.
  • Composition A Composition B Mean 54.87% 64.47% Standard deviation 1.03% 1.26%
  • the surfactant composition according to the invention confers, on the photoprotective composition, a resistance to sand which is significantly greater than that of other cationic surfactants.
  • GBE surfactant compositions according to the invention
  • GBA surfactant compositions according to the invention, hereinafter identified by GBE or GBA, based respectively on glycine betaine ester or amide salts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a photoprotective composition comprising, in a physiologically acceptable medium, at least one photoprotective compound and a surfactant comprising at least one ester derivative or amide derivative of glycine betaine. It also relates to the cosmetic use of this photoprotective composition for protecting the skin against certain effects of UVA radiation, and also to this photoprotective composition for use thereof in the protection of the skin against erythema caused by UVB radiation. Finally, it relates to the use of the abovementioned surfactant for increasing the sand resistance of a photoprotective composition.

Description

    SUBJECT MATTER OF THE INVENTION
  • The present invention relates to a photoprotective composition comprising, in a physiologically acceptable medium, at least one photoprotective compound and a surfactant comprising at least one glycine betaine ester or amide derivative. It also relates to the cosmetic use of this photoprotective composition for protecting the skin against certain effects of UVA rays, and also to this photoprotective composition for its use in the protection of the skin against erythema due to UVB rays. Finally, it relates to the use of the abovementioned surfactant for increasing the resistance to sand of a photoprotective composition.
  • BACKGROUND OF THE INVENTION
  • In addition to being responsible for burns, UV rays are known to be involved in the production of free radicals which themselves lead to various detrimental changes of the skin, including skin aging phenomena, skin dryness, and also the formation of pigment spots and unevennesses of the complexion.
  • The photoprotective compositions used for protecting the skin against the effects of UV rays are generally provided in the form of an emulsion, of oil-in-water or water-in-oil type, which contains, at various concentrations, one or more lipophilic organic screening agents and/or inorganic nanopigments of metal oxides, capable of selectively absorbing harmful UV radiation, these screening agents and their amounts being selected according to the sun protection factor sought. In such emulsions, the hydrophilic screening agents are present in the aqueous phase and the lipophilic screening agents (often in the majority) are present in the fatty phase.
  • These emulsions generally include a large amount of oil necessary for the dissolution of the lipophilic UV screening agents and thus often exhibit a greasy and sticky feel liable to dissuade the consumer from their use. For this reason, oil-in-water emulsions are generally more appreciated by the consumer, in particular because of their pleasant feel and their presentation in non-fatty milk or cream form. However, they also more easily lose their effectiveness against UV rays as soon as they come into contact with water, when swimming in the sea or in a swimming pool, under the shower or when practicing water sports, insofar as hydrophilic screening agents tend to dissolve in water. Consequently, the antisun compositions which contain them, alone or combined with lipophilic screening agents, no longer provide the initial protection sought. Moreover, antisun compositions often exhibit poor resistance to sand, which affects their effectiveness at the seaside since the user is discouraged from renewing the applications on sandy skin. The grains of sand stuck to the skin also cause irritation during rubbing actions.
  • It would thus be useful to be able to have available photoprotective compositions exhibiting a nongreasy feel and good water resistance and/or resistance to sand.
  • It has already been proposed to use cationic surface-active agents to reduce the greasy feel of skin care compositions rich in oils and to improve the water resistance, but also the resistance to sand, of photoprotective compositions (HAPPI, December 2009, 62-65). However, a number of these compounds, in particular quaternary alkylammonium salts, such as distearyldimonium chloride and behentrimonium chloride, and also amidoquats, such as palmitamidopropyltrimonium chloride, exhibit inadequate biodegradability and inadequate ecotoxicity. There thus exists a need to develop photoprotective compositions which are more environmentally friendly.
  • Among biobased cationic agents, the use has already been suggested of an esterquat, distearoylethyldimonium chloride or DSEDC (Varisoft® from Evonik), in compositions for protection of the skin, in particular in antisun compositions. However, this compound can only be formulated in an acid medium and more specifically at a pH of less than 5 and generally of less than 4.5. However, the pH of healthy skin, which is determined by the constitution of the hydrolipidic film present at its surface, is on average 5.5. It would thus be desirable to have available compounds capable of being formulated in a wider pH range and in particular up to a pH of 5.5. Furthermore, the abovementioned cationic surfactants are not easily compatible with anionic additives, some of which are commonly used as dispersants for UV screening agents, which further increases their formulation constraints.
  • The applicant company has now discovered, unexpectedly and surprisingly, that certain glycine betaine derivatives make it possible to improve the resistance to sand of photoprotective compositions.
  • It has also been observed that these compounds can be formulated at a pH ranging up to 5.5 and in oil-rich compositions, without negatively affecting the stability or the sensory properties of these compositions.
  • These surfactants are furthermore biodegradable and exhibit a very low ecotoxicity, which is even lower than that of DSEDC.
  • The patent applications WO 2005/121294 and WO 2015/078893 describe leave-on cosmetic compositions, in particular antisun compositions, including glycine betaine ester or amide salts. In both cases, however, these glycine betaine derivatives are present in the form of surfactant compositions additionally including optionally cationized alkylpolyglycosides.
  • To the knowledge of the applicant company, however, it has never been suggested to use, for the abovementioned purposes, long-chain glycine betaine ester or amide salts, as is or in the form of surfactant compositions devoid of optionally cationized alkylpolyglycosides.
  • SUMMARY OF THE INVENTION
  • A subject matter of the invention is a photoprotective composition comprising, in a physiologically acceptable medium, at least one photoprotective compound and a surfactant comprising at least one glycine betaine derivative of formula (1): [(CH3)3N+-CH2-COZ-R]nXn-, where Z denotes an oxygen atom or an —NH group, R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2, it being understood that said photoprotective composition does not contain optionally cationized alkylpolyglycoside.
  • Another subject matter of the invention is the cosmetic use of the abovementioned photoprotective composition for protecting the skin against the effects of UVA rays chosen from: signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin.
  • A further subject matter of the invention is a cosmetic method for protecting the skin against the effects of UVA rays chosen from: signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin, comprising the topical application, to the skin, of the abovementioned photoprotective composition.
  • Another subject matter of this invention relates to a photoprotective composition as defined above, for its use in the protection of the skin against erythema due to UVB rays.
  • Yet another subject matter of the present invention relates to the use of a surfactant as defined above for increasing the resistance to sand of a photoprotective composition.
  • DETAILED DESCRIPTION
  • The present invention relates to a photoprotective composition including at least one glycine betaine derivative of given formula. The term “photoprotective composition” is understood to mean a composition including, in a physiologically acceptable medium, at least one photoprotective compound in an amount sufficient to block or absorb UV rays, preferably at least one organic or inorganic UVA and/or UVB screening agent. It generally confers, on the skin, protection against UV rays, determined by its Sun Protection Factor, of at least 15, indeed even of at least 30, for example a Sun Protection Factor of 15, 20, 30 or 50. It is a leave-on composition. The term “leave-on” is understood to mean that the composition is suitable for being and intended to be applied to the skin and left in place for at least one hour, before being removed by rinsing with water and/or using a cleaning composition.
  • This photoprotective composition includes a surfactant based on at least one glycine betaine derivative, which is a glycine betaine ester or amide salt. These two types of glycine betaine derivatives, and also their processes of preparation, will now be described in more detail.
  • Glycine Betaine Derivatives I. Glycine Betaine Ester Salts
  • Glycine betaine ester salts can be obtained following a process comprising the successive stages consisting in:
    • (1) reacting glycine betaine or one of its salts with at least one saturated or unsaturated, linear or branched, fatty alcohol including from 8 to 24 carbon atoms, in the presence of an organic or inorganic acid;
    • (2) cooling the reaction medium to a temperature of 20 to 90° C.; and
    • (3) recovering the surfactant composition thus obtained.
  • The first stage of this process consists in esterifying glycine betaine, or trimethylglycine. The glycine betaine can be of vegetable or synthetic origin. It is necessary to protonate it beforehand using an organic or inorganic acid, insofar as it exists in the zwitterionic form (presence of a carboxylate function). The acid can in particular be chosen from inorganic acids, such as hydrochloric acid, sulfuric acid, perhydric acids, such as perchloric acid, and their mixtures. In an alternative form, it can be chosen from organic acids, such as alkyl sulfuric acids, for example decyl or lauryl sulfuric acid; arylsulfonic acids, such as benzenesulfonic acid or paratoluenesulfonic acid; alkylsulfonic acids, such as triflic acid, methanesulfonic acid, ethanesulfonic acid, decylsulfonic acid, laurylsulfonic acid or camphorsulfonic acid; sulfosuccinic acid; and their mixtures. Lewis acids can also be used. Preferably, it is an alkylsulfonic acid and in particular methanesulfonic acid, insofar as it is easily biodegradable.
  • During the esterification, the acid function of the salified betaine is reacted with a fatty alcohol, to result in a glycine betaine ester in salt form. The term “fatty alcohol” is understood to mean a saturated or unsaturated, linear or branched (preferably linear), alcohol comprising from 8 to 24 carbon atoms. Examples of such fatty alcohols can be chosen from the group consisting of: octanol (C8:0), decanol (C10:0), undecanol (C11:0), lauryl alcohol (C12:0), myristyl alcohol (C14:0), cetyl alcohol (C16:0), palmitoleyl alcohol (C16:1), stearyl alcohol (C18:0), oleyl alcohol (C18:1), linoleyl alcohol (C18:2), linolenyl alcohol (C18:3), arachidyl alcohol (C20:0), arachidonyl alcohol (C20:4), behenyl alcohol (C22:0), 2-hexyldecanol, 2-octyldodecanol, 2-decyltetradecanol and their mixtures. Mixtures of fatty alcohols which can be used can be produced from one or more vegetable oils and in particular from soybean, olive, sunflower, corn, palm, copra, cottonseed, linseed, wheat, safflower or rapeseed oil, for example.
  • It is preferred according to the invention to use one or more alcohols including from 16 to 22 carbon atoms and more preferentially a mixture of such fatty alcohols.
  • The esterification reaction is generally carried out in the absence of solvent. The water produced during the reaction furthermore contributes to the dissolution of the glycine betaine in the reaction mixture.
  • For the implementation of this reaction, it is possible, for example, to use from 0.8 to 6.0 equivalents, preferably from 0.8 to 2 equivalents, for example from 0.9 to 1.0 equivalent, or in an alternative form from 1.1 to 1.8 equivalents, preferentially in this case from 1.2 to 1.6 equivalents and better still from 1.3 to 1.5 equivalents of fatty alcohol or, in a second alternative form, from 4.0 to 6.0 equivalents, preferentially in this case from 4.5 to 5.5 equivalents and better still from 4.8 to 5.2 equivalents of fatty alcohol.
  • In addition, use is advantageously made of 1.01 to 3.0 molar equivalents, preferably of 1.5 to 2.0 molar equivalents, for example of 1.5 to 1.9 molar equivalents, and preferentially of 1.5 to 1.7 molar equivalents of organic or inorganic acid, or in an alternative form of 1.02 to 1.08 molar equivalents, preferentially in this case of 1.03 to 1.07 molar equivalents and better still of 1.04 to 1.06 molar equivalents of organic or inorganic acid per 1 equivalent of glycine betaine. The esterification is carried out at a temperature ranging, for example, from 120 to 180° C., preferably from 150 to 180° C. The reaction can be carried out under atmospheric pressure or preferably under reduced pressure, for example at a pressure of 10 to 600 mbar. The pressure will generally become lower as the chain length of the fatty alcohol involved increases. The reaction medium is subsequently cooled to a temperature of 20 to 90° C.
  • The surfactant composition thus obtained is then recovered, which composition includes at least one glycine betaine ester salt of formula [(CH3)3N+-CH2-COOR]nXn-, where: X is an organic or inorganic anion, R is an alkyl radical corresponding to the fatty alcohol R-OH employed in the esterification reaction, and n has the value 1 or 2.
  • The anion X results from the acid employed in the first stage of the process and can thus in particular be a chloride, a sulfate, a perchlorate, an alkyl sulfate ion, in particular a decyl sulfate or lauryl sulfate ion, an arylsulfonate ion, in particular a benzenesulfonate or para-toluenesulfonate ion, an alkylsulfonate ion, in particular a triflate, methanesulfonate, ethanesulfonate, decylsulfonate, laurylsulfonate or camphorsulfonate ion, or a sulfosuccinate ion. It is preferred according to the invention for X to be chosen from the alkylsulfonates and the arylsulfonates, in particular from the methanesulfonate, ethanesulfonate, triflate, para-toluenesulfonate and camphorsulfonate ions. It is advantageously the methanesulfonate ion.
  • The radical R can for its part be chosen from the octyl (C8:0), decyl (C10:0), undecyl (C11:0), lauryl (C12:0), myristyl (C14:0), cetyl (C16:0), palmitoleyl (C16:1), stearyl (C18:0), oleyl (C18:1), linoleyl (C18:2), linolenyl (C18:3), arachidyl (C20:0), arachidonyl (C20:4), behenyl (C22:0), 2-hexyldecyl, 2-octyldodecyl and 2-decyltetradecyl groups.
  • It is clearly understood that, in the case where several fatty alcohols are employed in the esterification reaction, the surfactant composition obtained will comprise several glycine betaine ester salts. The term “a glycine betaine ester salt” should thus be understood, in the context of this description and unless otherwise indicated, as referring to one or more of these salts.
  • The process described above makes it possible more specifically to obtain a surfactant composition including the following constituents:
    • (a) at least one glycine betaine ester salt of formula (1): [(CH3)3N+-CH2-COO-R]nXn-,
    • (b) at least one fatty alcohol of formula R-OH,
    • (c) an organic or inorganic acid of formula HX,
    • (d) a glycine betaine salt of formula [(CH3)3N+-CH2-COOH]nXn-, and
    • (e) optionally, at least one dialkyl ether of formula R-O-R,
    where R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms and preferably from 16 to 22 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2.
  • This surfactant composition can be used as is in the present invention. In this case, it generally includes from 15% to 85% by weight of glycine betaine ester salt.
  • It is understood that, in the context of this description, the term “surfactant” is understood to mean both a glycine betaine ester salt as described here and the surfactant composition containing it, obtained as described above.
  • In a first alternative form, the surfactant composition includes:
    • (a) from 65% to 85% by weight, preferably from 70% to 80% by weight, of glycine betaine ester salt,
    • (b) from 1% to 20% by weight, for example from 1% to 9% by weight or from 10% to 20% by weight, of fatty alcohol,
    • (c) from 1% to 20% by weight, for example from 5% to 15% by weight, of organic or inorganic acid,
    • (d) from 1% to 20% by weight, for example from 2% to 15% by weight, of glycine betaine salt,
    • (e) from 0% to 15% by weight, for example from 2% to 10% by weight, of dialkyl ether.
  • In a second alternative form, the surfactant composition includes:
    • (a) from 15% to 45% by weight, preferably from 20% to 35% by weight, more preferentially from 25% to 30% by weight, of glycine betaine ester salt,
    • (b) from 50% to 70% by weight, for example from 60% to 70% by weight, of fatty alcohol,
    • (c) from 0% to 5% by weight, for example from 0% to 1% by weight, of organic or inorganic acid,
    • (d) from 0% to 3% by weight, for example from 0% to 1% by weight, of glycine betaine salt,
    • (e) from 0% to 15% by weight, for example from 2% to 10% by weight, of dialkyl ether.
  • Advantageously, the surfactant composition does not include a constituent other than the components (a) to (e) above. In an alternative form, the above process can include an additional stage consisting in isolating the glycine betaine ester salt present in this composition, which can be used as is in the present invention. In the latter case, the surfactant composition used according to the invention will comprise at least 90%, preferably at least 95%, indeed even at least 99%, by weight of glycine betaine derivative.
  • II. Glycine Betaine Amide Salts
  • These glycine betaine derivatives can be prepared following a process comprising the successive stages consisting in:
    • (1) reacting the glycine betaine or one of its salts with a saturated or unsaturated, linear or branched, C4-C8 alcohol in the presence of an organic or inorganic acid, at a temperature ranging, for example, from 100 to 180° C. and under reduced pressure;
    • (2) cooling the reaction medium to a temperature of 20 to 80° C.;
    • (3) adding one or more alkylamines including from 8 to 24 carbon atoms;
    • (4) removing the residual alcohol; and
    • (5) recovering the surfactant composition thus obtained.
  • The first stage of this process consists of an esterification reaction of the glycine betaine, which can be carried out in a similar way to the production of the glycine betaine esters, except that use is made of one or more linear and/or branched C4-C8 alcohol(s) in the presence of the acid, which can be chosen from those described above. Examples of such alcohols comprise butanol, pentanol, 3-methylbutan-1-ol (or isoamyl alcohol), fusel alcohol (mixture of pentanol, 2-methylbutan-1-ol and 3-methylbutan-1-ol), hexanol, heptanol, octanol and their mixtures. The term “butanol” is understood to mean equally well in this description n-butanol, isobutanol and sec-butanol. Butanol, and more particularly n-butanol, is preferred for use in this invention. This reaction is generally carried out in the absence of any solvent, the alcohol used constituting both the reactant and the medium. The water produced during the reaction also contributes to the dissolution of the glycine betaine in the reaction mixture. Use may generally be made of from 1.1 to 20 equivalents, for example from 2 to 4 equivalents, of linear or branched C4-C8 alcohol and of from 1.0 to 1.5 equivalents of sulfonic acid, for example from 1.0 to 1.2 equivalents and preferentially 1.1 equivalents of sulfonic acid, per 1 equivalent of glycine betaine. The esterification can be carried out at a temperature of 100 to 180° C., preferentially of 100 to 160° C., more preferentially of 120 to 150° C. or of 130 to 160° C., at atmospheric pressure or under reduced pressure.
  • The product of the esterification reaction may or may not be treated so as to separate the salt of the glycine betaine ester formed from the reaction medium. To do this, it is possible, for example, to carry out a filtration of the reaction medium, which makes it possible to separate the abovementioned salified ester, which is soluble in the alcohol, from the other constituents, which are not soluble.
  • One or more C8-C24 alkylamine(s) is/are subsequently added, either to the reaction medium or to the isolated ester. Examples of such amines are: octylamine, decylamine, laurylamine, tetradecylamine, hexadecylamine, octadecylamine, docosanylamine, eicosanylamine and their mixtures. It is preferred according to the invention to use one or more amines including from 16 to 22 carbon atoms and more preferentially a mixture of such amines.
  • In this stage, the alkylamine is advantageously used in the molten form. The amount of alkylamine(s) added can, for example, represent from 0.9 to 1.5 equivalents and preferably from 1.0 to 1.2 equivalents, per 1 equivalent of glycine betaine initially employed. This aminolysis reaction is typically carried out at a temperature of 50 to 180° C. and preferably of 120 to 140° C., under reduced pressure, for example under a pressure of 1 to 30 mbar. In parallel with the aminolysis reaction, the alcohol is removed by distillation under reduced pressure. The aminolysis reaction and the distillation take place over a period of time of 1 to 7 hours, in particular of 3 to 5 hours.
  • The surfactant composition thus obtained is then recovered.
  • This process makes it possible to obtain a surfactant composition comprising:
    • (a) one or more glycine betaine amide salt(s) of formula (1): [(CH3)3N+-CH2-CONH-R]nXn-;
    • (b) one or more alkylammonium salt(s) of formula (2): [NH3 +R]nXn-;
    • (c) one or more glycine betaine ester salt(s) of formula (3): [(CH3)3N+-CH2-COOR′]nXn-, where R′ is a saturated or unsaturated, linear or branched, alkyl radical containing from 4 to 8 carbon atoms; and
    • (d) glycine betaine of formula (4): (CH3)3N+-CH2-COO-;
    where R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, preferably from 16 to 22 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2.
  • It is understood that, in the context of this description, the term “surfactant” is understood to mean both a glycine betaine amide salt as described here and the surfactant composition containing it, obtained as described above.
  • This surfactant composition can be used as is in the present invention. In this case, it generally includes from 60% to 98% by weight, for example from 70% to 80% by weight, of glycine betaine amide salt. The constituent (b) can represent from 0% to 25% by weight, for example from 15% to 20% by weight, the constituent (c) from 0% to 15% by weight, for example from 5% to 10% by weight, and the constituent (d) from 0% to 5% by weight, with respect to the total weight of the surfactant composition. Advantageously, the latter does not include a constituent other than the components (a) to (d) above. In an alternative form, the above process can include an additional stage consisting in isolating the glycine betaine amide salt present in this composition, which can be used as is in the present invention. In the latter case, the surfactant composition will comprise at least 90%, preferably at least 95%, indeed even at least 99%, by weight of glycine betaine derivative.
  • It is preferred in all cases for the surfactant composition including a glycine betaine ester or amide salt as defined above, and/or the photoprotective composition comprising it, not to contain an optionally cationized alkylpolyglycoside.
  • For use in the present invention, glycine betaine ester salts and in particular the salts of esters including from 14 to 22 carbon atoms, preferably from 16 to 22 carbon atoms and more preferentially from 18 to 22 carbon atoms are preferred.
  • Photoprotective Compositions
  • For the implementation of the present invention, use is made of a photoprotective composition including a surfactant as described above, preferably in an amount of 1% to 15% by weight, more preferably of 2% to 8% by weight, with respect to the weight of the photoprotective composition, when it is a surfactant composition as described above. The photoprotective composition generally includes from 0.5% to 8% by weight and preferentially from 1% to 5% by weight of glycine betaine derivative according to the invention.
  • The photoprotective composition includes a physiologically acceptable medium, that is to say a medium compatible with the skin, in particular a cosmetically acceptable medium, that is to say a medium which does not generate tingling or redness incompatible with a cosmetic use. This medium preferably includes an aqueous phase, including water and/or glycerol, and a fatty phase to form an emulsion. This emulsion can be of the oil-in-water (O/W), oil-in-glycerol, water-in-oil (W/O), water-in-glycerol or multiple (for example W/O/W) type. This emulsion is preferentially of the oil-in-water type.
  • The aqueous phase can additionally include at least one aqueous gelling agent. The term “aqueous gelling agent” denotes a polymeric compound capable of immobilizing water molecules by becoming hydrated and of thus increasing the viscosity of the aqueous phase. Such a gelling agent can be chosen from: polysaccharides, such as cellulose and its derivatives, modified starches, carrageenan, agar agar, xanthan gum and vegetable gums, such as guar, tara or locust bean gum; synthetic polymers and in particular optionally crosslinked sodium acrylate homopolymers, and also acrylic copolymers, in particular copolymers of sodium acrylate and/or of alkyl (meth)acrylate and/or of hydroxyalkyl (meth)acrylate and/or of (polyethoxy)alkyl (meth)acrylate, with optionally at least one other monomer, advantageously 2-acrylamido-2-methylpropanesulfonic acid (AMPS), these copolymers optionally being crosslinked; and their mixtures.
  • For its part, the fatty phase can comprise one or more volatile and/or nonvolatile oils. Examples of volatile oils are branched alkanes, such as isododecane, and linear C10-C13 alkanes. Mention may in particular be made, as nonvolatile oils, of:
    • esters of acids and of monoalcohol chosen from: monoand polyesters of saturated linear C2-C10 (preferably C6-C10) acids and of saturated linear C10-C18 (preferably C10-C14) monoalcohols, mono- and polyesters of saturated linear C10-C20 acids and of branched or unsaturated C3-C20 (preferably C3-C10) monoalcohols; mono- and polyesters of branched or unsaturated C5-C20 acids and of branched or unsaturated C5-C20 monoalcohols; mono- and polyesters of branched or unsaturated C5-C20 acids and of linear C2-C4 monoalcohols;
    • triglycerides of C6-C12 fatty acids, such as triglycerides of caprylic and capric acids, and triheptanoin;
    • branched and/or unsaturated C10-C20 fatty acids (such as linoleic acid);
    • branched and/or unsaturated C10-C20 fatty alcohols (such as octyldodecanol and oleyl alcohol);
    • hydrocarbons, such as squalane (C30), in particular vegetable squalane extracted from olive oil, and hemisqualane (C15);
    • dialkyl carbonates, such as dicaprylyl carbonate and diethylhexyl carbonate;
    • dialkyl ethers, such as dicaprylyl ether; and
    • their mixtures.
  • Mention may also be made of vegetable oils which contain one or more of the abovementioned constituents.
  • Mention may in particular be made, as esters of acids and of monoalcohols, of monoesters, such as the coco-caprate/caprylate mixture, ethyl macadamiate, the ethyl ester of shea butter, isostearyl isostearate, isononyl isononanoate, ethylhexyl isononanoate, hexyl neopentanoate, ethylhexyl neopentanoate, isostearyl neopentanoate, isodecyl neopentanoate, isopropyl myristate, octyldodecyl myristate, isopropyl palmitate, ethylhexyl palmitate, hexyl laurate, isoamyl laurate, cetostearyl nonanoate, propylheptyl caprylate and their mixtures. Other esters which can be used are diesters of acids and of monoalcohols, such as diisopropyl adipate, diethylhexyl adipate, diisopropyl sebacate and diisoamyl sebacate.
  • Examples of vegetable oils are in particular wheat germ, sunflower, linseed, argan, hibiscus, coriander, grape seed, corn, apricot, castor, shea, avocado, olive, soybean, sweet almond, palm, rapeseed, cottonseed, hazelnut, macadamia, jojoba, alfalfa, poppy, red kuri squash, sesame, pumpkin, blackcurrant, evening primrose, lavender, borage, millet, barley, quinoa, rye, safflower, candlenut, passionflower, muscat rose, echium, camelina or camellia oil.
  • The fatty phase can additionally comprise at least one fatty phase structuring agent. The term “fatty phase structuring agent” is understood to mean a compound capable of thickening the oils contained in the composition, chosen in particular from waxes, fatty phase gelling agents and pasty fatty substances, and also their mixtures.
  • In one embodiment of the invention, the photoprotective composition includes at least 20% by weight, preferably at least 30% by weight, more preferentially at least 40% by weight, indeed even at least 50% by weight, of oil(s). In some embodiments, the photoprotective composition can even comprise at least 60%, for example at least 70%, indeed even at least 80%, by weight of oil(s). This is because it has been observed that the glycine betaine derivatives according to the invention make it possible to confer a nongreasy, indeed even powdery, feel on these compositions, even though they include a high content of oil(s).
  • The photoprotective composition includes at least one organic or inorganic UV screening agent, or a mixture of them, preferably at least one insoluble UV screening agent. The term “UV screening agent” is understood to mean any system capable of screening out UVA and/or UVB radiation. The term “insoluble UV screening agent” is understood to mean, within the meaning of the present invention, UV screening agents which are insoluble in the cosmetic media generally used in antisun formulations and more particularly the solubility of which in water at 25° C. is less than 0.1% by weight and the solubility of which in liquid paraffin at 25° C. is less than 1% by weight.
  • UV screening agents can be UVB screening agents (absorption in the range from 290 to 320 nm), UVA screening agents (absorption in the range from 320 to 380 nm) or broad-spectrum screening agents (absorption in the range from 290 to 380 nm). Generally, it is preferred to use a combination of at least two UV screening agents, preferentially of at least one UVA screening agent and of at least one UVB screening agent.
  • Mention may be made, as examples of organic UV screening agents, of those which follow, designated by their INCI names:
    • Butyl Methoxydibenzoylmethane or Avobenzone
    • para-Aminobenzoic acid (PABA) and its derivatives, such as Ethyl PABA, Ethyl dihydroxypropyl PABA, Ethylhexyl dimethyl PABA, Glyceryl PABA, PEG-25 PABA
    • Salicylic acid derivatives, including: Homosalate, Ethylhexyl salicylate, Dipropylene glycol salicylate, TEA salicylate
    • β,β-Diphenylacrylate derivatives, such as Octocrylene, Etocrylene
    • Benzophenone derivatives, including Benzophenone-1, Benzophenone-2, Benzophenone-3, Benzophenone-4, Benzophenone-5, Benzophenone-6, Benzophenone-8, Benzophenone-9, Benzophenone-12
    • Diethylaminohydroxybenzoylhexyl benzoate (“Uvinul A Plus” from BASF)
    • Benzylidenecamphor derivatives, such as 3-Benzylidenecamphor, 4-Methylbenzylidenecamphor (“Eusolex 6300” from Merck), Benzylidenecamphorsulfonic acid, Camphor benzalkonium methosulfate, Terephthalylidenedicamphorsulfonic acid, Polyacrylamidomethylbenzylidenecamphor
    • Phenylbenzimidazole derivatives, including Phenylbenzimidazolesulfonic acid (“Eusolex 232” from Merck), Disodium phenyl dibenzimidazole tetrasulfonate
    • Phenylbenzotriazole derivatives, including Drometrizole trisiloxane, Methylenebis(benzotriazolyl)tetramethylbutylphenol (“Tinosorb M” from Ciba)
    • Triazine derivatives, such as Bis(ethylhexyloxyphenol)methoxyphenyl triazine (“Tinosorb S” from Ciba), Ethylhexyltriazone (“Uvinul T150” from BASF), Diethylhexylbutamidotriazone (“Uvasorb HEB” from Sigma 3V), 2,4,6-tris(diisobutyl 4′-aminobenzalmalonate)-s-triazine
    • Anthranilic derivatives, including Menthyl anthranilate
    • Imidazoline derivatives, such as Ethylhexyldimethoxybenzylidenedioxoimidazoline propionate
    • Benzylmalonate derivatives, such as polyorganosiloxanes containing benzylmalonate functions, in particular Polysilicone-15 (“Parsol SLX” from Hoffmann-LaRoche)
    • 4,4-Diarylbutadiene derivatives, including 1,1-Dicarboxy(2,2′-dimethylpropyl)-4,4-diphenyl-butadiene
    • Benzoxazole derivatives, such as 2,4-bis[5-(1-dimethylpropyl)benzoxazol-2-yl(4-phenyl)imino]-6-(2-ethylhexyl)imino-1,3,5-triazine (“Uvasorb K2A” from Sigma 3V)
    • Merocyanine derivatives, such as those described in WO 2004006878
    • and their mixtures.
  • The UV screening agents are generally used in the photoprotective composition according to the invention in an amount of 0.05% to 30% by weight, preferably of 5% to 25% by weight, more preferentially of 10% to 20% by weight, with respect to the total weight of the photoprotective composition.
  • According to a preferred embodiment, this photoprotective composition additionally includes at least one antiaging active principle, in particular an active principle suitable for preventing and/or treating wrinkles, sagging of the skin and/or the formation of pigment spots, which can in particular be chosen from agents for combating free radicals or antioxidants, agents which stimulate the differentiation and/or the proliferation of keratinocytes and/or fibroblasts; agents which stimulate the synthesis of glycosaminoglycans and/or collagen and/or dermoepidermal anchoring fibrils and/or elastic fibers; agents which prevent the degradation of collagen and/or glycosaminoglycans and/or dermoepidermal anchoring fibrils and/or elastic fibers; antiglycation agents; depigmenting and/or melanogenesis-inhibiting agents; and their mixtures.
  • Examples of such antiaging active principles are in particular: ascorbic acid, its salts, its ethers and its esters, in particular ascorbyl glucoside; adenosine; vegetable proteins and their hydrolysates; polypeptides and pseudodipeptides; silanes, such as methylsilanol mannuronate; α- and β-hydroxy acids; and their mixtures.
  • According to an advantageous embodiment of the invention, the photoprotective composition comprises at least one antioxidizing active principle, which makes it possible to limit the oxidative damage caused by UV rays, in particular vitamins, such as ascorbic acid and its derivatives and tocopherol and its derivatives, ubiquinone or coenzyme Q10, polyphenols, such as resveratrol and its derivatives, and also plant extracts containing them, in particular pomegranate, grape or green tea extracts; carotenoids, such as lycopene, and also plant extracts containing them; and their mixtures.
  • The photoprotective composition according to the invention can also include at least one self-tanning agent, such as DHA and/or erythrulose.
  • As an alternative form or in addition, the photoprotective composition according to the invention can comprise at least one moisturizing or humectant agent, chosen for example from polyols, such as propylene glycol, glycerol, pentylene glycol, xylitol or sorbitol; urea; hyaluronic acid and its salts; amino acids; and their mixtures.
  • The photoprotective composition according to the invention can additionally contain various constituents which can be dispersed in the fatty phase and/or in the aqueous phase which it includes, provided that these are compatible with topical application to the skin.
  • It can thus include at least one oil-in-water or water-in-oil emulsifier which is generally nonionic, such as polyoxyethylene esters, optionally polyethoxylated sorbitan esters, optionally polyethoxylated esters of fatty acids and of glycerol, sucrose esters, ethers of fatty alcohols and of sugar, such as alkyl glucosides, and their mixtures. The emulsifiers can represent from 2% to 10% and preferably from 4% to 6% of the total weight of the composition.
  • In one embodiment of the invention, the photoprotective composition does not include an emulsifier other than the surfactant composition described above. In particular, in the case of glycine betaine esters, the surfactant composition containing them in addition naturally includes a more or less large amount of fatty alcohol which confers noteworthy emulsifying properties on it.
  • The photoprotective composition according to the invention can additionally comprise additives chosen in particular from: pulverulent fillers; fragrances; sequestering agents; pH adjusters; preservatives; pigments; dyes; and their mixtures.
  • Examples of pH adjusters are acetic acid/sodium acetate and succinic acid/sodium succinate buffer solutions, sodium gluconate and sodium lactate. The pH of the photoprotective composition can in particular be between 2 and 6, preferably between 4 and 5.5 and better still between 5 and 5.5.
  • The photoprotective composition can have a liquid or semiliquid consistency or a solid consistency. It can be provided in any form suitable for topical application to the skin and in particular in the milk, cream, lotion or gel form.
  • It can in particular be packaged in a tube, a pump-action spray or a jar. In an alternative form, it can be packaged in an aerosol container, in order to ensure application of the composition in vaporized form. In the latter case, the photoprotective composition preferably comprises at least one propellant.
  • Use
  • The photoprotective composition according to the invention is suitable for being and intended to be applied to the skin. The term “skin” is understood to mean all of the skin of the body with the exclusion of the scalp and in particular the face, neck, neckline, hands, arms, legs and/or stomach.
  • It can be applied to the skin one or more times per day, for the purpose of protecting it against the effects of UV rays, in particular against erythema due to UVB rays, and/or to prevent and/or slow down the detrimental change in the appearance of the skin caused by its exposure to UVA rays, in particular to prevent and/or slow down signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin.
  • The surfactant according to the invention makes it possible to increase the resistance to sand of the photoprotective composition.
  • The capacity of resistance to sand of the photoprotective compositions according to the invention can be evaluated by applying 0.3 g of composition to the forearm of a panelist and then, after one minute, by spraying fine sand (30 ml) over the treated surface. In an alternative form, the modified application protocol described in the examples below can be used. The panelist subsequently claps his/her hands three times to remove the sand. The sand remaining on the forearm is then recovered by rinsing, dried and weighed.
  • The surfactant according to the invention can also increase the water resistance of the photoprotective composition. This is because the cationic charge of this surfactant exhibits a certain affinity for the keratin of the skin (overall negatively charged), thus making it possible to form a hydrophobic film on the skin (by virtue of the lipophilic chains of the surfactant) which creates a barrier to water.
  • The water resistance of the photoprotective compositions according to the invention can be measured according to two methods. In the first method, the water resistance is evaluated in vitro by measuring the contact angle of a drop of water on a surface coated with the photoprotective composition. The second method consists in carrying out the in vivo test recommended by COLIPA in “Guidelines for Evaluating Sun Product Water Resistance (December 2005)”, that is to say in measuring the ratio of the SPF after action of the water compared to the SPF before action of the water. The SPF reflects the increase in the duration of solar irradiation made possible by using the composition. It corresponds to the quotient of the duration to reach the erythemal threshold (minimal erythemal dose or MED) in the presence of the photoprotective composition (protected skin) with respect to the duration measured in the absence of this composition (unprotected skin). The SPF is determined in vivo on human skin in accordance with the instructions of COLIPA. The MED is the lowest dose of UV irradiation which, after 16-24 h, generates a slight but clear redness of the skin (sunburn, erythema). The irradiation sources are generally xenon lamps.
  • Whatever the surfactant used (based on glycine betaine ester or amide), the surfactant composition used according to the invention can additionally protect the skin against the cutaneous effects of external attacks. The term “external attacks” is understood to mean in particular compositions for cleaning the skin, more particularly those containing at least one anionic surfactant, and/or environmental factors, such as atmospheric pollutants and/or electromagnetic radiation with a wavelength of between 280 and 500 nm, namely UV rays and blue light.
  • Pollutants, but also UV rays and blue light, are in particular liable to lead to excessive production of free radials responsible for skin aging phenomena. The main atmospheric pollutants which can have a deleterious effect on the skin are toxic gases (such as ozone, carbon monoxide, nitrogen oxides or sulfur oxides), heavy metals, present in particular in cigarette smoke (such as mercury, cadmium or lead), polycyclic aromatic hydrocarbons (or “PAHs”, such as benzopyrene) and fine particles, such as PM2.5, which are combustion residues on which a large amount of organic and inorganic compounds are adsorbed. For their part, anionic surfactants, and in particular the sulfates used in hygiene and cleaning products, themselves also tend to dry out the skin. Finally, the various chemical and physical attacks to which the skin is subjected continuously modify the speed and quality of renewal of the epidermis. A detrimental change in the barrier function is thus observed, which is expressed by various visible signs, such as dry skin, the formation of superficial or deeper furrows, a dull complexion and/or the appearance of pigment spots.
  • The surfactant described above can thus make it possible to prevent and/or slow down the detrimental change in the appearance of the skin caused by external attacks. It can thus also be used in leave-on cosmetic compositions, in particular cosmetic compositions for caring for the skin or for make up (such as a foundation).
  • A better understanding of the invention will be obtained in the light of the following examples, which are given purely by way of illustration without the aim of limiting the scope of the invention, defined by the appended claims.
  • EXAMPLES Example 1: Test of Resistance to Sand
  • The effect of a surfactant composition according to the invention on the resistance to sand of a photoprotective composition was evaluated.
  • 1- Preparation of the Surfactant Composition
  • Glycine betaine (1.0 eq) and a mixture of C18 to C22 fatty alcohols (5.0 eq) are introduced into a reactor. The setpoint temperature in the mixture is fixed at 150° C. and the pressure is reduced down to a value of 60 mbar. Once the pressure and temperature setpoints have been reached, a 70% methanesulfonic acid solution (1.05 eq) is added to the reaction mixture. As soon as the addition is complete, the setpoint temperature is brought back to 150° C. and the pressure is maintained at a value of 30 mbar. Six hours after the start of the introduction of the acid, the reaction mixture is allowed to cool to 80° C., then the product is recovered, cooled down to ambient temperature, and constitutes the surfactant composition according to the invention, which includes the following constituents:
  • Composition by weight
    C18-C22 Alkyl betainate mesylate 25.8%
    Glycine betaine mesylate 0.3%
    C18-C22 Fatty alcohols 65.1%
    Methanesulfonic acid 0.7%
    C18-C22 Alkyl ethers 8.2%
  • 2- Preparation of the Photoprotective Compositions
  • Two photoprotective compositions were prepared in the form of O/W emulsions containing the following constituents:
  • Constituent (INCI name) Amount (% by weight)
    Composition A Composition B
    Hydroxyethylcellulose 0.5% 0.5%
    Glycerin 3.0% 3.0%
    Stearyl/Behenyl Betainate Mesylate (and) Stearyl/Behenyl Alcohol(1) 6.0%
    Behentrimonium Chloride 1.98%
    Arachidyl (and) Behenyl Alcohol 4.02%
    Methylene Bis-Benzotriazolyl Tetramethylbutylphenol (and) Aqua (and) Decyl Glucoside (and) Propylene Glycol (and) Xanthan Gum(2) 4.0% 4.0%
    Butyl Methoxydibenzoylmethane 3.0% 3.0%
    Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine 6.0% 6.0%
    Ethylhexyl Salicylate 3.0% 3.0%
    C12-15 Alkyl Benzoate 6.0% 6.0%
    Caprylic/Capric Triglycerides 6.0% 6.0%
    Butyrospermum Parkii Butter 2.0% 2.0%
    Persea Gratissima (Avocado) Oil 2.0% 2.0%
    Sodium Benzoate (and) Potassium Sorbate (and) Aqua 0.8% 0.8%
    Aqua q.s. for 100% q.s. for 100%
    (1) Surfactant composition according to the invention, prepared as described above.
    (2) Parsol Max® from DSM
  • 3- Test of Resistance to Sand
  • The resistance to sand of compositions A and B above was evaluated.
  • To do this, 10 g of sand were sprinkled over a flat surface. At the same time, a 7×4 cm rectangle was traced on the forearm of volunteers, in which 56 g of composition A or B were subsequently applied (in a proportion of 2 mg/cm2). The cream was caused to penetrate by gentle massaging and then the arm was left in the open air for 2 min. The forearm was then applied to the sand for 10 sec. After a leave-on time of 1 min, the volunteers were asked to clap their hands three times with the same force. The amount of sand which remained stuck to the forearm was subsequently calculated.
  • Three tests were carried out. The mean of these tests was calculated and is reported in the table below:
  • Composition A Composition B
    Mean 54.87% 64.47%
    Standard deviation 1.03% 1.26%
  • It emerges from these tests that the surfactant composition according to the invention confers, on the photoprotective composition, a resistance to sand which is significantly greater than that of other cationic surfactants.
  • Example 2: Antisun Compositions
  • Several types of antisun products can be prepared using surfactant compositions according to the invention, hereinafter identified by GBE or GBA, based respectively on glycine betaine ester or amide salts.
  • Antisun cream
    Starting Material INCI % Matter
    Demineralized water Aqua q.s. for 100
    Natrosol 250 HHR Hydroxyethylcellulose 0.5
    Glycerol Glycerin 4
    Tegosoft TN C12-15 Alkyl Benzoate 5
    Cocoa butter Theobroma Cacao Seed Butter 1.5
    Emogreen L15 C15-19 Alkane 2
    Dermosoft GMCY Glyceryl Caprylate 0.5
    Liponate PC Propylene Glycol Dicaprylate/Dicaprate 2
    Candelilla Wax Euphorbia Cerifera (Candelilla) Wax 1
    Tegin M Pellets Glyceryl Stearate 1
    Lipovol C-76 Cocos Nucifera (Coconut) Oil 1
    Parsol 1789 Butyl Methoxydibenzoylmethane 2
    Parsol SHIELD Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine 6
    Mfsorb 507 Ethylhexyl Triazone 2
    Parsol Max Methylene Bis-Benzotriazolyl Tetramethylbutylphenol (and) Aqua (and) Decyl Glucoside (and) Propylene Glycol (and) Xanthan Gum 5
    GBAC16C22 - 6
    Optiphen 300 Phenoxyethanol (and) Caprylyl Glycol 0.8
    Wheat starch Triticum Vulgare Starch 2
    30% Sodium gluconate solution Sodium Gluconate (and) Aqua 13
  • Solid antisun cream SPF25
    Starting Material INCI % Matter
    Tegosoft TN C12-15 Alkyl Benzoate 6
    Parsol SHIELD Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine 6
    Parsol 1789 Butyl Methoxydibenzoylmethane 3
    Parsol Max Methylene Bis-Benzotriazolyl Tetramethylbutylphenol (and) Aqua (and) Decyl Glucoside (and) Propylene Glycol (and) Xanthan Gum 4
    Parson EHS Ethylhexyl Salicylate 3
    1-Octadecanol Stearyl Alcohol 20
    Myritol 318 Caprylic/Capric Triglyceride 10
    Kokum butter Garnicia Indica Seed Butter 15
    Avocat HV 1654 Persea Gratissima (Avocado) Oil 6
    Emogreen L19 C15-19 Alkane 8
    CosmeGreen ES1822+ Arachidyl/Behenyl Betainate Mesylate (and) Arachidyl/Behenyl Alcohol 15
    Lactate/lactic buffer solution pH = 4.27 Sodium Lactate (and) Lactic Acid (and) Aqua 4
  • Cosmos SPF30 antisun cream
    Starting Material INCI % Matter
    Cosmos Z75 Zinc Oxide (and) Dicaprylyl Carbonate (and) Polyhydroxy Stearic Acid (and) Stearic Acid 18
    SFT-85-CC Titanium Dioxide (and) Silica (and) Jojoba Esters (and) Dicaprylyl Carbonate (and) Polyhydroxystearic Acid 25
    CosmeGreen MB 1618 Cetearyl Betainate Mesylate (and) Cetearyl Alcohol 15
    1-Octadecanol Stearyl Alcohol 20
    Emogreen L15 C15-19 Alkane 4
    Shea butter B1646 Butyrospermum Parkii Butter 10
    Myritol 318 Caprylic/Capric Triglyceride 4
    Lactate/lactic buffer solution pH = 4.27 Sodium Lactate (and) Lactic Acid (and) Aqua 4

Claims (15)

1-10. (canceled)
11. A photoprotective composition comprising, in a physiologically acceptable medium, at least one photoprotective compound and a surfactant comprising at least one glycine betaine derivative of formula (1): [(CH3)3N+-CH2-COZ-R]nXn-, where Z denotes an oxygen atom or an -NH group, R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2, it being understood that said photoprotective composition does not contain optionally cationized alkylpolyglycoside.
12. The photoprotective composition as claimed in claim 11, wherein the radical R is selected from the group consisting of octyl (C8:0), decyl (C10:0), undecyl (C11:0), lauryl (C12:0), myristyl (C14:0), cetyl (C16:0), palmitoleyl (C16:1), stearyl (C18:0), oleyl (C18:1), linoleyl (C18:2), linolenyl (C18:3), arachidyl (C20:0), arachidonyl (C20:4), behenyl (C22:0), 2-hexyldecyl, 2-octyldodecyl and 2-decyltetradecyl groups.
13. The photoprotective composition as claimed in claim 11, wherein the anion X is selected from the group consisting of a chloride, a sulfate, a perchlorate, an alkyl sulfate ion, an arylsulfonate ion, an alkylsulfonate ion, and a sulfosuccinate ion.
14. The photoprotective composition as claimed in claim 13, wherein the anion X is selected from the group consisting of the methanesulfonate, ethanesulfonate, triflate, para-toluenesulfonate and camphorsulfonate ions.
15. The photoprotective composition as claimed in claim 11, wherein the surfactant includes the following constituents:
(a) at least one glycine betaine ester salt of formula (1): [(CH3)3N+-CH2-COO-R]nXn-,
(b) at least one fatty alcohol of formula R-OH,
(c) an organic or inorganic acid of formula HX, and
(d) a glycine betaine salt of formula [(CH3)3N+-CH2-COOH]nXn-,
where R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2.
16. The photoprotective composition as claimed in claim 15, wherein the surfactant consists of the claimed constituents.
17. The photoprotective composition as claimed in claim 15, wherein R comprises from 16 to 22 carbon atoms.
18. The photoprotective composition as claimed in claim 11, wherein the surfactant includes the following constituents:
(a) one or more glycine betaine amide salt(s) of formula (1): [(CH3)3N+-CH2-CONH-R]nXn-;
(b) one or more alkylammonium salt(s) of formula (2): [NH3 +R]nXn-;
(c) one or more glycine betaine ester salt(s) of formula (3): [(CH3)3N+-CH2-COOR′]nXn-, where R′ is a saturated or unsaturated, linear or branched, alkyl radical containing from 4 to 8 carbon atoms; and
(d) glycine betaine of formula (4): (CH3)3N+-CH2-COO-;
where R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2.
19. The photoprotective composition as claimed in claim 18, wherein the surfactant consists of the claimed constituents.
20. The photoprotective composition as claimed in claim 18, wherein R comprises from 16 to 22 carbon atoms.
21. The photoprotective composition as claimed in claim 11, for protecting the skin against erythema due to UVB rays.
22. A cosmetic method for protecting the skin against the effects of UVA rays selected from: signs of skin aging, in particular wrinkles, sagging of the skin, loss of suppleness and/or of elasticity of the skin; roughness of the skin; loss of radiance of the complexion; nonuniformities of the complexion and in particular pigment spots; and/or drying of the skin, comprising the topical application, to the skin, of the photoprotective composition as claimed in claim 11.
23. The cosmetic method of claim 22, wherein the photoprotective composition is applied to the face, neck, neckline, hands, arms, legs and/or stomach.
24. A method for increasing the resistance to sand of a photoprotective composition comprising adding thereto at least one surfactant comprising at least one glycine betaine derivative of formula (1): [(CH3)3N+-CH2-COZ-R]nXn-, where Z denotes an oxygen atom or an —NH group, R is a saturated or unsaturated, linear or branched, alkyl group comprising from 8 to 24 carbon atoms, X is an organic or inorganic anion and n has the value 1 or 2.
US18/007,079 2020-07-31 2021-07-29 Photoprotective composition comprising a glycine betaine derivative Pending US20230310291A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2008182 2020-07-31
FR2008182A FR3112946B1 (en) 2020-07-31 2020-07-31 Use of a cosmetic composition containing a glycine betaine derivative to protect the skin against external aggressions
PCT/FR2021/051425 WO2022023682A1 (en) 2020-07-31 2021-07-29 Photoprotective composition comprising a glycine betaine derivative

Publications (1)

Publication Number Publication Date
US20230310291A1 true US20230310291A1 (en) 2023-10-05

Family

ID=73013708

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/007,079 Pending US20230310291A1 (en) 2020-07-31 2021-07-29 Photoprotective composition comprising a glycine betaine derivative

Country Status (4)

Country Link
US (1) US20230310291A1 (en)
EP (1) EP4188320A1 (en)
FR (1) FR3112946B1 (en)
WO (1) WO2022023682A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2395030T3 (en) 2002-07-10 2013-02-07 Basf Se Cosmetic preparation comprising merocyanine derivatives
FR2869912B1 (en) 2004-05-04 2006-08-04 Agro Ind Rech S Et Dev A R D S NOVEL FAMILY OF COMPOSITIONS BASED ON ALKYL POLYGLYCOSIDES AND COMPOUNDS DERIVED FROM GLYCINE BETAINE, USE AS A SURFACE AGENT
FR2869913B1 (en) 2004-05-04 2009-01-23 Appia SURFACE-ACTIVE COMPOSITION, PROCESS FOR PREPARATION AND COSMETICS COMPRISING THE COMPOSITION
FR3008407B1 (en) 2013-07-10 2017-01-27 Oreal ESTER AND GLYCINE BETAINE AMIDE DERIVATIVES AS DEODORANT ASSETS, COSMETIC COMPOSITIONS THAT INCLUDE THEM
FR3013588B1 (en) 2013-11-28 2017-02-10 Soc D'exploitation De Produits Pour Les Ind Chimiques Seppic NOVEL EMULSIFIER COMPOSITION WITH CATIONIC CHARACTER
FR3013589B1 (en) * 2013-11-28 2017-03-31 Soc D'exploitation De Produits Pour Les Ind Chimiques Seppic COMPOSITION OF ALKYL POLYGLUCOSIDES AND CATIONED FATTY ACIDS
FR3082522B1 (en) 2018-06-19 2020-09-18 Surfactgreen SURFACTORY COMPOSITION BASED ON BETAINE GLYCINE AMIDE SALT, ITS PREPARATION PROCESS AND ITS USES
FR3088930B1 (en) 2018-11-27 2021-11-19 Surfactgreen Process for preparing a surfactant composition based on glycine betaine ester salt and composition thus obtained

Also Published As

Publication number Publication date
EP4188320A1 (en) 2023-06-07
WO2022023682A1 (en) 2022-02-03
FR3112946A1 (en) 2022-02-04
FR3112946B1 (en) 2024-01-05

Similar Documents

Publication Publication Date Title
US6616918B2 (en) Self-tanning composition containing an N-acyl amino acid ester and a self-tanning agent
DE60224427T2 (en) A polyamide structured composition containing an N-acylated amino acid ester and a UV filter
EP3547990A1 (en) Sunscreen composition comprising nanocrystalline cellulose
EP3367996A1 (en) Novel occlusive compositions
EP3709958B1 (en) Cosmetic or dermatological composition comprising a merocyanine and an acrylic polymer
DE602004007181T2 (en) 2,4,6-tris (dineopentyl-4'-amino-benzalmalonate) -s-triazine, cosmetic sunscreen containing this compound and use of this compound
DE602005001872T2 (en) s-triazine derivatives containing at least two p-aminobenzalmalonate silane groups; cosmetic sunscreen compositions containing these derivatives; and uses of the s-triazine derivatives
JP2021175748A (en) Cosmetic or dermatological composition comprising merocyanine and oily phase comprising at least one isosorbide ether
EP2945603B1 (en) Cosmetic or dermatological composition comprising a merocyanine and a uva-screening agent of the amino-substituted 2-hydroxybenzophenone type and/or a hydrophilic organic uva-screening agent
US20040228813A1 (en) Phase inverted oil-in-water photoprotective emulsions comprising nanopigments of metal oxides and 4,4-diarylbutadiene UV-A sunscreens
US20040223925A1 (en) Water-in-oil photoprotective emulsions comprising polyolefinic surfactants and 4,4-diarylbutadiene UV-A sunscreens
ES2390778T3 (en) Photoprotective compositions containing a triazine filter solubilized by a mixture of an arylalkylbenzoate derivative of an amidated oil; uses in cosmetics
DE60308629T2 (en) Compositions containing a triazine derivative dissolved in a eutectic mixture of n-butylphthalimide / isopropylphthalimide, and use in cosmetic products
US20230310291A1 (en) Photoprotective composition comprising a glycine betaine derivative
FR2899462A1 (en) Cosmetic/dermatological composition useful e.g. as a skin care, make-up, solar protection or hair care product, comprises an organic lipophilic UV filter and phytantriol in the form of cubic gel particles
CA2510305C (en) Process of photostabilization of a derivative of dibenzoylmethane using an aryl-alkyl benzoate derivative and an amidated oil; photoprotective cosmetic compositions
FR2876578A1 (en) Photostabilized, photoprotective cosmetic/dermatological composition comprises dibenzoylmethane sunscreen; oil containing an amide structural unit; a compound accepting the excited triplet level energy of sunscreen; and a support
FR2872420A1 (en) Cosmetic/dermatological photoprotective composition, useful e.g. in cosmetic treatment of e.g. skin and scalp, comprises 1,3,5-triazine derivative, oil having amide motif and eutectic mixture of n-butylphthalimide and isopropylphthalimide
KR102664351B1 (en) Sun screening cosmetic composition comprising a sunscreen material composed of an organic-inorganic composite
CN110709050A (en) Light-stable composition made of perlite/titanium/silica composite particles
US20060177395A1 (en) Sunscreen compositions comprising hydrophilic UV-screening agents and hydroxyalkylurea compounds
EP1671675A1 (en) Sun protection composition comprising at least a lipophilic uv filter and a hydroxyalkyl urea derivative
EP1671676A1 (en) Sun protection composition comprising at least one hydrophilic uv filter and a hydroxyalkyl urea derivative
WO2023110763A1 (en) Cosmetic and/or dermatological composition comprising at least one merocyanine and at least ascorbic acid and/or a derivative thereof
EP1671678A1 (en) Sun protection composition comprising at least an insoluble uv filter and a hydroxyalkyl urea derivative

Legal Events

Date Code Title Description
AS Assignment

Owner name: SURFACTGREEN, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALLE, FRANCIS;PESSEL, FREDDY;ROUSSEL, XAVIER;REEL/FRAME:062709/0939

Effective date: 20230207

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION