US20230146006A1 - Conduit vascular implant sealing device for reducing endoleaks - Google Patents

Conduit vascular implant sealing device for reducing endoleaks Download PDF

Info

Publication number
US20230146006A1
US20230146006A1 US17/814,018 US202217814018A US2023146006A1 US 20230146006 A1 US20230146006 A1 US 20230146006A1 US 202217814018 A US202217814018 A US 202217814018A US 2023146006 A1 US2023146006 A1 US 2023146006A1
Authority
US
United States
Prior art keywords
frame
membrane layer
sealing device
connection points
radially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/814,018
Inventor
R. David Fish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incubar LLC
Original Assignee
Incubar LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incubar LLC filed Critical Incubar LLC
Priority to US17/814,018 priority Critical patent/US20230146006A1/en
Publication of US20230146006A1 publication Critical patent/US20230146006A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/077Stent-grafts having means to fill the space between stent-graft and aneurysm wall, e.g. a sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0069Sealing means

Definitions

  • This patent document is directed to medical implants, and, more specifically, to conduit vascular implants and related methods.
  • Aneurysms of the aorta and principal arteries of the chest, abdomen and pelvis can progress, by expansion, to life-threatening rupture. Thrombus may develop within the aneurysm and cause embolic occlusion of arteries and ischemic organ injury.
  • Clinical approach to treatment generally involves the insertion of a tubular graft that spans the extent of the aneurysmal portion of the vessel to exclude the aneurysm from the circulation by either surgical or transcatheter means, termed “endovascular aneurysm repair”, or “EVAR”.
  • the success of the technique depends on effective sealing between the ends of the graft and the non-aneurysmal segments of the vessel proximal to and distal to the aneurysm to prevent leaking of blood flow into the aneurysm.
  • the open surgical approach allows for complete suturing of the graft ends to the vessel and even excision of the aneurysm.
  • transcatheter device insertion has supplanted the surgical approach for most aneurysms, owing to the clinical advantages of a minimally-invasive procedure with less morbidity and rapid recovery.
  • Devices for transcatheter insertion through the femoral artery and into the abdominal aorta for exclusion of an aneurysm are typically constructed, for example, of polymer fabric configured as a tube, with a metal alloy wire form or lattice attached at the ends or throughout the length of the resulting tube graft to provide axial and radial support and for fixation of the ends of the tube graft to the vessel.
  • Such devices must be radially compressible to a profile that is capable of being inserted into the femoral artery and then expanded within the aorta to a size that matches that of the aorta and engages its inner wall for fixation and exclusion of the aneurysm.
  • Shape memory alloy is widely utilized in these components.
  • Endoleak involves blood flow under normal hemodynamic pressure being conducted around the terminal edges of the conduit implant and into the aneurysm, thereby continuing to pressurize the aneurysm chamber and allowing possible progression to clinical aneurysm rupture.
  • EVAR devices incorporate a number of features directed to limiting endoleak, including circumferential cuffs of additional graft material and stents for fixation and enhanced expansion of the graft ends against the inner wall of the vessel.
  • the vessel is susceptible to endoleak because of a short extent of mating inner surface of the vessel between the aneurysm and the origins of visceral arteries, such as the renal arteries, that cannot be covered and obstructed by the graft.
  • a sealing device for use as a vascular implant comprises a frame having an inflow edge and an outflow edge relative to axial blood flow within a vessel, and a membrane layer coupled to the at least partial axial extent of the frame between the inflow edge and the outflow edge of the frame.
  • At least a partial axial extent of the frame is configured to decrease in axial length when expanded from a radially compressed configuration to a radially expanded configuration.
  • the membrane layer is coupled to the at least partial axial extent of the frame at one or more axially spaced connection points such that at least a portion of the membrane layer projects radially outward relative to the frame when the at least partial axial extent of the frame is in the radially-expanded configuration.
  • the at least partial axial extent of the frame may be formed as a lattice structure.
  • the membrane layer may be coupled to the lattice structure at a plurality of axially-spaced and circumferentially-distributed connection points. Additionally and/or alternatively, the membrane layer may be coupled to the lattice structure by a plurality of sutures.
  • the one or more connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the inflow edge of the at least partial axial extent of the frame.
  • the one or more connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the outflow edge of the at least partial axial extent of the frame.
  • connection points of the frame may include one or more circumferentially-distributed connection points proximate to the outflow edge of the at least partial axial extent of the frame, one or more circumferentially-distributed connection points proximate to the inflow edge of the at least partial axial extent of the frame, and/or one or more intermediate connection points located axially between the connection points proximate the outflow edge and the connections points proximate the inflow edge.
  • the one or more intermediate connection points may be configured to enforce an inflow-angled fold in the membrane layer.
  • the one or more intermediate connection points may enforce an outflow-angled fold in the membrane layer.
  • the one or more intermediate connection points may be configured to enforce both an inflow-angled and an outflow-angled fold in the membrane layer.
  • the membrane layer may be formed of at least one of processed mammalian pericardium tissue, a biocompatible fabric, or a polymer material.
  • the membrane layer may be formed of porcine and/or bovine pericardium tissue.
  • the membrane layer may be formed of a substantially dry tissue.
  • the sealing device may be in a radially-compressed condition and associated to a delivery system, and the delivery system associated with the sealing device may be provided in a sterile condition within an internally sterile package.
  • a circumferential extent of the membrane layer may exceed a circumferential extent of the frame.
  • the circumferential extent of the membrane layer may not exceed a circumferential extent of the frame.
  • the membrane layer may extend over an entire axial length of the frame.
  • the membrane layer may extend over only a portion of an axial length of the frame.
  • the membrane layer may axially extend beyond at least one of the inflow edge or the outflow edge of the frame.
  • the radially projecting portion of the membrane layer may be configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
  • a sealing device for use as a vascular implant.
  • the sealing device comprises a frame and a membrane layer.
  • the frame is configured to have an at least partial expandable axial extent including a plurality of circumferentially distributed members configured to circumferentially separate from each other when expanded from a radially compressed configuration to a radially expanded configuration coupled to the at least partial expandable axial extent of the frame at a plurality of connection points.
  • the membrane layer is configured to have at least a transverse curvilinear extent exceeding an underlying circumferential extent of the frame between connection points at an axial level of at least some of the connection points upon the frame.
  • connection points between the frame and the membrane layer may be circumferentially regularly spaced or circumferentially irregularly spaced.
  • the at least partial expandable axial extent of the frame may be formed as a lattice structure.
  • the membrane layer may be coupled to the lattice structure at a plurality of axially-spaced and circumferentially-distributed connection points by, for example, a plurality of sutures.
  • connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the inflow edge of the at least partial expandable axial extent of the frame. Additionally and/or alternatively, the one or more connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the outflow edge of the at least partial expandable axial extent of the frame.
  • connection points of the frame may include one or more circumferentially-distributed connection points proximate to the outflow edge of the axial extent of the frame, one or more circumferentially-distributed connection points proximate to the inflow edge of the axial extent of the frame, and/or one or more intermediate connection points located axially between the connection points proximate the outflow edge and the connection points proximate the inflow edge.
  • the membrane layer may be formed of processed mammalian pericardium tissue (e.g., bovine or porcine), a biocompatible fabric, and/or a polymer material.
  • the membrane layer may be formed of a substantially dry tissue.
  • the sealing device may be in a radially-compressed condition and associated to a delivery system, and the delivery system associated with the sealing device may be provided in a sterile condition within an internally sterile package.
  • the membrane layer may extend over an entire axial length of the frame.
  • the membrane layer may extend over only a portion of an axial length of the frame.
  • the membrane layer may axially extend beyond at least one of the inflow edge or the outflow edge of the frame.
  • the membrane layer may extend over an entire circumferential length of the frame and/or over only a portion of a circumferential length of the frame.
  • the radially projecting portion of the membrane layer may be configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
  • the radially projecting portion of the membrane layer may be configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
  • one or more of the connections at the connection points may enforce a radially outwardly angled direction upon the membrane layer adjacent the connection points.
  • two or more portions of the membrane layer may be connected at connection points independent of the connections to the frame and/or may form one of a linear or curvilinear seam of at least two points.
  • FIG. 1 illustrates a radially-compressed cylindrical lattice frame for a vascular implant, according to an embodiment.
  • FIG. 2 illustrates an expanded cylindrical lattice frame for a vascular implant, according to an embodiment.
  • FIG. 3 illustrates a membrane layer for a vascular implant in an axially-shortened state, according to an embodiment.
  • FIG. 4 illustrates a longitudinal cross-sectional view of suture attachment of a membrane layer to a lattice frame for a vascular implant in both a radially-compressed configuration and a radially-expanded configuration, according to an embodiment.
  • FIG. 5 illustrates a side elevation view of an axially-shortened membrane layer on a radially-expanded lattice frame for a vascular implant, according to an embodiment.
  • FIG. 6 illustrates a side elevation view of an axially-shortened membrane layer coupled to a radially-expanded lattice frame, according to an embodiment.
  • FIG. 7 illustrates a side elevation view of an axially-shortened membrane layer coupled to a radially-expanded lattice frame, according to another embodiment.
  • FIG. 8 illustrates a side elevation view of an axially-shortened membrane layer coupled to a radially expanded lattice frame and deployed within a vessel, according to an embodiment.
  • FIG. 9 illustrates a plurality of side elevation views of variations in axial position of attachment points along a radially compressed lattice frame, according to various embodiments.
  • FIG. 10 illustrates a plurality of side elevation views of variations in axial position of membranes along a radially compressed lattice frame, according to various embodiments.
  • FIG. 11 illustrates a plurality of side elevation views of variations in axial position of membranes along a radially compressed lattice frame, according to various embodiments.
  • FIG. 12 illustrates a plurality of side elevation views of variations in axial position of membranes along a radially compressed lattice frame showing variations of attachments of the membrane to the frame, according to various embodiments.
  • FIG. 13 illustrates a transverse cross section of a vascular implant, according to another embodiment.
  • FIG. 14 illustrates a transverse cross section of the vascular implant of FIG. 13 expanded within a vessel.
  • position-identifying terms such as “inflow”, “outflow”, “vertical”, “horizontal”, “front”, “rear”, “top”, and “bottom” are not intended to limit the invention to a particular direction or orientation, but instead are only intended to denote relative positions, or positions corresponding to directions shown when a vascular implant is oriented as shown in the Figures. Accordingly, the provided orienting descriptions of the device do not limit its use to the inflow end of an exclusion graft or device; the device may also be used at the outflow end of an exclusion graft or device.
  • a radially-compressed (or radially-crimped) cylindrical lattice frame 10 for use in, e.g., a vascular implant is illustrated.
  • Frame 10 may be used in conjunction with a transcatheter tube graft implant.
  • frame 10 may be formed of any appropriate biocompatible material, such as stainless steel, gold, titanium, cobalt-chromium alloy, tantalum alloy, nitinol, one or more biocompatible polymers, etc.
  • Frame 10 includes an inflow edge 50 and an outflow edge 52 relative to axial blood flow within a vessel in which the implant is placed.
  • Frame 10 may be formed by a plurality of arms 15 interconnected by a plurality of circumferentially-distributed connection nodes 16 to form a cylindrical lattice structure.
  • the lattice structure of frame 10 may be originally fabricated or cut in the configuration shown in FIG. 1 .
  • frame 10 may be formed by any appropriate method, and is not limited by the lattice structure illustrated in FIG. 1 .
  • a membrane layer 22 configured for use in conjunction with frame 10 is illustrated. Indicated by arrows, as membrane layer 22 axially shortens from baseline 14 to baseline 20 , a redundant portion 23 of membrane layer 22 is then projected out of plane, corresponding to the radially-outward direction from the underlying frame 10 .
  • This redundant material 23 increases the membrane layer local material density which occupies the space between the frame 10 and the inner surface of the vascular wall, adding to the sealing function of the membrane layer 22 . While shown (for ease of illustration) as a substantially flat sheet in FIG. 3 , it is to be understood that membrane layer 22 may be cylindrically wrapped or otherwise formed around frame 10 to form a cylindrical, tube-like structure.
  • membrane layer 22 may be formed as an axially-complete layer over the entire axial length of frame 10 .
  • membrane layer 22 may be formed as an axially-incomplete layer of the length of frame 10 .
  • the axial length of membrane layer 22 may exceed the axial length of frame 10 .
  • the circumferential extent of the membrane layer 22 may not exceed the circumferential extent of underlying frame 10 , while in other embodiments, the circumferential extent of the membrane layer 22 does exceed the circumferential extent of underlying frame 10 .
  • Membrane layer 22 may be formed of any appropriate biocompatible material, such as, for example, processed mammalian pericardium tissue (e.g., porcine or bovine pericardium), a biocompatible fabric, a polymer material (e.g., polytetrafluoroethylene (PTFE)), etc.
  • processed mammalian pericardium tissue e.g., porcine or bovine pericardium
  • a biocompatible fabric e.g., a polymer material
  • PTFE polytetrafluoroethylene
  • Membrane layer 22 may be coupled at least partially to an outer surface frame 10 by any appropriate method.
  • FIG. 4 shows a cross-sectional view of a single side of the membrane layer and frame members at points of interconnection. As shown in FIG. 4 , portions of membrane layer 22 are coupled to a plurality of circumferentially-distributed and axially-separated connection points 25 , 26 , 27 of frame 10 through respective sutures 28 .
  • a fold 24 may be created during the coupling of membrane layer 22 to an intermediate connection point(s) 26 that is axially between the inflow-side connection point(s) 25 and the outflow-side connection point(s) 27 . For example, referring to configuration “A” of FIG.
  • FIG. 4 which illustrates the membrane layer 22 coupled to frame 10 when frame 10 is in the radially-compressed configuration shown in FIG. 1 , two sides of fold 23 at the base of projecting fold 24 are coupled to the intermediate connection point(s) 26 by a suture 28 such that the fold 24 is effectively biased to one side of the intermediate connection point(s) 26 .
  • frame 10 is radially expanded (as shown in FIG. 2 )
  • the accompanying axial compression of at least a portion of frame 10 from an axial distance x to an axial distance Fx causes the coupled membrane layer 22 to similarly compress.
  • membrane layer 22 not only projects radially outward away from frame 10 , but also projects at least partially upward (e.g., toward an inflow end relative to blood flow through a vessel). This upward projection is due to the orientation in which the two sides of membrane layer 22 are overlapped when coupled to intermediate connection point(s) 26 . Thus, it is also possible for the membrane layer 22 to be overlapped in the direction opposite of that shown in FIG. 4 , which would cause membrane layer 22 to project both radially outward and downward away from frame 10 . Furthermore, while not shown, membrane layer 22 may be overlapped and connected to connection point(s) 26 such that the fold 24 may be expanded to project both toward an upward (inflow) end and a downward (outflow) end of the frame. It is to be understood that similar folds in the membrane layer may be configured at other and possibly multiple points of connection or between points of connection by sutures or other means not connecting membrane layer 22 to frame 10 .
  • FIG. 5 a simplified view of an implant 30 in accordance with an aspect of the disclosure is illustrated.
  • sutures or other interconnection means between the membrane layer 22 and frame 10 are omitted from FIG. 5 .
  • the surrounded membrane layer 22 is also axially compressed, resulting in the fold 24 projecting radially outward around the entire circumference of frame 10 .
  • the radial projection formed by fold 24 may act as a seal between the membrane layer 22 and the vessel walls (not shown) when implant 30 is placed in a desired location, with fold 24 of membrane layer 22 blocking some or all of the blood flowing around the periphery of implant 30 , thereby mitigating endoleaks, as indicated by arrows 29 .
  • implant 30 may include a plurality of sutures 28 utilized to couple the membrane layer to a plurality of connection points of the frame 10 .
  • a tube graft 32 may be coupled to the outflow side of frame 10 .
  • An inflow side of tube graft 32 may overlap with an outflow side of membrane layer 22 , with the inflow side of tube graft 32 configured to share the sutures 28 coupling membrane layer 22 to frame 10 .
  • sutures 28 are illustrated, it is to be understood that any appropriate connection means between the membrane layer, tube graft, and frame may be utilized.
  • Sutures (or other connectors) 28 coupling membrane layer 22 to frame 10 need not lie directly upon an inflow or outflow edge of frame 10 , as only axial separation between the circumferential connection points 25 , 26 , 27 (shown in FIG. 4 ) is needed if there is axial shortening of the corresponding circumferentially-complete underlying portion of the frame 10 upon radially expansion of the frame 10 . Further, the biocompatible membrane layer 22 need not terminate in either inflow or outflow ends of the axial extent of the frame 10 .
  • the membrane layer 22 may extend at least to and be interconnected along (1) an outflow end of the axial extent corresponding to the outflow edge of the frame 10 and (2) an inflow end of the axial extent between the inflow and outflow edges of the frame 10 approximating the axially mid portion of the frame 10 , such as that which is shown in FIGS. 5 - 6 .
  • implant 34 in accordance with another aspect of the present disclosure is illustrated.
  • implant 34 includes a tube graft 36 in which the sealing device is integrally formed on an inflow end of tube graft 36 .
  • a portion of tube graft 36 is disposed at least partially around a frame 10 and coupled to frame 10 via sutures 28 in a manner similar to that described above with respect to FIG. 4 .
  • frame 10 is radially expanded (as shown in FIG.
  • FIG. 8 illustrates the implant 34 as described above with respect to FIG. 7 deployed within, e.g., a vessel portion 40 shown in cross-section.
  • the radially projecting folds 46 of tube graft 36 are configured to at least partially compress against the inner walls 42 of vessel 40 when frame 10 is radially expanded, thereby providing an effective barrier seal against endoleak or other fluid flow past the outer periphery of implant.
  • folds 46 are shown as being compressed against the inner walls 42 and angled toward the inflow end of the frame.
  • implant 34 could alternatively be configured such that folds 46 are compressed against inner walls 42 and angled toward the outflow end of the frame.
  • FIG. 2 shows the entirety of frame 10 being axially compressed when in a radially-expanded state
  • frame 10 may be capable of remaining substantially constant in axial length, even when frame 10 is expanded radially, while other portions along an axial extent of the frame 10 may axially compress.
  • axial membrane attachment points on a radially-compressed frame are shown, with the axial membrane attachment points being indicated by inwardly-pointed arrows.
  • the axial membrane attachment points can be at numerous different locations along the frame between the inflow and outflow edges, including at locations inset from the inflow edge, outflow edge, or both.
  • the portions of the frame located outside of the axial extent between the membrane attachment points do not necessarily need to axially shorten during radial expansion in order to achieve a desired radial projection in the membrane. Accordingly, these portions of the frame located outside of the axial extent between the membrane attachment points may be configured differently than the portions within the axial extent such that all or some of the frame portions located outside of the axial extent do not compress/shorten with radial expansion.
  • the axial membrane attachment points can be at numerous different locations along the frame between the inflow and outflow edges, including at locations inset from the inflow edge, outflow edge, or both.
  • the membrane itself may also axially extend along less than the entirety of the frame (e.g., variations B-F shown in FIG. 10 ), dependent upon the axial position of the attachment points.
  • the membrane may extend beyond the inflow and/or outflow edges of the frame (e.g., variations G-K shown in FIG. 11 ).
  • the membrane portions located between axial membrane attachment points may axially shorten in conjunction with radial expansion of the frame, while the membrane portions located outside of the axial membrane attachment points (and/or outside of the frame itself) may not change in axial length.
  • suture attachments schemes shown in FIG. 12 are not limiting, as different attachment schemes are also possible.
  • suture attachments are placed at a pair of axial locations along the axial length of the membrane.
  • intermediate suture attachments may also be included along the axial length of the membrane.
  • the axial position of suture attachments is indicated in FIG. 12 , but at each indicated axial position the attachments are circumferentially distributed.
  • FIG. 13 shows a transverse cross-sectional view of implant 50 having a circumferentially-redundant membrane 52 coupled to an expanded frame 56 along a plurality of attachment points by a plurality of sutures 54 such that the transverse curvilinear extent of the membrane spanning the circumferential separation between two or more points of attachment to the frame exceeds that circumference separation.
  • frame 56 is shown in an expanded state, it is to be understood that frame 56 may be radially compressed, similar to frame 10 described above.
  • Membrane 52 is sized so as to be circumferentially larger than radially-expanded frame 56 , thereby causing the portions of membrane 52 located between the plurality of attachment points along frame 56 to bulge outward, even when frame 56 is radially expanded.
  • each radially outward transverse bulge in the membrane may be enhanced by biasing the membrane to the outward radial direction at the points of attachment by the specific means of attachment.
  • the suture attachment 54 is configured to capture and enforce folds 53 in the membrane such that an outward bias in the curve of the bulge is developed.
  • the membrane material may be configured by thickness and stiffness, for example, to create firmness of the bulges suitable to the sealing function.
  • the two sides of the membrane departing from the point of attachment may be connected at line A-B to each other as by suturing either adjacent the point of attachment alone or along an axial length to form at least a partial seam.
  • Line A-B and points of membrane connection aligned to it may be radially or axially displaced from the underlying frame by an arbitrary distance.
  • Single sutures or seams of suture or other means of connection may be used to create other or multiple folds of arbitrary biasing direction at any place in the membrane layer.
  • circumferentially-redundant membrane attachment may be employed simultaneously together with the axially-redundant membrane attachment shown and described above with respect to FIGS. 4 - 8 .
  • sealing device may also be used at the outflow end as well as at the inflow end of a tube graft or EVAR device to mitigate endoleak.
  • an intravascular device including a frame having an inflow edge, an outflow edge, and a circumferentially complete axial portion that is configured to decrease in axial length upon the radial expansion of the frame from a configuration that is radially compressed to a configuration that is radially expanded, with the radially expanded configuration being associated with the deployed condition of the intravascular device.
  • the intravascular device may also include a layer of biocompatible membrane applied and interconnected to the radially outer surface of the substantially circumferentially-complete axial portion of the frame, with the membrane layer having an axial length that exceeds the axial length of the substantially circumferentially-complete axial portion of the frame when in its expanded configuration.
  • the frame and, in particular, the circumferentially-complete axial portion of the frame includes a lattice.
  • the circumference of the biocompatible layer may exceed or not exceed the circumference of the frame portion to which it is interconnected.
  • the biocompatible membrane may be comprised of fabric or polymer material such as PTFE.
  • the biocompatible membrane is comprised of a cross-linked and processed mammalian tissue, such as porcine or bovine pericardium.
  • the membrane material may be substantially dry, radially compressed, associated to a delivery catheter, sterilized, and pre-packaged with a delivery system prior to use at implantation.
  • the biocompatible membrane layer may be interconnected to the frame at a series of circumferentially-distributed points axially displaced from the outflow edge of the frame and at a series of circumferentially-distributed points approximating the outflow edge of the frame.
  • the points of interconnection correspond to nodes or crossing points of the frame lattice.
  • the intravascular device may have alternative uses, such as, for example, transcatheter valves. In such scenarios, the inflow and outflow polarities of the frame may be reversed from that which is described above with respect to FIGS. 1 - 14 .
  • the circumferentially-complete axial portion of the frame predictably shortens axially, moving the various circumferential membrane layer interconnection points axially toward each other. Such axial movement causes the membrane layer between the interconnection points to become redundant and, therefore, to project radially outward to form a circumferentially-oriented pleat.
  • This radially-outward projection of the membrane layer is circumferential and causes the radially-outward projection of the membrane layer to be interposed between the frame and the native tissue seat, thereby allowing at least a portion of the membrane layer to act as a barrier seal to block the passage of blood between the inner surface of the vessel and the outer surface of the implant.
  • the configuration described above may act to block endoleak.
  • the device may be used for other purposes, such as reducing prosthetic paravalvular leak.
  • the interconnection points need not lie directly upon an edge of the frame or upon an edge of that circumferentially complete portion configured to predictably shorten.
  • the biocompatible membrane layer need not terminate in either axial extent at the points of interconnection.
  • the tissue layer extends at least to and is interconnected along (1) an outflow axial extent corresponding to the outflow edge of the frame and (2) an inflow axial extent between the inflow and outflow edges of the frame approximating the axially mid portion of the frame.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Prostheses (AREA)

Abstract

A sealing device for use as a vascular implant including a frame, the frame having an inflow edge and an outflow edge relative to axial blood flow within a vessel, wherein at least a partial axial extent of the frame is configured to decrease in axial length when expanded from a radially compressed configuration to a radially expanded configuration. The sealing device also includes a membrane layer coupled to a radially outward surface of the at least partial axial extent of the frame between the inflow edge and the outflow edge of the frame, wherein the membrane layer is coupled to the frame at one or more axially spaced connection points such that at least a portion of the membrane layer projects radially outward relative to the frame when the frame is in the radially-expanded configuration.

Description

    PRIORITY
  • This application is a continuation of U.S. patent application Ser. No. 16/128,047, filed Sep. 11, 2018, which claims priority to U.S. Provisional Application No. 62/556,612 filed on Sep. 11, 2017, the disclosures of which are incorporated herein by reference in their entireties.
  • BACKGROUND
  • This patent document is directed to medical implants, and, more specifically, to conduit vascular implants and related methods.
  • Aneurysms of the aorta and principal arteries of the chest, abdomen and pelvis can progress, by expansion, to life-threatening rupture. Thrombus may develop within the aneurysm and cause embolic occlusion of arteries and ischemic organ injury. Clinical approach to treatment generally involves the insertion of a tubular graft that spans the extent of the aneurysmal portion of the vessel to exclude the aneurysm from the circulation by either surgical or transcatheter means, termed “endovascular aneurysm repair”, or “EVAR”. In either case, the success of the technique depends on effective sealing between the ends of the graft and the non-aneurysmal segments of the vessel proximal to and distal to the aneurysm to prevent leaking of blood flow into the aneurysm. The open surgical approach allows for complete suturing of the graft ends to the vessel and even excision of the aneurysm. However, transcatheter device insertion has supplanted the surgical approach for most aneurysms, owing to the clinical advantages of a minimally-invasive procedure with less morbidity and rapid recovery.
  • Devices for transcatheter insertion through the femoral artery and into the abdominal aorta for exclusion of an aneurysm are typically constructed, for example, of polymer fabric configured as a tube, with a metal alloy wire form or lattice attached at the ends or throughout the length of the resulting tube graft to provide axial and radial support and for fixation of the ends of the tube graft to the vessel. Such devices must be radially compressible to a profile that is capable of being inserted into the femoral artery and then expanded within the aorta to a size that matches that of the aorta and engages its inner wall for fixation and exclusion of the aneurysm. Shape memory alloy is widely utilized in these components.
  • Despite engagement and fixation of the ends of the transcatheter tube graft, leakage of blood into the aneurysm sac is relatively common and is termed “endoleak.” Endoleak involves blood flow under normal hemodynamic pressure being conducted around the terminal edges of the conduit implant and into the aneurysm, thereby continuing to pressurize the aneurysm chamber and allowing possible progression to clinical aneurysm rupture. EVAR devices incorporate a number of features directed to limiting endoleak, including circumferential cuffs of additional graft material and stents for fixation and enhanced expansion of the graft ends against the inner wall of the vessel. Often, the vessel is susceptible to endoleak because of a short extent of mating inner surface of the vessel between the aneurysm and the origins of visceral arteries, such as the renal arteries, that cannot be covered and obstructed by the graft.
  • Existing methods and devices have shown variable effectiveness in limiting and/or preventing endoleak. Some of these devices are complex to manufacture or bulky in profile, which limits the ease of percutaneous delivery. Additionally, fabric or polymer layers have not been shown to promote biological integration of the prosthetic surface into the tissue environment of the vessel as well as do tissue membrane layers. Therefore, endoleak is a persistent problem for endovascular exclusion devices.
  • Accordingly, there is a need for a simple, reliable, low-profile device for minimizing endoleak associated with EVAR implants that is biocompatible with the native vascular intimal surface and promotes integration with the native tissue. In addition, other intravascular applications such as transcatheter heart valve implants may also benefit from devices that provide effective circumferential sealing between the implant and the native vascular site.
  • This patent document describes devices and methods that are intended to address issues discussed above and/or other issues.
  • SUMMARY
  • The summary of the disclosure is given to aid understanding of medical devices (such as vascular implants), and not with an intent to limit the disclosure or the invention. The present disclosure is directed to a person of ordinary skill in the art. It should be understood that various aspects and features of the disclosure may advantageously be used separately in some instances, or in combination with other aspects and features of the disclosure in other instances. Accordingly, variations and modifications may be made to the medical devices, the architectural structure, and their method of operation to achieve different effects.
  • In one aspect, a sealing device for use as a vascular implant comprises a frame having an inflow edge and an outflow edge relative to axial blood flow within a vessel, and a membrane layer coupled to the at least partial axial extent of the frame between the inflow edge and the outflow edge of the frame. At least a partial axial extent of the frame is configured to decrease in axial length when expanded from a radially compressed configuration to a radially expanded configuration. The membrane layer is coupled to the at least partial axial extent of the frame at one or more axially spaced connection points such that at least a portion of the membrane layer projects radially outward relative to the frame when the at least partial axial extent of the frame is in the radially-expanded configuration.
  • In some embodiments, the at least partial axial extent of the frame may be formed as a lattice structure. Optionally, the membrane layer may be coupled to the lattice structure at a plurality of axially-spaced and circumferentially-distributed connection points. Additionally and/or alternatively, the membrane layer may be coupled to the lattice structure by a plurality of sutures.
  • In one or more embodiments, the one or more connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the inflow edge of the at least partial axial extent of the frame.
  • In one or more embodiments, the one or more connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the outflow edge of the at least partial axial extent of the frame.
  • In certain other embodiments, the connection points of the frame may include one or more circumferentially-distributed connection points proximate to the outflow edge of the at least partial axial extent of the frame, one or more circumferentially-distributed connection points proximate to the inflow edge of the at least partial axial extent of the frame, and/or one or more intermediate connection points located axially between the connection points proximate the outflow edge and the connections points proximate the inflow edge. Optionally, the one or more intermediate connection points may be configured to enforce an inflow-angled fold in the membrane layer. Additionally, the one or more intermediate connection points may enforce an outflow-angled fold in the membrane layer. Furthermore, the one or more intermediate connection points may be configured to enforce both an inflow-angled and an outflow-angled fold in the membrane layer.
  • In some embodiments, the membrane layer may be formed of at least one of processed mammalian pericardium tissue, a biocompatible fabric, or a polymer material. The membrane layer may be formed of porcine and/or bovine pericardium tissue. Optionally, the membrane layer may be formed of a substantially dry tissue. In at least one embodiment, the sealing device may be in a radially-compressed condition and associated to a delivery system, and the delivery system associated with the sealing device may be provided in a sterile condition within an internally sterile package.
  • In certain embodiments, a circumferential extent of the membrane layer may exceed a circumferential extent of the frame. Alternatively, the circumferential extent of the membrane layer may not exceed a circumferential extent of the frame.
  • In at least one embodiment, the membrane layer may extend over an entire axial length of the frame. Alternatively, the membrane layer may extend over only a portion of an axial length of the frame. In yet another embodiment, the membrane layer may axially extend beyond at least one of the inflow edge or the outflow edge of the frame.
  • In some scenarios, the radially projecting portion of the membrane layer may be configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
  • In another aspect, a sealing device for use as a vascular implant is disclosed. The sealing device comprises a frame and a membrane layer. The frame is configured to have an at least partial expandable axial extent including a plurality of circumferentially distributed members configured to circumferentially separate from each other when expanded from a radially compressed configuration to a radially expanded configuration coupled to the at least partial expandable axial extent of the frame at a plurality of connection points. The membrane layer is configured to have at least a transverse curvilinear extent exceeding an underlying circumferential extent of the frame between connection points at an axial level of at least some of the connection points upon the frame.
  • In various embodiments, the connection points between the frame and the membrane layer may be circumferentially regularly spaced or circumferentially irregularly spaced.
  • In certain embodiments, the at least partial expandable axial extent of the frame may be formed as a lattice structure. Optionally, the membrane layer may be coupled to the lattice structure at a plurality of axially-spaced and circumferentially-distributed connection points by, for example, a plurality of sutures.
  • In some embodiments, the connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the inflow edge of the at least partial expandable axial extent of the frame. Additionally and/or alternatively, the one or more connection points of the frame may include a plurality of circumferentially-distributed connection points proximate to the outflow edge of the at least partial expandable axial extent of the frame. Optionally, the connection points of the frame may include one or more circumferentially-distributed connection points proximate to the outflow edge of the axial extent of the frame, one or more circumferentially-distributed connection points proximate to the inflow edge of the axial extent of the frame, and/or one or more intermediate connection points located axially between the connection points proximate the outflow edge and the connection points proximate the inflow edge.
  • In at least one embodiment, wherein the membrane layer may be formed of processed mammalian pericardium tissue (e.g., bovine or porcine), a biocompatible fabric, and/or a polymer material.
  • Optionally, the membrane layer may be formed of a substantially dry tissue. In at least one embodiment, the sealing device may be in a radially-compressed condition and associated to a delivery system, and the delivery system associated with the sealing device may be provided in a sterile condition within an internally sterile package.
  • In at least one embodiment, the membrane layer may extend over an entire axial length of the frame. Alternatively, the membrane layer may extend over only a portion of an axial length of the frame. In yet another embodiment, the membrane layer may axially extend beyond at least one of the inflow edge or the outflow edge of the frame. In some embodiments, the membrane layer may extend over an entire circumferential length of the frame and/or over only a portion of a circumferential length of the frame.
  • In some scenarios, the radially projecting portion of the membrane layer may be configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
  • Additionally and/or alternatively, the radially projecting portion of the membrane layer may be configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
  • In some other scenarios, one or more of the connections at the connection points may enforce a radially outwardly angled direction upon the membrane layer adjacent the connection points.
  • In various embodiments, two or more portions of the membrane layer may be connected at connection points independent of the connections to the frame and/or may form one of a linear or curvilinear seam of at least two points.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a radially-compressed cylindrical lattice frame for a vascular implant, according to an embodiment.
  • FIG. 2 illustrates an expanded cylindrical lattice frame for a vascular implant, according to an embodiment.
  • FIG. 3 illustrates a membrane layer for a vascular implant in an axially-shortened state, according to an embodiment.
  • FIG. 4 illustrates a longitudinal cross-sectional view of suture attachment of a membrane layer to a lattice frame for a vascular implant in both a radially-compressed configuration and a radially-expanded configuration, according to an embodiment.
  • FIG. 5 illustrates a side elevation view of an axially-shortened membrane layer on a radially-expanded lattice frame for a vascular implant, according to an embodiment.
  • FIG. 6 illustrates a side elevation view of an axially-shortened membrane layer coupled to a radially-expanded lattice frame, according to an embodiment.
  • FIG. 7 illustrates a side elevation view of an axially-shortened membrane layer coupled to a radially-expanded lattice frame, according to another embodiment.
  • FIG. 8 illustrates a side elevation view of an axially-shortened membrane layer coupled to a radially expanded lattice frame and deployed within a vessel, according to an embodiment.
  • FIG. 9 illustrates a plurality of side elevation views of variations in axial position of attachment points along a radially compressed lattice frame, according to various embodiments.
  • FIG. 10 illustrates a plurality of side elevation views of variations in axial position of membranes along a radially compressed lattice frame, according to various embodiments.
  • FIG. 11 illustrates a plurality of side elevation views of variations in axial position of membranes along a radially compressed lattice frame, according to various embodiments.
  • FIG. 12 illustrates a plurality of side elevation views of variations in axial position of membranes along a radially compressed lattice frame showing variations of attachments of the membrane to the frame, according to various embodiments.
  • FIG. 13 illustrates a transverse cross section of a vascular implant, according to another embodiment.
  • FIG. 14 illustrates a transverse cross section of the vascular implant of FIG. 13 expanded within a vessel.
  • DETAILED DESCRIPTION
  • The following description is made for the purpose of illustrating the general principles of the present system and method and is not meant to limit the inventive concepts claimed in this document. Further, particular features described in this document can be used in combination with other described features in each of the various possible combinations and permutations.
  • Unless otherwise specifically defined in this document, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
  • It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless otherwise specified. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. All publications mentioned in this document are incorporated by reference. Nothing in this document is to be construed as an admission that the embodiments described in this document are not entitled to antedate such disclosure by virtue of prior invention. As used herein, the term “comprising” means “including, but not limited to”. Additionally, use the term “couple”, “coupled”, or “coupled to” may imply that two or more elements may be directly connected or may be indirectly coupled through one or more intervening elements.
  • In this document, position-identifying terms such as “inflow”, “outflow”, “vertical”, “horizontal”, “front”, “rear”, “top”, and “bottom” are not intended to limit the invention to a particular direction or orientation, but instead are only intended to denote relative positions, or positions corresponding to directions shown when a vascular implant is oriented as shown in the Figures. Accordingly, the provided orienting descriptions of the device do not limit its use to the inflow end of an exclusion graft or device; the device may also be used at the outflow end of an exclusion graft or device.
  • Referring to FIG. 1 , a radially-compressed (or radially-crimped) cylindrical lattice frame 10 for use in, e.g., a vascular implant, is illustrated. For clarity of illustration, only the foreground portion of cylindrical lattice frame 10 is shown in FIG. 1 , with the background portion omitted. Frame 10 may be used in conjunction with a transcatheter tube graft implant. Accordingly, frame 10 may be formed of any appropriate biocompatible material, such as stainless steel, gold, titanium, cobalt-chromium alloy, tantalum alloy, nitinol, one or more biocompatible polymers, etc.
  • Frame 10 includes an inflow edge 50 and an outflow edge 52 relative to axial blood flow within a vessel in which the implant is placed. Frame 10 may be formed by a plurality of arms 15 interconnected by a plurality of circumferentially-distributed connection nodes 16 to form a cylindrical lattice structure. The lattice structure of frame 10 may be originally fabricated or cut in the configuration shown in FIG. 1 . However, it is to be understood that frame 10 may be formed by any appropriate method, and is not limited by the lattice structure illustrated in FIG. 1 .
  • As shown in FIG. 1 , when frame 10 is in a radially-compressed state, an axial distance x exists between two random (but approximately circumferentially-aligned) node points 12, 17 having respective baselines 14, 18. However, when the cylindrical lattice structure of frame 10 is radially expanded, as illustrated in FIG. 2 , the overall axial length of frame 10 between points 12 and 17 shortens. For example, in a radially-expanded state, the axial distance between node points 12, 17 becomes a distance Fx between baselines 20, 18, with distance Fx being shorter than distance x between baselines 14, 18. Thus, when used in a vascular implant, radial expansion of frame 10 in the direction of the vessel walls leads to axial compression of frame 10.
  • Referring now to FIG. 3 , a membrane layer 22 configured for use in conjunction with frame 10 is illustrated. Indicated by arrows, as membrane layer 22 axially shortens from baseline 14 to baseline 20, a redundant portion 23 of membrane layer 22 is then projected out of plane, corresponding to the radially-outward direction from the underlying frame 10. This redundant material 23 increases the membrane layer local material density which occupies the space between the frame 10 and the inner surface of the vascular wall, adding to the sealing function of the membrane layer 22. While shown (for ease of illustration) as a substantially flat sheet in FIG. 3 , it is to be understood that membrane layer 22 may be cylindrically wrapped or otherwise formed around frame 10 to form a cylindrical, tube-like structure. As will be discussed further below, in accordance with some embodiments, membrane layer 22 may be formed as an axially-complete layer over the entire axial length of frame 10. However, in accordance with other embodiments, membrane layer 22 may be formed as an axially-incomplete layer of the length of frame 10. Furthermore, in some embodiments, the axial length of membrane layer 22 may exceed the axial length of frame 10. Additionally, in some embodiments, the circumferential extent of the membrane layer 22 may not exceed the circumferential extent of underlying frame 10, while in other embodiments, the circumferential extent of the membrane layer 22 does exceed the circumferential extent of underlying frame 10.
  • Membrane layer 22 may be formed of any appropriate biocompatible material, such as, for example, processed mammalian pericardium tissue (e.g., porcine or bovine pericardium), a biocompatible fabric, a polymer material (e.g., polytetrafluoroethylene (PTFE)), etc.
  • Membrane layer 22 may be coupled at least partially to an outer surface frame 10 by any appropriate method. For example, FIG. 4 shows a cross-sectional view of a single side of the membrane layer and frame members at points of interconnection. As shown in FIG. 4 , portions of membrane layer 22 are coupled to a plurality of circumferentially-distributed and axially-separated connection points 25, 26, 27 of frame 10 through respective sutures 28. In one aspect of the present disclosure, a fold 24 may be created during the coupling of membrane layer 22 to an intermediate connection point(s) 26 that is axially between the inflow-side connection point(s) 25 and the outflow-side connection point(s) 27. For example, referring to configuration “A” of FIG. 4 , which illustrates the membrane layer 22 coupled to frame 10 when frame 10 is in the radially-compressed configuration shown in FIG. 1 , two sides of fold 23 at the base of projecting fold 24 are coupled to the intermediate connection point(s) 26 by a suture 28 such that the fold 24 is effectively biased to one side of the intermediate connection point(s) 26. When frame 10 is radially expanded (as shown in FIG. 2 ), the accompanying axial compression of at least a portion of frame 10 from an axial distance x to an axial distance Fx causes the coupled membrane layer 22 to similarly compress. Due to two sides of fold 23 being coupled to the intermediate connection point(s) 26, such axial compression of frame 10 to axial distance Fx also causes membrane layer 22 to radially project outward, away from frame 10, as is shown in configuration “B” of FIG. 4 . As will be described further below, this radially-outward projection of membrane layer 22 at fold 24 may provide for improved sealing between the transcatheter tube graft implant and a vessel to mitigate endoleaks around the periphery of the implant.
  • As shown in FIG. 4 , membrane layer 22 not only projects radially outward away from frame 10, but also projects at least partially upward (e.g., toward an inflow end relative to blood flow through a vessel). This upward projection is due to the orientation in which the two sides of membrane layer 22 are overlapped when coupled to intermediate connection point(s) 26. Thus, it is also possible for the membrane layer 22 to be overlapped in the direction opposite of that shown in FIG. 4 , which would cause membrane layer 22 to project both radially outward and downward away from frame 10. Furthermore, while not shown, membrane layer 22 may be overlapped and connected to connection point(s) 26 such that the fold 24 may be expanded to project both toward an upward (inflow) end and a downward (outflow) end of the frame. It is to be understood that similar folds in the membrane layer may be configured at other and possibly multiple points of connection or between points of connection by sutures or other means not connecting membrane layer 22 to frame 10.
  • Referring to FIG. 5 , a simplified view of an implant 30 in accordance with an aspect of the disclosure is illustrated. For clarity, sutures or other interconnection means between the membrane layer 22 and frame 10 are omitted from FIG. 5 . As described above with respect to FIG. 4 , when frame 10 is radially expanded (and axially compressed), the surrounded membrane layer 22 is also axially compressed, resulting in the fold 24 projecting radially outward around the entire circumference of frame 10. The radial projection formed by fold 24 may act as a seal between the membrane layer 22 and the vessel walls (not shown) when implant 30 is placed in a desired location, with fold 24 of membrane layer 22 blocking some or all of the blood flowing around the periphery of implant 30, thereby mitigating endoleaks, as indicated by arrows 29.
  • As shown in FIG. 6 , implant 30 may include a plurality of sutures 28 utilized to couple the membrane layer to a plurality of connection points of the frame 10. In addition, a tube graft 32 may be coupled to the outflow side of frame 10. An inflow side of tube graft 32 may overlap with an outflow side of membrane layer 22, with the inflow side of tube graft 32 configured to share the sutures 28 coupling membrane layer 22 to frame 10. Once again, while sutures 28 are illustrated, it is to be understood that any appropriate connection means between the membrane layer, tube graft, and frame may be utilized.
  • Sutures (or other connectors) 28 coupling membrane layer 22 to frame 10 need not lie directly upon an inflow or outflow edge of frame 10, as only axial separation between the circumferential connection points 25, 26, 27 (shown in FIG. 4 ) is needed if there is axial shortening of the corresponding circumferentially-complete underlying portion of the frame 10 upon radially expansion of the frame 10. Further, the biocompatible membrane layer 22 need not terminate in either inflow or outflow ends of the axial extent of the frame 10. For example, in one aspect of the present disclosure, the membrane layer 22 may extend at least to and be interconnected along (1) an outflow end of the axial extent corresponding to the outflow edge of the frame 10 and (2) an inflow end of the axial extent between the inflow and outflow edges of the frame 10 approximating the axially mid portion of the frame 10, such as that which is shown in FIGS. 5-6 .
  • Referring now to FIGS. 7-8 , an implant 34 in accordance with another aspect of the present disclosure is illustrated. Unlike the membrane layer 22 described above with respect to FIG. 6 , which formed a sealing device separate from tube graft 32, implant 34 includes a tube graft 36 in which the sealing device is integrally formed on an inflow end of tube graft 36. Specifically, a portion of tube graft 36 is disposed at least partially around a frame 10 and coupled to frame 10 via sutures 28 in a manner similar to that described above with respect to FIG. 4 . When frame 10 is radially expanded (as shown in FIG. 7 ), the portion of tube graft 36 surrounding frame 10 axially compresses, thereby causing one or more folds 46 to project radially outward, allowing this radially projecting portion of tube graft 36 to form a seal against some or all blood flowing around the periphery of implant 34 as indicated by arrows 29.
  • FIG. 8 illustrates the implant 34 as described above with respect to FIG. 7 deployed within, e.g., a vessel portion 40 shown in cross-section. As is shown, the radially projecting folds 46 of tube graft 36 are configured to at least partially compress against the inner walls 42 of vessel 40 when frame 10 is radially expanded, thereby providing an effective barrier seal against endoleak or other fluid flow past the outer periphery of implant. In the embodiment shown in FIG. 8 , folds 46 are shown as being compressed against the inner walls 42 and angled toward the inflow end of the frame. However, as described above, implant 34 could alternatively be configured such that folds 46 are compressed against inner walls 42 and angled toward the outflow end of the frame.
  • While FIG. 2 shows the entirety of frame 10 being axially compressed when in a radially-expanded state, it is to be understood that, in some embodiments, only a certain axial extent of frame 10 may be axially compressed when in a radially-expanded state. That is, in some embodiments, portions of frame 10 may be capable of remaining substantially constant in axial length, even when frame 10 is expanded radially, while other portions along an axial extent of the frame 10 may axially compress.
  • For example, referring to FIG. 9 , a plurality of example variations of axial membrane attachment points on a radially-compressed frame are shown, with the axial membrane attachment points being indicated by inwardly-pointed arrows. As is shown in FIG. 9 , the axial membrane attachment points can be at numerous different locations along the frame between the inflow and outflow edges, including at locations inset from the inflow edge, outflow edge, or both. In variations in which the axial extent of the membrane attachment points does not extend entirely to the inflow and outflow edges (e.g., variations B-F shown in FIG. 9 ), the portions of the frame located outside of the axial extent between the membrane attachment points do not necessarily need to axially shorten during radial expansion in order to achieve a desired radial projection in the membrane. Accordingly, these portions of the frame located outside of the axial extent between the membrane attachment points may be configured differently than the portions within the axial extent such that all or some of the frame portions located outside of the axial extent do not compress/shorten with radial expansion.
  • Similarly, referring to FIGS. 10-11 , a plurality of example variations in the axial extent and position of the membrane relative to a radially-compressed frame are illustrated. As discussed above with respect to FIG. 9 , the axial membrane attachment points can be at numerous different locations along the frame between the inflow and outflow edges, including at locations inset from the inflow edge, outflow edge, or both. Accordingly, the membrane itself may also axially extend along less than the entirety of the frame (e.g., variations B-F shown in FIG. 10 ), dependent upon the axial position of the attachment points. Additionally and/or alternatively, the membrane may extend beyond the inflow and/or outflow edges of the frame (e.g., variations G-K shown in FIG. 11 ). In such configurations, the membrane portions located between axial membrane attachment points may axially shorten in conjunction with radial expansion of the frame, while the membrane portions located outside of the axial membrane attachment points (and/or outside of the frame itself) may not change in axial length.
  • Referring to FIG. 12 , a plurality of example variations of suture attachment schemes for the attachment of the membrane to the radially-compressed frame are shown. It is to be understood that the suture attachments schemes shown in FIG. 12 are not limiting, as different attachment schemes are also possible. In some variations (e.g., variations B-D), suture attachments are placed at a pair of axial locations along the axial length of the membrane. However, in other variations (e.g., variations A, E, F), intermediate suture attachments may also be included along the axial length of the membrane. In accordance with the depiction of the cross-sectional view of the generally cylindrically disposed membrane layer, it is to be understood that the axial position of suture attachments is indicated in FIG. 12 , but at each indicated axial position the attachments are circumferentially distributed.
  • Next, referring to FIGS. 13-14 , an implant 50 in accordance with another aspect of the disclosure is illustrated. Specifically, FIG. 13 shows a transverse cross-sectional view of implant 50 having a circumferentially-redundant membrane 52 coupled to an expanded frame 56 along a plurality of attachment points by a plurality of sutures 54 such that the transverse curvilinear extent of the membrane spanning the circumferential separation between two or more points of attachment to the frame exceeds that circumference separation. While frame 56 is shown in an expanded state, it is to be understood that frame 56 may be radially compressed, similar to frame 10 described above. Membrane 52 is sized so as to be circumferentially larger than radially-expanded frame 56, thereby causing the portions of membrane 52 located between the plurality of attachment points along frame 56 to bulge outward, even when frame 56 is radially expanded. As shown in the inset figure of FIG. 13 , each radially outward transverse bulge in the membrane may be enhanced by biasing the membrane to the outward radial direction at the points of attachment by the specific means of attachment. In the example shown in the inset figure, the suture attachment 54 is configured to capture and enforce folds 53 in the membrane such that an outward bias in the curve of the bulge is developed. The membrane material may be configured by thickness and stiffness, for example, to create firmness of the bulges suitable to the sealing function. In another biasing mechanism indicated in the inset figure, the two sides of the membrane departing from the point of attachment may be connected at line A-B to each other as by suturing either adjacent the point of attachment alone or along an axial length to form at least a partial seam. Line A-B and points of membrane connection aligned to it may be radially or axially displaced from the underlying frame by an arbitrary distance. Single sutures or seams of suture or other means of connection may be used to create other or multiple folds of arbitrary biasing direction at any place in the membrane layer.
  • As shown in FIG. 14 , when implant 50 is expanded within a vessel 58, the outwardly-bulging portions of membrane 52 are compressed against the inner walls of vessel 58 to create a plurality of folds/wrinkles in the membrane 52, thereby forming a radial and circumferential seal between the implant 50 and the inner walls of vessel 58.
  • While not shown in FIGS. 13-14 , it is to be understood that the circumferentially-redundant membrane attachment may be employed simultaneously together with the axially-redundant membrane attachment shown and described above with respect to FIGS. 4-8 .
  • While not shown in FIGS. 6-14 , it is to be understood that the sealing device may also be used at the outflow end as well as at the inflow end of a tube graft or EVAR device to mitigate endoleak.
  • In accordance with FIGS. 1-14 described above, various aspects of the present disclosure describe an intravascular device including a frame having an inflow edge, an outflow edge, and a circumferentially complete axial portion that is configured to decrease in axial length upon the radial expansion of the frame from a configuration that is radially compressed to a configuration that is radially expanded, with the radially expanded configuration being associated with the deployed condition of the intravascular device. The intravascular device may also include a layer of biocompatible membrane applied and interconnected to the radially outer surface of the substantially circumferentially-complete axial portion of the frame, with the membrane layer having an axial length that exceeds the axial length of the substantially circumferentially-complete axial portion of the frame when in its expanded configuration.
  • In some aspects of the present disclosure, the frame and, in particular, the circumferentially-complete axial portion of the frame, includes a lattice.
  • The circumference of the biocompatible layer may exceed or not exceed the circumference of the frame portion to which it is interconnected.
  • The biocompatible membrane may be comprised of fabric or polymer material such as PTFE. In some aspects of the present disclosure, the biocompatible membrane is comprised of a cross-linked and processed mammalian tissue, such as porcine or bovine pericardium. The membrane material may be substantially dry, radially compressed, associated to a delivery catheter, sterilized, and pre-packaged with a delivery system prior to use at implantation.
  • In the example where the intravascular device is a framed tube graft for endovascular exclusion of an aneurysmal defect, the biocompatible membrane layer may be interconnected to the frame at a series of circumferentially-distributed points axially displaced from the outflow edge of the frame and at a series of circumferentially-distributed points approximating the outflow edge of the frame. In some aspects of the present disclosure, the points of interconnection correspond to nodes or crossing points of the frame lattice. However, in other aspects, the intravascular device may have alternative uses, such as, for example, transcatheter valves. In such scenarios, the inflow and outflow polarities of the frame may be reversed from that which is described above with respect to FIGS. 1-14 .
  • When the frame including the circumferentially-complete axial portion is deployed from a radially-compressed to a fully radially-expanded condition, the circumferentially-complete axial portion of the frame predictably shortens axially, moving the various circumferential membrane layer interconnection points axially toward each other. Such axial movement causes the membrane layer between the interconnection points to become redundant and, therefore, to project radially outward to form a circumferentially-oriented pleat. This radially-outward projection of the membrane layer is circumferential and causes the radially-outward projection of the membrane layer to be interposed between the frame and the native tissue seat, thereby allowing at least a portion of the membrane layer to act as a barrier seal to block the passage of blood between the inner surface of the vessel and the outer surface of the implant. In the example of an EVAR device, the configuration described above may act to block endoleak. However, the device may be used for other purposes, such as reducing prosthetic paravalvular leak.
  • As long as there is axial separation of these two series of circumferential interconnection points, and there is axial shortening of the corresponding circumferentially complete underlying portion of the frame on expansion from the compressed or crimped configuration, then the interconnection points need not lie directly upon an edge of the frame or upon an edge of that circumferentially complete portion configured to predictably shorten. Further, the biocompatible membrane layer need not terminate in either axial extent at the points of interconnection. In at least one embodiment, the tissue layer extends at least to and is interconnected along (1) an outflow axial extent corresponding to the outflow edge of the frame and (2) an inflow axial extent between the inflow and outflow edges of the frame approximating the axially mid portion of the frame.
  • The above-disclosed features and functions, as well as alternatives, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements may be made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.

Claims (21)

1. A sealing device for use as a vascular implant comprising:
a frame, the frame having an inflow edge and an outflow edge relative to axial blood flow within a vessel, wherein an at least partial axial extent of the frame is configured to decrease in axial length when expanded from a radially compressed configuration to a radially expanded configuration; and
a membrane layer coupled to the at least partial axial extent of the frame between the inflow edge and the outflow edge of the frame, wherein the membrane layer is coupled to an outer surface of the at least partial axial extent of the frame at one or more axially spaced connection points such that at least a portion of the membrane layer projects radially outward relative to the frame when the at least partial axial extent of the frame is in the radially-expanded configuration, the portion of the membrane layer being included between the one or more axially spaced connection points such that the transverse curvilinear extent does not have underlying frame members.
2. The sealing device of claim 1, wherein the at least partial axial extent of the frame is formed as a lattice structure.
3. The sealing device of claim 2, wherein the membrane layer is coupled to the lattice structure at a plurality of axially-spaced and circumferentially-distributed connection points.
4. The sealing device of claim 3, wherein the membrane layer is coupled to the lattice structure by a plurality of sutures.
5. The sealing device of claim 1, wherein the one or more axially spaced connection points of the frame include a plurality of circumferentially-distributed connection points proximate to the inflow edge of the at least partial axial extent of the frame.
6. The sealing device of claim 1, wherein the one or more axially spaced connection points of the frame include a plurality of circumferentially-distributed connection points proximate to the outflow edge of the at least partial axial extent of the frame.
7. The sealing device of claim 1, wherein the axially spaced connection points of the frame include one or more circumferentially-distributed connection points proximate to the outflow edge of the at least partial axial extent of the frame, one or more circumferentially-distributed connection points proximate to the inflow edge of the at least partial axial extent of the frame, and one or more intermediate connection points located axially between the connection points proximate the outflow edge and the connections points proximate the inflow edge.
8. The sealing device of claim 7, wherein the one or more intermediate connection points enforce an inflow-angled fold in the membrane layer.
9. The sealing device of claim 7, wherein the one or more intermediate connection points enforce an outflow-angled fold in the membrane layer.
10. The sealing device of claim 7, wherein the one or more intermediate connection points enforces both an inflow-angled and an outflow-angled fold in the membrane layer.
11. The sealing device of claim 1, wherein the membrane layer is formed of at least one of processed mammalian pericardium tissue, a biocompatible fabric, or a polymer material.
12. The sealing device of claim 11, wherein the membrane layer is formed of at least one of porcine or bovine pericardium tissue.
13. The sealing device of claim 11, wherein the membrane layer is formed of a substantially dry tissue.
14. The sealing device of claim 13, wherein the sealing device is in a radially-compressed condition, associated to a delivery system, and provided together with the delivery system in a sterile condition within an internally sterile package.
15. The sealing device of claim 1, wherein a circumferential extent of the membrane layer exceeds a circumferential extent of the frame.
16. The sealing device of claim 1, wherein a circumferential extent of the membrane layer does not exceed a circumferential extent of the frame.
17. The sealing device of claim 1, wherein the membrane layer extends over an entire axial length of the frame.
18. The sealing device of claim 1, wherein the membrane layer extends over only a portion of an axial length of the frame.
19. The sealing device of claim 1, wherein the membrane layer axially extends beyond at least one of the inflow edge or the outflow edge of the frame.
20. The sealing device of claim 1, wherein the radially projecting portion of the membrane layer is configured to contact an inner wall of the vessel to cause an impeding of blood flow over an outer surface of the sealing device.
21.-44. (canceled)
US17/814,018 2017-09-11 2022-07-21 Conduit vascular implant sealing device for reducing endoleaks Pending US20230146006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/814,018 US20230146006A1 (en) 2017-09-11 2022-07-21 Conduit vascular implant sealing device for reducing endoleaks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762556612P 2017-09-11 2017-09-11
US16/128,047 US11395726B2 (en) 2017-09-11 2018-09-11 Conduit vascular implant sealing device for reducing endoleaks
US17/814,018 US20230146006A1 (en) 2017-09-11 2022-07-21 Conduit vascular implant sealing device for reducing endoleaks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/128,047 Continuation US11395726B2 (en) 2017-09-11 2018-09-11 Conduit vascular implant sealing device for reducing endoleaks

Publications (1)

Publication Number Publication Date
US20230146006A1 true US20230146006A1 (en) 2023-05-11

Family

ID=65630199

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/128,047 Active 2039-06-07 US11395726B2 (en) 2017-09-11 2018-09-11 Conduit vascular implant sealing device for reducing endoleaks
US17/814,018 Pending US20230146006A1 (en) 2017-09-11 2022-07-21 Conduit vascular implant sealing device for reducing endoleaks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/128,047 Active 2039-06-07 US11395726B2 (en) 2017-09-11 2018-09-11 Conduit vascular implant sealing device for reducing endoleaks

Country Status (2)

Country Link
US (2) US11395726B2 (en)
WO (1) WO2019051476A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US10653522B1 (en) 2018-12-20 2020-05-19 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valve prosthesis
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
EP4364706A2 (en) 2019-03-05 2024-05-08 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US10631983B1 (en) 2019-03-14 2020-04-28 Vdyne, Inc. Distal subannular anchoring tab for side-delivered transcatheter valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US10758346B1 (en) 2019-03-14 2020-09-01 Vdyne, Inc. A2 clip for side-delivered transcatheter mitral valve prosthesis
JP2022530764A (en) 2019-05-04 2022-07-01 ブイダイン,インコーポレイテッド Tightening device and method for deploying a laterally delivered artificial heart valve with a native annulus.
CA3152042A1 (en) 2019-08-20 2021-02-25 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
AU2020337235A1 (en) 2019-08-26 2022-03-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery

Family Cites Families (419)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014024A (en) 1958-03-19 1961-12-19 Johnson & Johnson Collagen film
US3105492A (en) 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
US3029819A (en) 1959-07-30 1962-04-17 J L Mcatee Artery graft and method of producing artery grafts
US3320972A (en) 1964-04-16 1967-05-23 Roy F High Prosthetic tricuspid valve and method of and device for fabricating same
US3409914A (en) 1966-07-01 1968-11-12 Avco Corp Connector for blood pumps and the like
AT261800B (en) 1966-08-22 1968-05-10 Braun Internat Gmbh B Process for the manufacture of tubular, smooth or threaded tissue-blood vessel prostheses
US3548417A (en) 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
US3588920A (en) 1969-09-05 1971-06-29 Sigmund A Wesolowski Surgical vascular prostheses formed of polyester fiber paper
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3878565A (en) 1971-07-14 1975-04-22 Providence Hospital Vascular prosthesis with external pile surface
US3709175A (en) 1971-07-26 1973-01-09 Cutter Lab Fabricating equipment for tissue type heart valve
US3945052A (en) 1972-05-01 1976-03-23 Meadox Medicals, Inc. Synthetic vascular graft and method for manufacturing the same
US4291420A (en) 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US3986828A (en) 1974-03-05 1976-10-19 Meadox Medicals, Inc. Polymer fabric compacting process
GB1485908A (en) 1974-05-21 1977-09-14 Nath G Apparatus for applying light radiation
US3966401A (en) 1974-07-01 1976-06-29 Hancock Laboratories Incorporated Preparing natural tissue for implantation so as to provide improved flexibility
US3983581A (en) 1975-01-20 1976-10-05 William W. Angell Heart valve stent
FR2306671A1 (en) 1975-04-11 1976-11-05 Rhone Poulenc Ind VALVULAR IMPLANT
US4011947A (en) 1975-05-22 1977-03-15 Philip Nicholas Sawyer Packaged prosthetic device
US4060081A (en) 1975-07-15 1977-11-29 Massachusetts Institute Of Technology Multilayer membrane useful as synthetic skin
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4084268A (en) 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
US4082507A (en) 1976-05-10 1978-04-04 Sawyer Philip Nicholas Prosthesis and method for making the same
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
DK229077A (en) 1977-05-25 1978-11-26 Biocoating Aps HEARTBALL PROSTHET AND PROCEDURE FOR MANUFACTURING IT
US4164045A (en) 1977-08-03 1979-08-14 Carbomedics, Inc. Artificial vascular and patch grafts
US4172295A (en) 1978-01-27 1979-10-30 Shiley Scientific, Inc. Tri-cuspid three-tissue prosthetic heart valve
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4340977A (en) 1980-09-19 1982-07-27 Brownlee Richard T Catenary mitral valve replacement
US4388735A (en) 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
DE3042860A1 (en) 1980-11-13 1982-06-09 Heyl & Co Chemisch-Pharmazeutische Fabrik, 1000 Berlin COLLAGEN PREPARATIONS, METHODS FOR THEIR PRODUCTION AND THEIR USE IN HUMAN AND VETERINE MEDICINE
IT1144379B (en) 1981-07-14 1986-10-29 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS
US4350492A (en) 1981-08-24 1982-09-21 Vascor, Inc. Method for preparing tissue heart valve
US4364127A (en) 1981-10-02 1982-12-21 Research Corporation Trileaflet type prosthetic heart valve
US7018407B1 (en) 1981-10-29 2006-03-28 Medtronic Valve holder for tricuspid heart valve
EP0084395B1 (en) 1982-01-20 1986-08-13 Martin Morris Black Artificial heart valves
GR77865B (en) 1982-03-25 1984-09-25 Coats Ltd J & P
US4473423A (en) 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
US4456589A (en) 1982-07-08 1984-06-26 Genetic Laboratories, Inc. Preparation of animal tissues for surgical implantation in human recipients
US4517687A (en) 1982-09-15 1985-05-21 Meadox Medicals, Inc. Synthetic woven double-velour graft
US4477930A (en) 1982-09-28 1984-10-23 Mitral Medical International, Inc. Natural tissue heat valve and method of making same
US4801299A (en) 1983-06-10 1989-01-31 University Patents, Inc. Body implants of extracellular matrix and means and methods of making and using such implants
US4631052A (en) 1984-01-03 1986-12-23 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
CA1239122A (en) 1984-02-09 1988-07-12 Toshio Komatsu Package containing quality-retaining agent
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
IT1208326B (en) 1984-03-16 1989-06-12 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS PROVIDED WITH VALVES OF ORGANIC FABRIC
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4728328A (en) 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4600533A (en) 1984-12-24 1986-07-15 Collagen Corporation Collagen membranes for medical use
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
US4798611A (en) 1986-10-14 1989-01-17 Hancock Jaffe Laboratories Enhancement of xenogeneic tissue
IT1202558B (en) 1987-02-17 1989-02-09 Alberto Arpesani INTERNAL PROSTHESIS FOR THE REPLACEMENT OF A PART OF THE HUMAN BODY PARTICULARLY IN THE VASCULAR OPERATIONS
US4743231A (en) 1987-07-06 1988-05-10 Pharmacia Nutech Drug administration needle unit
US4870966A (en) 1988-02-01 1989-10-03 American Cyanamid Company Bioabsorbable surgical device for treating nerve defects
US4976733A (en) 1988-02-03 1990-12-11 Biomedical Design, Inc. Prevention of prosthesis calcification
US4892539A (en) 1988-02-08 1990-01-09 D-R Medical Systems, Inc. Vascular graft
US5746775A (en) 1988-04-01 1998-05-05 The Board Of Regent6S Of The University Of Michigan Method of making calcification-resistant bioprosthetic tissue
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
US5006104A (en) 1988-11-07 1991-04-09 The Cleveland Clinic Foundation Heart pump having contractible guide mechanism for pusher plate
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
US5171273A (en) 1989-01-13 1992-12-15 University Of Medicine And Dentistry Of New Jersey Synthetic collagen orthopaedic structures such as grafts, tendons and other structures
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US6004330A (en) 1989-08-16 1999-12-21 Medtronic, Inc. Device or apparatus for manipulating matter
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US5413601A (en) 1990-03-26 1995-05-09 Keshelava; Viktor V. Tubular organ prosthesis
US5080660A (en) 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
IT9084979A1 (en) 1990-07-30 1992-01-31 Imad Sheiban PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTIC CATHETER WITH TWO BALLOONS AT ITS DISTAL END ONE OF SMALL DIAMETER (1, 5MM. FOLLOWED BY ANOTHER BALLOON OF GREATER DIAMETER VARIABLE FROM 2, 5 TO 4 MM THE BALLOON THE SMALL BALLOON
US5549664A (en) 1990-07-31 1996-08-27 Ube Industries, Ltd. Artificial blood vessel
US5139515A (en) 1990-08-15 1992-08-18 Francis Robicsek Ascending aortic prosthesis
US5336616A (en) 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5052771A (en) 1990-12-21 1991-10-01 Eastman Kodak Company Integrated electro-optical scanner
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
CA2101557A1 (en) 1991-02-14 1992-08-15 Roger Tu Pliable biological graft materials and their methods of manufacture
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
EP0583410B1 (en) 1991-05-16 2001-07-25 Mures Cardiovascular Research, Inc. Cardiac valve
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5374539A (en) 1991-06-17 1994-12-20 Nimni; Marcel E. Process for purifying collagen and generating bioprosthesis
US6029671A (en) 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US5203328A (en) 1991-07-17 1993-04-20 Georgia Tech Research Corporation Apparatus and methods for quantitatively measuring molecular changes in the ocular lens
US5522879A (en) 1991-11-12 1996-06-04 Ethicon, Inc. Piezoelectric biomedical device
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5383927A (en) 1992-05-07 1995-01-24 Intervascular Inc. Non-thromogenic vascular prosthesis
AU678350B2 (en) 1992-05-08 1997-05-29 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5261878A (en) 1992-05-19 1993-11-16 The Regents Of The University Of California Double balloon pediatric ductus arteriosus stent catheter and method of using the same
US5449384A (en) 1992-09-28 1995-09-12 Medtronic, Inc. Dynamic annulus heart valve employing preserved porcine valve leaflets
EP0596145B1 (en) 1992-10-31 1996-05-08 Schneider (Europe) Ag Disposition for implanting a self-expanding endoprothesis
US6283127B1 (en) 1992-12-03 2001-09-04 Wesley D. Sterman Devices and methods for intracardiac procedures
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US7213601B2 (en) 1993-02-22 2007-05-08 Heartport, Inc Minimally-invasive devices and methods for treatment of congestive heart failure
US6125852A (en) 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
US20020029783A1 (en) 1993-02-22 2002-03-14 Stevens John H. Minimally-invasive devices and methods for treatment of congestive heart failure
US6010531A (en) 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
EP0958795A3 (en) 1993-08-20 2001-04-04 Kanji Inoue Appliance to be implanted and device for introducing the collapsed appliance into a catheter
DE69433617T2 (en) 1993-09-30 2005-03-03 Endogad Research Pty Ltd. INTRALUMINAL TRANSPLANT
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
DE4340072C2 (en) 1993-11-24 1996-05-15 Siemens Ag Device for examining tissue with light
US5509930A (en) 1993-12-17 1996-04-23 Autogenics Stentless heart valve
US5476506A (en) 1994-02-08 1995-12-19 Ethicon, Inc. Bi-directional crimped graft
AU2391795A (en) 1994-04-22 1995-11-16 Medtronic, Inc. Stented bioprosthetic heart valve
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US5931969A (en) 1994-07-29 1999-08-03 Baxter International Inc. Methods and apparatuses for treating biological tissue to mitigate calcification
CA2147547C (en) 1994-08-02 2006-12-19 Peter J. Schmitt Thinly woven flexible graft
DE4430485C1 (en) 1994-08-27 1996-03-07 Braun B Surgical Gmbh Textile vascular prosthesis, process for its manufacture and tools for its manufacture
US5549666A (en) 1994-09-02 1996-08-27 Baxter International Inc. Natural tissue valve prostheses having variably complaint leaflets
US5545215A (en) 1994-09-14 1996-08-13 Duran; Carlos G. External sigmoid valve complex frame and valved conduit supported by the same
US5733299A (en) 1994-10-20 1998-03-31 Cordis Corporation Two balloon catheter
CA2163708C (en) 1994-12-07 2007-08-07 Robert E. Fischell Integrated dual-function catheter system for balloon angioplasty and stent delivery
EP0813397A4 (en) 1995-03-10 1999-10-06 Cardiovascular Concepts Inc Tubular endoluminar prosthesis having oblique ends
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
BE1009278A3 (en) 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
WO1996036297A1 (en) 1995-05-19 1996-11-21 Kanji Inoue Transplantation instrument, method of bending same and method of transplanting same
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US5861028A (en) 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
GB2312485B (en) 1996-04-24 1999-10-20 Endre Bodnar Bioprosthetic conduits
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
TW501934B (en) 1996-11-20 2002-09-11 Tapic Int Co Ltd Collagen material and process for making the same
US5782914A (en) 1996-11-29 1998-07-21 Bio-Vascular, Inc. Method for preparing heterogeneous tissue grafts
JP2001505807A (en) 1996-12-10 2001-05-08 パーデュー・リサーチ・ファウンデーション Artificial vascular valve
BR9712671A (en) 1996-12-10 1999-10-19 Purdue Research Foundation Tubular submucosal graft constructions
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5961539A (en) 1997-01-17 1999-10-05 Segmed, Inc. Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5961549A (en) 1997-04-03 1999-10-05 Baxter International Inc. Multi-leaflet bioprosthetic heart valve
CA2286655C (en) 1997-04-11 2009-02-24 Cryolife, Inc. Tissue decellularization
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US6162245A (en) 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
DE19721902A1 (en) 1997-05-26 1998-12-03 Boehringer Mannheim Gmbh Method and device for in-vivo detection of the direction of Langer lines in the skin
US6409755B1 (en) 1997-05-29 2002-06-25 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
US6004328A (en) 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
WO1999000059A1 (en) 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
ATE286687T1 (en) 1997-07-17 2005-01-15 Schneider Europ Gmbh STENT AND PRODUCTION METHOD THEREOF
US7039446B2 (en) 2001-01-26 2006-05-02 Sensys Medical, Inc. Indirect measurement of tissue analytes through tissue properties
US6045576A (en) 1997-09-16 2000-04-04 Baxter International Inc. Sewing ring having increased annular coaptation
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5862806A (en) 1997-10-30 1999-01-26 Mitroflow International, Inc. Borohydride reduction of biological tissues
US5910170A (en) 1997-12-17 1999-06-08 St. Jude Medical, Inc. Prosthetic heart valve stent utilizing mounting clips
US6174327B1 (en) 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
ES2172986T3 (en) 1998-03-23 2002-10-01 Bio Vascular Inc IMPLANTS AND PREPARATION PROCESS.
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6352554B2 (en) 1998-05-08 2002-03-05 Sulzer Vascutek Limited Prosthetic tubular aortic conduit and method for manufacturing the same
CA2335152C (en) 1998-05-14 2008-11-18 The Cleveland Clinic Foundation Processing of implantable animal tissues for dry storage
CA2334368C (en) 1998-06-05 2011-05-24 Organogenesis, Inc. Bioengineered tubular graft prostheses
ES2323662T3 (en) 1998-06-05 2009-07-22 Organogenesis Inc. PROTECTION OF VASCULAR GRAFT PRODUCED BY BIOINGENIERIA.
WO1999064655A1 (en) 1998-06-11 1999-12-16 Tapic International Co., Ltd. Collagen material and process for producing the same
US6117169A (en) 1998-06-24 2000-09-12 Sulzer Carbomedics Inc. Living hinge attachment of leaflet to a valve body
US6630001B2 (en) 1998-06-24 2003-10-07 International Heart Institute Of Montana Foundation Compliant dehyrated tissue for implantation and process of making the same
US6254636B1 (en) 1998-06-26 2001-07-03 St. Jude Medical, Inc. Single suture biological tissue aortic stentless valve
US6293970B1 (en) 1998-06-30 2001-09-25 Lifenet Plasticized bone and soft tissue grafts and methods of making and using same
US20030217415A1 (en) 1998-06-30 2003-11-27 Katrina Crouch Plasticized bone grafts and methods of making and using same
US6186999B1 (en) 1998-08-27 2001-02-13 The Cleveland Clinic Foundation Rigid clampable cannula
US7662409B2 (en) 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
US6168619B1 (en) 1998-10-16 2001-01-02 Quanam Medical Corporation Intravascular stent having a coaxial polymer member and end sleeves
US6214055B1 (en) 1998-10-30 2001-04-10 Mures Cardiovascular Research, Inc. Method and kit for rapid preparation of autologous tissue medical devices
US20020123789A1 (en) 1998-12-04 2002-09-05 Francis Ralph T. Stent cover
EP1022031B1 (en) 1999-01-21 2005-03-23 Nipro Corporation Suturable adhesion-preventing membrane
US6404497B1 (en) 1999-01-25 2002-06-11 Massachusetts Institute Of Technology Polarized light scattering spectroscopy of tissue
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US6666886B1 (en) 1999-02-16 2003-12-23 Regents Of The University Of Minnesota Tissue equivalent approach to a tissue-engineered cardiovascular valve
US6342069B1 (en) 1999-03-26 2002-01-29 Mures Cardiovascular Research, Inc. Surgical instruments utilized to assemble a stentless autologous tissue heart valve
CA2369641C (en) 1999-04-09 2009-02-10 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6391333B1 (en) 1999-04-14 2002-05-21 Collagen Matrix, Inc. Oriented biopolymeric membrane
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6264691B1 (en) 1999-04-23 2001-07-24 Shlomo Gabbay Apparatus and method for supporting a heart valve
US6287335B1 (en) 1999-04-26 2001-09-11 William J. Drasler Intravascular folded tubular endoprosthesis
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US7628803B2 (en) 2001-02-05 2009-12-08 Cook Incorporated Implantable vascular device
US6241763B1 (en) 1999-06-08 2001-06-05 William J. Drasler In situ venous valve device and method of formation
AU5639700A (en) 1999-07-01 2001-01-22 Biomedical Design, Inc. Targeted anticalcification treatment
US8500795B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable devices for improving cardiac function
US6371980B1 (en) 1999-08-30 2002-04-16 Cardiovasc, Inc. Composite expandable device with impervious polymeric covering and bioactive coating thereon, delivery apparatus and method
US6312474B1 (en) 1999-09-15 2001-11-06 Bio-Vascular, Inc. Resorbable implant materials
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6358275B1 (en) 1999-10-04 2002-03-19 Sulzer Carbomedics Inc. Tissue-derived vascular grafts and methods for making the same
EP1225935A4 (en) 1999-10-12 2009-07-29 Allan R Will Methods and devices for protecting a passageway in a body
US6383171B1 (en) 1999-10-12 2002-05-07 Allan Will Methods and devices for protecting a passageway in a body when advancing devices through the passageway
US6352708B1 (en) 1999-10-14 2002-03-05 The International Heart Institute Of Montana Foundation Solution and method for treating autologous tissue for implant operation
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6432712B1 (en) 1999-11-22 2002-08-13 Bioscience Consultants, Llc Transplantable recellularized and reendothelialized vascular tissue graft
US6482240B1 (en) 1999-12-07 2002-11-19 Ed. Geistlich Soehne Ag Fur Chemische Industrie Method of making a collagen membrane from porcine skin
US20020128708A1 (en) 1999-12-09 2002-09-12 Northrup William F. Annuloplasty system
US6376244B1 (en) 1999-12-29 2002-04-23 Children's Medical Center Corporation Methods and compositions for organ decellularization
US6471723B1 (en) 2000-01-10 2002-10-29 St. Jude Medical, Inc. Biocompatible prosthetic tissue
CN1806775A (en) 2000-01-14 2006-07-26 维亚科公司 Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
EP1251804B1 (en) 2000-01-27 2008-07-02 3F Therapeutics, Inc Prosthetic heart valve
EP1255510B3 (en) 2000-01-31 2009-03-04 Cook Biotech, Inc. Stent valves
US6540782B1 (en) 2000-02-02 2003-04-01 Robert V. Snyders Artificial heart valve
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6378221B1 (en) 2000-02-29 2002-04-30 Edwards Lifesciences Corporation Systems and methods for mapping and marking the thickness of bioprosthetic sheet
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US20020005073A1 (en) 2000-04-20 2002-01-17 David Tompkins Method and apparatus for testing the strength of autologous tissue
US6610088B1 (en) 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
US6565960B2 (en) 2000-06-01 2003-05-20 Shriners Hospital Of Children Polymer composite compositions
US6840246B2 (en) 2000-06-20 2005-01-11 University Of Maryland, Baltimore Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart
ATE381291T1 (en) 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US20020073359A1 (en) 2000-09-08 2002-06-13 Wade Jennifer A. System and method for high priority machine check analysis
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6913608B2 (en) 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US6696074B2 (en) 2000-12-04 2004-02-24 Tei Biosciences, Inc. Processing fetal or neo-natal tissue to produce a scaffold for tissue engineering
AUPR217300A0 (en) 2000-12-20 2001-01-25 Ketharanathan, Vettivetpillai Method of creating biological and biosynthetic material for implantation
US20020091441A1 (en) 2001-01-05 2002-07-11 Guzik Donald S. Focused beam cutting of materials
US6916338B2 (en) 2001-03-16 2005-07-12 Mayo Foundation For Medical Education And Research Synthetic leaflets for heart valve repair or replacement
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US6773456B1 (en) 2001-03-23 2004-08-10 Endovascular Technologies, Inc. Adjustable customized endovascular graft
EP1245202B1 (en) 2001-03-27 2004-08-04 William Cook Europe ApS An aortic graft device
GB0107910D0 (en) 2001-03-29 2001-05-23 Isis Innovation Deployable stent
US7526112B2 (en) 2001-04-30 2009-04-28 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7510571B2 (en) 2001-06-11 2009-03-31 Boston Scientific, Scimed, Inc. Pleated composite ePTFE/textile hybrid covering
WO2003007795A2 (en) 2001-07-16 2003-01-30 Edwards Lifesciences Corporation Tissue engineered heart valve
US20060025800A1 (en) 2001-09-05 2006-02-02 Mitta Suresh Method and device for surgical ventricular repair
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US20030078659A1 (en) 2001-10-23 2003-04-24 Jun Yang Graft element
US20060020336A1 (en) 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
WO2007136946A2 (en) 2001-12-03 2007-11-29 Xtent, Inc. Delivery catheter having active engagement mechanism for prosthesis
US6682537B2 (en) 2001-12-20 2004-01-27 The Cleveland Clinic Foundation Apparatus and method for capturing a wire in a blood vessel
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7033390B2 (en) 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US7189258B2 (en) 2002-01-02 2007-03-13 Medtronic, Inc. Heart valve system
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7018404B2 (en) 2002-01-24 2006-03-28 St. Jude Medical, Inc. Conduit for aorta or pulmonary artery replacement
EP1476095A4 (en) 2002-02-20 2007-04-25 Francisco J Osse Venous bi-valve
WO2003092554A1 (en) 2002-05-03 2003-11-13 The General Hospital Corporation Involuted endovascular valve and method of construction
US6736823B2 (en) 2002-05-10 2004-05-18 C.R. Bard, Inc. Prosthetic repair fabric
CA2485285A1 (en) 2002-05-10 2003-11-20 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7011688B2 (en) 2002-05-10 2006-03-14 C.R. Bard, Inc. Prosthetic repair fabric
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7138226B2 (en) 2002-05-10 2006-11-21 The University Of Miami Preservation of RNA and morphology in cells and tissues
US20040024452A1 (en) 2002-08-02 2004-02-05 Kruse Steven D. Valved prostheses with preformed tissue leaflets
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
WO2004026190A2 (en) 2002-09-18 2004-04-01 Sdgi Holdings, Inc. Natural tissue devices and methods of implantation
US6802806B2 (en) 2002-09-23 2004-10-12 Cleveland Clinic Foundation Apparatus for use with an inflow cannula of ventricular assist device
US7008763B2 (en) 2002-09-23 2006-03-07 Cheung David T Method to treat collagenous connective tissue for implant remodeled by host cells into living tissue
US7402319B2 (en) 2002-09-27 2008-07-22 Board Of Regents, The University Of Texas System Cell-free tissue replacement for tissue engineering
US7189259B2 (en) 2002-11-26 2007-03-13 Clemson University Tissue material and process for bioprosthesis
US20040158321A1 (en) 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
EP1596903A2 (en) 2003-02-25 2005-11-23 The Cleveland Clinic Foundation Apparatus and method for auto-retroperfusion of a coronary vein
US7473237B2 (en) 2003-02-25 2009-01-06 The Cleveland Clinic Foundation Apparatus for auto-retroperfusion of a coronary vein
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US8512403B2 (en) 2003-05-20 2013-08-20 The Cleveland Clinic Foundation Annuloplasty ring with wing members for repair of a cardiac valve
WO2005002424A2 (en) 2003-07-02 2005-01-13 Flexcor, Inc. Annuloplasty rings and methods for repairing cardiac valves
US7429269B2 (en) 2003-07-08 2008-09-30 Ventor Technologies Ltd. Aortic prosthetic devices
WO2005011534A1 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve devices and methods of making such devices
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US6996952B2 (en) 2003-09-30 2006-02-14 Codman & Shurtleff, Inc. Method for improving stability and effectivity of a drug-device combination product
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US20050247320A1 (en) 2003-10-10 2005-11-10 Stack Richard S Devices and methods for retaining a gastro-esophageal implant
WO2005042043A2 (en) 2003-10-28 2005-05-12 Medtronic, Inc. Methods of preparing crosslinked materials and bioprosthetic devices
US7232461B2 (en) 2003-10-29 2007-06-19 Cordis Neurovascular, Inc. Neck covering device for an aneurysm
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
WO2005065079A2 (en) 2003-11-10 2005-07-21 Angiotech International Ag Medical implants and fibrosis-inducing agents
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
US20050228494A1 (en) 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
WO2005094587A1 (en) 2004-03-29 2005-10-13 Mayo Foundation For Medical Education And Research Genetically modified heart valve xenografts
US8500751B2 (en) 2004-03-31 2013-08-06 Merlin Md Pte Ltd Medical device
US7289211B1 (en) 2004-04-09 2007-10-30 Walsh Jr Joseph T System and method for imaging sub-surface polarization-sensitive material structures
US7309461B2 (en) 2004-04-12 2007-12-18 Boston Scientific Scimed, Inc. Ultrasonic crimping of a varied diameter vascular graft
US7648676B2 (en) 2004-04-20 2010-01-19 Rti Biologics, Inc. Process and apparatus for treating implants comprising soft tissue
US20050267529A1 (en) 2004-05-13 2005-12-01 Heber Crockett Devices, systems and methods for tissue repair
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
EP1796584A1 (en) 2004-07-27 2007-06-20 The Cleveland Clinic Foundation Apparatus for treating atherosclerosis
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
AU2005284739B2 (en) 2004-09-14 2011-02-24 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
US7771442B2 (en) 2004-11-22 2010-08-10 Edgar Louis Shriver Graft core for seal and suture anastomoses with devices and methods for percutaneous intraluminal excisional surgery (PIES)
US20060140916A1 (en) 2004-11-22 2006-06-29 Theregen, Inc. Methods and compositions for treating congestive heart failure
US20060129225A1 (en) 2004-12-15 2006-06-15 Kopia Gregory A Device for the delivery of a cardioprotective agent to ischemic reperfused myocardium
US8874204B2 (en) 2004-12-20 2014-10-28 Cardiac Pacemakers, Inc. Implantable medical devices comprising isolated extracellular matrix
BRPI0519285B8 (en) 2004-12-24 2021-06-22 Admedus Regen Pty Ltd method for producing a calcification resistant implantable biomaterial, calcification resistant implantable biomaterial, implantable biological device, biocompatible implant, kit to repair a tissue injury, wound dressing
US7989157B2 (en) 2005-01-11 2011-08-02 Medtronic, Inc. Solution for storing bioprosthetic tissue used in a biological prosthesis
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7914437B2 (en) 2005-02-04 2011-03-29 Ams Research Corporation Transobturator methods for installing sling to treat incontinence, and related devices
WO2006084165A2 (en) 2005-02-04 2006-08-10 Ams Research Corporation Pelvic implants and related methods
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US8685086B2 (en) 2006-02-18 2014-04-01 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
ES2558534T3 (en) 2005-02-18 2016-02-05 The Cleveland Clinic Foundation Device to replace a heart valve
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
EP1856246B1 (en) 2005-03-07 2015-07-15 Technion Research & Development Foundation Limited Natural tissue-derived decellularized matrix and methods of generating and using same
US20060206203A1 (en) 2005-03-10 2006-09-14 Jun Yang Valvular support prosthesis
EP1865893A1 (en) 2005-03-14 2007-12-19 The Cleveland Clinic Foundation Balloon catheter for use with expandable stents
EP1893131A1 (en) 2005-04-20 2008-03-05 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7164145B2 (en) 2005-05-12 2007-01-16 Honeywell International Inc. Measuring fiber orientation by detecting dispersion of polarized light
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
DE102005023599A1 (en) 2005-05-18 2006-11-23 Corlife Gbr (Vertretungsberechtigte Gesellschafter: Prof. Dr. Alex Haverich Bioartificial heart tissue graft and process for its preparation
CN101180010B (en) 2005-05-24 2010-12-01 爱德华兹生命科学公司 Rapid deployment prosthetic heart valve
WO2007001351A1 (en) 2005-06-17 2007-01-04 Iken Tissue Therapeutics, Inc. Methods for treating ischemic tissue
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US20090112309A1 (en) 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
US20070043431A1 (en) 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
US8470022B2 (en) 2005-08-31 2013-06-25 Cook Biotech Incorporated Implantable valve
US7530253B2 (en) 2005-09-09 2009-05-12 Edwards Lifesciences Corporation Prosthetic valve crimping device
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
JP2009508650A (en) 2005-09-21 2009-03-05 ダスク テクノロジーズ, エルエルシー Methods and compositions for organ and tissue function
US20080190989A1 (en) 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
EP1797843A1 (en) 2005-12-14 2007-06-20 Thomas Ischinger Lesion specific stents, also for ostial lesions, and methods of application
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9717468B2 (en) 2006-01-10 2017-08-01 Mediguide Ltd. System and method for positioning an artificial heart valve at the position of a malfunctioning valve of a heart through a percutaneous route
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8496700B2 (en) 2006-03-23 2013-07-30 Edrich Health Technologies, Inc. Aortic valve replacement
EP2004095B1 (en) 2006-03-28 2019-06-12 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20080039871A1 (en) 2006-04-04 2008-02-14 Wallace Jeffrey M Minimally invasive gastric restriction methods
US9005220B2 (en) 2006-04-04 2015-04-14 C.R. Bard, Inc. Suturing devices and methods with energy emitting elements
CA2649705C (en) 2006-04-19 2015-12-01 William A. Cook Australia Pty. Ltd Twin bifurcated stent graft
US7460248B2 (en) 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
EP2029055A2 (en) 2006-06-01 2009-03-04 Mor Research Applications Ltd. Methods and devices for treatment of cardiac valves
US20080009667A1 (en) 2006-06-08 2008-01-10 Ams Research Corporation Methods and apparatus for prolapse repair and hysterectomy
US20080004686A1 (en) 2006-06-30 2008-01-03 Cook Incorporated Implantable device with light-transmitting material
US20080039926A1 (en) 2006-08-11 2008-02-14 Majercak David C Stent graft sealing zone connecting structure
US8876894B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Leaflet-sensitive valve fixation member
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
AU2007303137B2 (en) 2006-10-03 2014-04-10 Sinclair Pharmaceuticals Limited Minimally invasive tissue support
CA2666485C (en) 2006-10-27 2015-10-06 Edwards Lifesciences Corporation Biological tissue for surgical implantation
EP2091466A2 (en) 2006-11-17 2009-08-26 St.Jude Medical, Inc Prosthetic heart valve structures and related methods
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
WO2008082527A1 (en) 2006-12-19 2008-07-10 Structural Graphics, Llc Product holding and dispensing system
WO2008089365A2 (en) 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
WO2008094894A1 (en) 2007-01-29 2008-08-07 Cook Incorporated Artificial venous valve with discrete shaping members
WO2008094706A2 (en) 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
EP2120795B1 (en) 2007-02-15 2011-07-06 Cook Incorporated Artificial valve prostheses with a free leaflet portion
US20080208327A1 (en) 2007-02-27 2008-08-28 Rowe Stanton J Method and apparatus for replacing a prosthetic valve
RU2355361C2 (en) 2007-05-10 2009-05-20 Закрытое акционерное общество "НеоКор" (ЗАО "НеоКор") Heart valve bioprosthesis and method for making thereof
ES2632485T3 (en) 2007-08-21 2017-09-13 Symetis Sa A replacement valve
US20090062907A1 (en) 2007-08-31 2009-03-05 Quijano Rodolfo C Self-expanding valve for the venous system
US8425593B2 (en) 2007-09-26 2013-04-23 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
CA2702672C (en) 2007-10-15 2016-03-15 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
ES2897664T3 (en) 2007-12-14 2022-03-02 Edwards Lifesciences Corp Leaflet Attachment Frame for a Prosthetic Valve
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
WO2009094373A1 (en) 2008-01-22 2009-07-30 Cook Incorporated Valve frame
WO2009094197A1 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US20090254175A1 (en) 2008-04-03 2009-10-08 Quijano Rodolfo C Valved stent for chronic venous insufficiency
AU2009240565B2 (en) 2008-04-23 2013-08-22 Medtronic, Inc. Stented heart valve devices
CA3063780C (en) 2008-06-06 2021-12-14 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
WO2009156471A1 (en) 2008-06-26 2009-12-30 Iberhospitex, S.A. Prosthetic heart valve and method for making such a valve
EP2320832A4 (en) 2008-08-01 2015-07-29 Intersect Ent Inc Methods and devices for crimping self-expanding devices
CA2735091C (en) 2008-08-25 2016-02-23 Cardiokinetix, Inc. Retrievable cardiac devices
WO2010027363A1 (en) 2008-09-05 2010-03-11 Merlin Md Pte Ltd Endovascular device
WO2010068527A1 (en) 2008-12-10 2010-06-17 Merck Sharp & Dohme Corp. Package for oxygen-sensitive pharmaceutical products
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
US8029534B2 (en) 2009-03-16 2011-10-04 Cook Medical Technologies Llc Closure device with string retractable umbrella
US20100241069A1 (en) 2009-03-19 2010-09-23 Abbott Cardiovascular Systems Inc. Ostial lesion stent delivery system
CN101919753A (en) 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 The nothing of prosthetic aortic valve or mitral valve is sewed up implantation method and device
US7967138B2 (en) 2009-04-06 2011-06-28 Medtronic Vascular, Inc. Packaging systems for percutaneously deliverable bioprosthetic valves
NZ596179A (en) 2009-04-29 2014-05-30 Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US8475522B2 (en) 2009-07-14 2013-07-02 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US20110146361A1 (en) 2009-12-22 2011-06-23 Edwards Lifesciences Corporation Method of Peening Metal Heart Valve Stents
EP2542668A2 (en) 2010-03-01 2013-01-09 Colibri Heart Valve LLC Tissue for prosthetic implants and grafts, and methods associated therewith
JP5575931B2 (en) 2010-03-01 2014-08-20 コリブリ ハート バルブ エルエルシー Percutaneously deliverable heart valve and related methods
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
JP5808762B2 (en) 2010-03-10 2015-11-10 ザ クリーブランド クリニック ファウンデーションThe Cleveland ClinicFoundation Catheter assembly
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
EP2585157B1 (en) 2010-06-28 2019-10-16 Colibri Heart Valve LLC Method and apparatus for the endoluminal delivery of intravascular devices
CN103228231A (en) * 2010-09-23 2013-07-31 科利柏心脏瓣膜有限责任公司 Percutaneously deliverable heart or blood vessel valve with frame having abluminally situated tissue membrane
CN105380730B (en) 2010-10-05 2018-08-17 爱德华兹生命科学公司 Heart valve prosthesis
US9393110B2 (en) 2010-10-05 2016-07-19 Edwards Lifesciences Corporation Prosthetic heart valve
CA2820738C (en) 2010-12-14 2019-01-15 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US9498317B2 (en) 2010-12-16 2016-11-22 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
US10166128B2 (en) * 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US8795357B2 (en) * 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
US9339384B2 (en) 2011-07-27 2016-05-17 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
WO2013030818A2 (en) * 2011-08-28 2013-03-07 Endospan Ltd. Stent-grafts with post-deployment variable axial and radial displacement
US9974650B2 (en) * 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
US9895222B2 (en) 2015-08-17 2018-02-20 Venus Medtech (Hangzhou) Inc. Aortic replacement valve
CA3182971A1 (en) 2017-09-12 2019-03-21 W.L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves

Also Published As

Publication number Publication date
US11395726B2 (en) 2022-07-26
WO2019051476A1 (en) 2019-03-14
US20190076233A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US20230146006A1 (en) Conduit vascular implant sealing device for reducing endoleaks
US20220257252A1 (en) Anastomosis Devices
JP4852033B2 (en) Modular endovascular graft
JP4399585B2 (en) Multi-sided medical device
US7131991B2 (en) Endoluminal prosthetic assembly and extension method
JP5588511B2 (en) Stent graft
US6645242B1 (en) Bifurcated side-access intravascular stent graft
EP2291142B1 (en) Prosthesis coupling device and method
EP1356785B1 (en) Bifurcated endoluminal prosthetic assembly
US20200155297A1 (en) Self-curving stent-graft
US20060136046A1 (en) Stented side branch graft
US20240173119A1 (en) Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages
US20070112410A1 (en) Systems and methods for securing graft material to intraluminal devices
US20150119975A1 (en) Branched vessel prosthesis for repair of a failed stent graft
JP2009531141A (en) Iliac leg extension stent graft

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION