US20230121929A1 - Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same - Google Patents

Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same Download PDF

Info

Publication number
US20230121929A1
US20230121929A1 US18/078,469 US202218078469A US2023121929A1 US 20230121929 A1 US20230121929 A1 US 20230121929A1 US 202218078469 A US202218078469 A US 202218078469A US 2023121929 A1 US2023121929 A1 US 2023121929A1
Authority
US
United States
Prior art keywords
acid
phosphorous
metal
work piece
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/078,469
Inventor
Randell Clevenger
Gordon D. Donald
Cheoljin Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Molecular Surface Technologies LLC
Original Assignee
Molecular Surface Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molecular Surface Technologies LLC filed Critical Molecular Surface Technologies LLC
Priority to US18/078,469 priority Critical patent/US20230121929A1/en
Assigned to MOLECULAR SURFACE TECHNOLOGIES, LLC reassignment MOLECULAR SURFACE TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLEVENGER, RANDELL, DONALD, GORDON D., KIM, Cheoljin
Publication of US20230121929A1 publication Critical patent/US20230121929A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/24Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients to enhance the sticking of the active ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/18Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds
    • A01N57/20Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising

Definitions

  • Phosphonic acids are the gold standard for surface modification of metallic substrates. Phosphates, phosphonates and phosphinates form strong hydrolytically stable bonds with metallic surfaces by bonding to the oxide layer which exists on said surfaces.
  • the oxide layer can either be the native oxide layer that forms spontaneously in air or an oxide layer formed by a process such as anodization.
  • phosphonic acids are attached to metals by forming a chemisorbed layer and driving chemical attachment of said layer to the metal surface.
  • the chemisorbed layer is formed by soaking or spraying the phosphonic acid on the metal surface.
  • Chemical attachment is generally achieved by application of heat.
  • the heating step is, conventionally, carried out at around 130° C. for 18 to 36 hours. The heating may be reduced to about 4 hours by baking at 170° C.
  • anodization under aqueous conditions
  • U.S. Pat. No. 5,126,210 anodization (under aqueous conditions) may be used to attach short water soluble phosphonic acids to aluminum.
  • the process described in U.S. Pat. No. 5,126,210 is limited to phosphonic acids having carbon chain lengths no longer than three carbons, because phosphonic acids with chain lengths longer than three carbons are typically insoluble in water.
  • Metallic surfaces bonded to a phosphonic acid overlayer may be used to add antibacterial properties for use in, for example, antimicrobial medical devices, including, but not limited to, orthopedic implants.
  • An inventive aspect of this application aims to address the drawbacks associated with conventional methods for attaching phosphonic acids to a metal.
  • Longer more complex phosphonic acids such as phosphonic acids having chain lengths of about three carbon atoms or longer, can be attached to a metal, such as titanium, aluminum, cobalt chrome and the like, by the method described herein, because such phosphonic acids are soluble in an organic solvent.
  • organic solvents includes, but is not limited to, alcohols, tetrahydrofuran (THF), dimethylformamide (DMF), diemthylsulfoxide (DMSO), and the like.
  • An exemplary embodiment of this application is directed to a method of preparing a modified-metal surface by attaching a phosphorous-based acid to a surface of a metal.
  • the method comprises: preparing a solution of the phosphorous-based acid in a solvent; immersing a metal work piece or at least a piece of a metal work piece into the solution of the phosphorous-based acid; immersing a reference metal or at least a piece of a reference metal into the solution of the phosphorous-based acid; supplying a voltage for a duration of time; removing the metal work piece; cleaning the metal work piece; and drying the cleaned metal work piece to obtain a modified metal work piece.
  • the atmosphere under which the cleaned metal work piece is dried is not limited, and may include an inert atmosphere, dry air, and the like.
  • the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof.
  • the phosphorous-based acid is a phosphonic acid having the following formula: (OH) 2 P(O)(RX), wherein R is an alkyl group having more than three carbon atoms, and X is selected from the group consisting of a substituted or unsubstituted hydroxyl group, a substituted or unsubstituted amine group, and a substituted or unsubstituted ester group.
  • the phosphorous-based acid is a phosphonic acid having the following formula: (OH) 2 P(O)(RX), wherein R is an alkyl group having four carbon atoms, five carbon atoms, six carbon atoms, seven carbon atoms, eight carbon atoms, nine carbon atoms, ten carbon atoms, eleven carbon atoms, twelve carbon atoms, thirteen carbon atoms, fourteen carbon atoms, fifteen carbon atoms, sixteen carbon atoms, seventeen carbon atoms, eighteen carbon atoms, nineteen carbon atoms, twenty carbon atoms, twenty-one carbon atoms, twenty-two carbon atoms, twenty-three carbon atoms, twenty-four carbon atoms, or twenty-five carbon atoms.
  • X is a substituted or unsubstituted methacrylate group.
  • the phosphonic acid is selected from the group consisting of octadecylphosphonic acid, undecalphosphonic acid, decaphosphonic acid, and dodecaphosphonic acid.
  • the metal is a non-ferrous metal.
  • the metal is selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Al, Co and alloys thereof.
  • the metal is selected from the group consisting of titanium, titanium alloys, aluminum and aluminum alloys.
  • the solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, propenol, butanol, sec-butanol, tert-butanol, tetrahydrofuran (THF), demethylformamide (DMF), dimethyl sulfoxide (DMSO), and mixtures thereof.
  • the concentration of the solution is from about 1% to about 10% solution by weight. In another exemplary embodiment the concentration of the solution is about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15%.
  • the voltage applied may range from about 1 V to about 300 V. In another exemplary embodiment, the voltage applied may be about 10 V, about 20 V, about 30 V, about 40 V, about 50 V, about 60 V, about 70 V, about 80 V, about 90 V, about 100 V, about 110 V, about 120 V, about 130 V, about 140 V, about 150 V, about 160 V, about 170 V, about 180 V, about 190 V, about 200 V, about 210 V, about 220 V, about 230 V, about 240 V, about 250 V, about 260 V, about 270 V, about 280 V, about 290 V or about 300 V.
  • the voltage applied may range from about 1 V to about 100 V. In another exemplary embodiment, the voltage applied may be about 1 V, about 2 V, about 3 V, about 4 V, about 5 V, about 6 V, about 7 V, about 8 V, about 9 V, about 10 V, about 11 V, about 12 V, about 13 V, about 14 V, about 15 V, about 16 V, about 17 V, about 18 V, about 19 V, about 20 V, about 21 V, about 22 V, about 23 V, about 24 V, about 25 V, about 26 V, about 27 V, about 28 V, about 29 V, about 30 V, about 31 V, about 32 V, about 33 V, about 34 V, about 35 V, about 36 V, about 37 V, about 38 V, about 39 V, about 40 V, about 41 V, about 42 V, about 43 V, about 44 V, about 45 V, about 46 V, about 47 V, about 48 V, about 49 V, about 50 V, about 51 V, about 52 V, about 53 V, about 54 V, about 55 V, about 56 V,
  • the duration of time is from about 1 second to about 5 minutes. In another exemplary embodiment, the duration of time is about 1 second, about 5 seconds, about 10 seconds, about 15 seconds, about 20 seconds, about 25 seconds, about 30 seconds, about 35 seconds, about 40 seconds, about 45 seconds, about 50 seconds, about 55 seconds, about 60 seconds, about 65 seconds, about 70 seconds, about 75 seconds, about 80 seconds, about 85 seconds, about 90 seconds, about 95 seconds, about 100 seconds, about 105 seconds, about 110 seconds, about 115 seconds, about 120 seconds, about 130 seconds, about 140 seconds, about 150 seconds, about 160 seconds, about 170 seconds, about 180 seconds, about 190 seconds, about 200 seconds, about 210 seconds, about 220 seconds, about 230 seconds, about 240 seconds, about 250 seconds, about 260 seconds, about 270 seconds, about 280 seconds, about 290 seconds, about 300 seconds, about 6 minutes, about 7 minutes, about 8 minutes, about 9 minutes, or about 10 minutes.
  • the inert atmosphere comprises any nonreactive gas.
  • the inert atmosphere is nitrogen or argon.
  • Another exemplary embodiment of this application is directed to a method for producing a peptide- or protein-modified metal, the method comprising: attaching a phosphorous-based acid to a surface of the metal according to claim 1 ; carrying out a coupling reaction between the phosphorous-based acid and the carboxyl end of the peptide or protein; and deprotection after coupling to obtain the peptide or protein-modified metal.
  • Another exemplary embodiment of this application is directed to a method for producing a poly- or oligo- saccharide-modified metal, the method comprising attaching a phosphorous-based acid to a surface of the metal according to claim 1 ; carrying out a coupling reaction between the phosphorus-based acid and an appropriate functional group of the saccharide to obtain the poly- or oligo-saccharide modified metal.
  • Another exemplary embodiment of this application is comprised of chitosan, quaternized chitosan, oligo-glucosamine/N-acetylglucosamine, quaternized oligo- glucosamine/N-acetylglucosamine.
  • Another exemplary embodiment of this application is directed to a method of modifying a polymer, a biopolymer or a ceramic material by attaching a phosphorous-based acid to a surface of the polymer, the biopolymer or the ceramic material, the method comprising: preparing a solution of the phosphorous-based acid in a solvent; immersing a strip of a work piece comprising the polymer, the biopolymer or the ceramic material into the solution of the phosphorous-based acid; immersing a strip of a reference material into the solution of the phosphorous-based acid; supplying a voltage for a duration of time; removing the work piece; cleaning the work piece; and drying the cleaned work piece to obtain a modified work piece.
  • Another exemplary embodiment of this application is directed to a method of preparing a modified-metal surface, the method comprising: preparing a solution of a phosphorous-based acid in a solvent; exposing a metal work piece or at least a portion of a metal work piece to oxygen plasma to prepare a metal work piece or at least a portion of a metal work piece having a hydroxyl-terminated surface; immersing a metal workpiece or at least a portion of the metal work piece having a hydroxyl-terminated surface into the solution of the phosphorous-based acid; immersing a strip of a reference metal into the solution of the phosphorous-based acid; supplying a voltage for a duration of time to prepare a phosphorous acid-terminated metal work piece; removing the phosphorous acid-terminated metal work piece; activating the said work with a coupling agent spraying the phosphorous acid-terminated metal work piece with a chitosan or modified chitosan solution to prepare the modified-metal surface; and
  • the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof.
  • the phosphonic acid is selected from the group consisting of 11-phospho-1-undecanol.
  • the metal is a non-ferrous metal.
  • the metal is selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Al, Co and alloys thereof.
  • the metal is selected from the group consisting of titanium, titanium alloys, aluminum and aluminum alloys.
  • the metal is stainless steel.
  • the solvent is selected from the group consisting of n-butanol, isopropanol, ethanol, methanol, formic acid, acetic acid, demethylformamide (DMF), dimethyl sulfoxide (DMSO), and ionic liquids.
  • the chitosan solution comprises a chitosan modified with a quaternary ammonium salt.
  • the method further comprises preparing the chitosan solution comprising: dissolving chitosan in an acetic acid solution and adding hydrogen peroxide to prepare a first solution; irradiating the first solution at a constant power to prepare a second solution; adding an alkaline solution to the second solution to adjust the pH to be about 9.0 and centrifuging the resulting solution; separating a precipitate from a supernatant of the resulting solution; dissolving the precipitate in an organic solvent to prepare a third solution; adding a reactive quaternary ammonium salt to the third solution, and stirring at room temperature; and precipitating quaternized-oligo-chitosan therefrom; dissolving the quaternized-oligo-chitosan in an organic solvent to prepare the chitosan solution.
  • Another exemplary embodiment of this application is directed to an article comprising a work piece having a modified-metal surface, wherein the modified-metal surface comprises a chitosan modified with a quaternary ammonium salt.
  • the chitosan is connected to a surface of the work piece via a phosphorous-based acid linker.
  • the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof.
  • the phosphonic acid is selected from the group consisting of 11-phosphono-1-undecanol.
  • the article has an antimicrobial effect.
  • FIG. 1 shows the growth of the MLO-A5 cells on a chitosan-treated surface.
  • FIG. 2 shows the average CFU/ml values for chitosan-coated coupons and control coupons after immersion in various bacterial strains.
  • first the terms “first,” “second,” and the like are used for describing various components, these components are not confined by these terms. These terms are merely used for distinguishing one component from the other components, and a first component may be a second component in a technical concept of the present disclosure.
  • phosphorous-based acids attach to metal surfaces by forming strong P- O-M bonds, where M is a metal, and can serve as interfaces between metallic surfaces and the environment.
  • a phosphonic acid comprises a phosphorous atom with two acidic hydroxyls, a double bonded oxygen and a carbon chain attached to the central phosphorus atom.
  • An exemplary phosphonic acid is represented below:
  • the distal end of the organic chain (X) may contain functional groups, which can be further modified. This allows for the installation of a variety of chemistries onto the distal end of these molecules. Thus, covalent attachment of these molecules followed by installation of custom chemistries is tantamount to the covalent attachment of said chemistries onto the surface.
  • Such functional groups may include, but are not limited to, a substituted or unsubstituted hydroxyl, a substituted or unsubstituted amine, a substituted or unsubstituted ester, a substituted or unsubstituted thiol, a substituted or unsubstituted ether, a substituted or unsubstituted phosphonic acid ester, a substituted or unsubstituted phosphinic acid ester, a substituted or unsubstituted phosphoric acid ester, a substituted or unsubstituted carboxylate, a substituted or unsubstituted acrylate, a substituted or unsubstituted sulfonate, a substituted or unsubstituted sulfinate, a substituted or unsubstituted sulfoxide, a substituted or unsubstituted silane, a substituted or unsubstituted siloxane,
  • surfaces can be made to be hydrophobic, hydrophilic, oleophobic, lubricious, antimicrobial, and the like. Surfaces may also be made to either enhance or attenuate the effectiveness of adhesives. Further, proteins and protein fragments, amino acids (both natural and synthetic), peptides, poly or oligo saccharides may be attached to enhance or attenuate a biological response such as osteointegration or antimicrobial action.
  • the traditional method for attaching phosphorous-based acids to metallic surfaces is to spray or dip coat a dilute solution onto a metallic surface and thermally drive attachment of the phosphorus-based acids to the metallic surface through heating.
  • heating is typically carried out for multiple hours in an oven, at or above about 130° C.
  • Many metal hydroxides are reactive enough to drive attachment of the phosphorous-based acids without heating while addition of heat increases the efficiency of such reactions.
  • heat is traditionally an absolute requirement for phosphonic/-phoric/-phinic acid attachment.
  • U.S. Pat. No. 5,126,210 describes an aqueous technique to modify “valve” metals, such as groups IVB and VB, including but not limited to, Ti, Zr, Hf, V, Nb, Ta, Al, and the like, through anodization using small water soluble phosphonic acids.
  • Other researchers, including an inventor of the subject application have recently expanded on this idea to include anodization using short water soluble phosphonic acids to build a foundational layer upon which antimicrobial surfaces were constructed, for example, as described in U.S. Provisional Application No. 62/408,913.
  • the need for water soluble molecules limits the scope and utility of these techniques for attaching phosphonic acids to a metallic surface.
  • the inventors of this application have developed methods and compositions which utilize anodization-like condition in organic solvents to attach phosphorous based acids to metals.
  • the solvents may include, but are not limited to: protic solvents, such as alcohols (including n-butanol, isopropanol, ethanol, methanol, and the like), acids (including formic acid, acetic acid, and the like); wet polar aprotic solvents, such as tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and the like; and ionic liquids.
  • protic solvents such as alcohols (including n-butanol, isopropanol, ethanol, methanol, and the like), acids (including formic acid, acetic acid, and the like)
  • wet polar aprotic solvents such as tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl sulfoxide
  • the protic solvent may be an alcohol including, but not limited to, ethanol, methanol, isopropanol and n-butanol.
  • the ionic liquid may include, but is not limited to, 1-ethyl methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium thiocyanate, triethylsulphonium bis(trifluoromethylsulfonyl)imide, N-methyl-N-trioctylammonium bis(trifluoromethylsulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium trifluoromethylsulfonate.
  • the metal may include any metal that forms a robust native or installed oxide layer, including, but not limited to, titanium, titanium alloys, aluminum and aluminum alloys, vanadium and vanadium alloys, zirconium and zirconium alloys, hafnium and hafnium alloys, niobium and niobium alloys, tantalum and tantalum alloys, tungsten and tungsten alloys, stainless steel, cobalt chrome, and the like.
  • the material to which the phosphorous-based acid is attached is not limited, and may include polymers, biological polymers, ceramics, and the like.
  • An inventive aspect of this application is a method of attaching phosphonic acids to a metallic surface.
  • the method includes: preparing a solution of phosphonic acid in a protic solvent; immersing a clean strip or at least a portion of non-ferrous metal, and coupling the same to the cathode of a DC power supply; immersing a metal workpiece or at least a portion of the metal workpiece to be modified in the solution, while ensuring that there is no physical contact between the two pieces; bringing the positive terminal of the power supply into electrical contact with the workpiece; holding for a period of time; and removing the modified workpiece.
  • This process may be followed by successive sonication processes in organic and aqueous solutions and drying the modified workpiece under an inert atmosphere.
  • the dried workpiece is then analyzed using standard analysis techniques, including, but not limited to, infrared (IR) spectroscopy, contact angle, X-ray Photoelectron Spectroscopy (XPS), Energy-Dispersive X-ray Spectroscopy (EDX), Atomic Force Microscopy (AFM), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Coefficient of Friction (COF) studies, and combinations thereof.
  • IR infrared
  • XPS X-ray Photoelectron Spectroscopy
  • EDX Energy-Dispersive X-ray Spectroscopy
  • AFM Atomic Force Microscopy
  • ToF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • COF Coefficient of Friction
  • the phosphonic acid solution may be prepared using a solvent, such that the concentration of the solution varies from 0.001% to a saturated composition.
  • concentrations of the solution may range from about 0.1% to about 20% solution by weight, preferably from about 0.5% to 15% solution by weight, more preferably from about 1% to about 10% solution by weight.
  • the voltage of the DC power supply used in the above-described method may range from about 1 V to about 100 V.
  • the reaction time, during which the metal work piece or the at least the portion of the metal workpiece is held immersed in solution during the supply of electric current may range from about 1 second to about 30 minutes, from about 1 second to about 5 seconds, from about 1 second to about 10 seconds, from about 1 second to about 15 seconds, from about 1 second to about 20 seconds, from about 1 second to about 30 seconds, from about 1 second to about 1 minute, from about 1 second to about 5 minutes, from about 1 second to about 10 minutes, from about 1 second to about 20 minutes, from about 10 seconds to about 30 minutes; from about 20 seconds to about 20 minutes; from about 30 seconds to about 10 minutes; or from about 30 second to about 5 minutes.
  • the inert atmosphere may be nitrogen or argon.
  • An inventive aspect of this application is a method for the attachment of oligomeric chitosan or oligomeric glucosamine, and related biological materials, to the phosphonic acid to form a surface having chitosan fragments immobilized thereon.
  • Chitosan is a biocompatible and biodegradable cationic polysaccharide, which has a number of commercial and possible biomedical uses. 10 Chitosan can easily be processed into functionalized nanoparticles, 11 scaffolds for tissue engineering, 12 nanofibers, 13 and nanomembranes.
  • Chitosan and modified chitosan have found use in a wide variety of biomedical applications 15 such as wound healing 16 , gene delivery 17 , protein/peptide and nucleic acid delivery 18 , biosensors 19 and as an antimicrobial agent 20 .
  • the chitosan molecules may be further modified with various functional groups, including but not limited to, a substituted or unsubstituted hydroxyl, a substituted or unsubstituted amine, a substituted or unsubstituted ester, a substituted or unsubstituted thiol, a substituted or unsubstituted ether, a substituted or unsubstituted phosphonic acid ester, a substituted or unsubstituted phosphinic acid ester, a substituted or unsubstituted phosphoric acid ester, a substituted or unsubstituted carboxylate, a substituted or unsubstituted acrylate, a substituted or unsubstituted sulfonate, a substituted or unsubstituted sulfinate, a substituted or unsubstituted sulfoxide, a substituted or unsubstituted silane, a substituted or unsub
  • the chitosan molecules may be further modified with quaternary ammonium salts.
  • the solution was shaken for about 1 min, and then 1 ⁇ 4 W irradiated at a constant power (1,000 W) for about 15 seconds, followed by cooling in a water bath to room temperature.
  • the resulting yellow solution was fully translucent.
  • 63 mL of DI water was added to the solution, and the pH adjusted to 9.0 by the addition of an appropriate amount of KOH.
  • the solution was divided into four equal 25 mL portions and placed in 50 mL Falcon tubes which were then centrifuged at 4,000 rpm for about 4 min. The precipitate and the supernatant were separated. The precipitate was washed and centrifuged three times with water and one time with DMSO.
  • PUL coated coupons were racked in a glass chamber and covered completely with dichloromethane (CH2Cl2, 240-250 mL).
  • CDI dichloromethane
  • the fitted glass lid was wrapped with teflon tape to improve the seal.
  • the resulting mixture was stirred for about 4 hours at room temperature on a magnetic stirrer plate set at approximately 300-500 rpm. Coupons were sonicated twice in acetone for 10 minutes, and dried in vacuo.
  • the quaternized-oligo-chitosan solution (0.1 g/10 mL DMSO) was sprayed once on the CDI-activated coupons (approximately 0.001 g).
  • the coupons were horizontally placed on the plate to improve the thickness uniformity of coating, and then reacted at 100° C. for 10 minutes.
  • the spraying and reaction processes were carried out on both sides of the coupons.
  • the coupons were then sonicated in EtOH twice for about 10 minutes, and dried in vacuo. This process is illustrated for stainless steel in the following reaction scheme (2):
  • murine osteocyte-like cells, ML O-A5 postosteoblast/preosteocyte-like cell line
  • ML O-A5 postosteoblast/preosteocyte-like cell line
  • the coupons were washed, fixed and stained with 100 nM DAPI/100 nM Phalloidine-488 (culture medium supplemented with 5% FBS).
  • DAPI nuclei
  • Phalloidin cytoskeleton
  • Modified surfaces prepared as described in Example 2 above were treated with four different strains of bacteria ( Escherichia coli, Staphylococcus aureus, Staphylococcus epidermis and Psueomonas aeruginosa ) to demonstrate the antibacterial potency of the modified surfaces compared to untreated surfaces (control coupons).
  • strains of bacteria Escherichia coli, Staphylococcus aureus, Staphylococcus epidermis and Psueomonas aeruginosa
  • the CFU/ml for each of the bacteria was measured for both the modified and unmodified surfaces.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A method of preparing a modified-metal surface. The method includes preparing a solution of a phosphorous-based acid in a solvent; immersing a strip of the metal work piece into the solution of the phosphorous-based acid; immersing a strip of a reference metal into the solution of the phosphorous-based acid; supplying a voltage for a duration of time to prepare a phosphorous acid-modified metal work piece; removing the phosphorous acid-modified metal work piece; cleaning and drying the phosphorous acid-modified metal work piece; applying a chitosan solution to the surface in order to attach chitosan/modified chitosan to the phosphorous acid based modified surface; prepare the modified-metal surface; and cleaning and drying the modified-metal surface.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of co-pending U.S. patent application Ser. No. 16/906,573, filed Jun. 19, 2020, which claims the benefit of U.S. Provisional Patent Application No. 62/866,492 filed Jun. 25, 2019, both of which are herein incorporated by reference in their entireties.
  • BACKGROUND
  • Phosphonic acids are the gold standard for surface modification of metallic substrates. Phosphates, phosphonates and phosphinates form strong hydrolytically stable bonds with metallic surfaces by bonding to the oxide layer which exists on said surfaces. The oxide layer can either be the native oxide layer that forms spontaneously in air or an oxide layer formed by a process such as anodization.
  • Conventionally1-9, phosphonic acids are attached to metals by forming a chemisorbed layer and driving chemical attachment of said layer to the metal surface. The chemisorbed layer is formed by soaking or spraying the phosphonic acid on the metal surface. Chemical attachment is generally achieved by application of heat. The heating step is, conventionally, carried out at around 130° C. for 18 to 36 hours. The heating may be reduced to about 4 hours by baking at 170° C. Alternatively, as described in U.S. Pat. No. 5,126,210, anodization (under aqueous conditions) may be used to attach short water soluble phosphonic acids to aluminum. However, the process described in U.S. Pat. No. 5,126,210 is limited to phosphonic acids having carbon chain lengths no longer than three carbons, because phosphonic acids with chain lengths longer than three carbons are typically insoluble in water.
  • Metallic surfaces bonded to a phosphonic acid overlayer may be used to add antibacterial properties for use in, for example, antimicrobial medical devices, including, but not limited to, orthopedic implants.
  • In this specification where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date, publicly available, known to the public, part of common general knowledge, or otherwise constitutes prior art under the applicable statutory provisions; or is known to be relevant to an attempt to solve any problem with which this specification is concerned.
  • While certain aspects of conventional technologies have been discussed to facilitate disclosure of the invention, the inventors of this application in no way disclaim these technical aspects, and it is contemplated that the claimed invention may encompass or include one or more of the conventional technical aspects discussed herein.
  • SUMMARY OF INVENTION
  • An inventive aspect of this application aims to address the drawbacks associated with conventional methods for attaching phosphonic acids to a metal. Longer more complex phosphonic acids, such as phosphonic acids having chain lengths of about three carbon atoms or longer, can be attached to a metal, such as titanium, aluminum, cobalt chrome and the like, by the method described herein, because such phosphonic acids are soluble in an organic solvent. An example of such organic solvents includes, but is not limited to, alcohols, tetrahydrofuran (THF), dimethylformamide (DMF), diemthylsulfoxide (DMSO), and the like.
  • An exemplary embodiment of this application is directed to a method of preparing a modified-metal surface by attaching a phosphorous-based acid to a surface of a metal. The method comprises: preparing a solution of the phosphorous-based acid in a solvent; immersing a metal work piece or at least a piece of a metal work piece into the solution of the phosphorous-based acid; immersing a reference metal or at least a piece of a reference metal into the solution of the phosphorous-based acid; supplying a voltage for a duration of time; removing the metal work piece; cleaning the metal work piece; and drying the cleaned metal work piece to obtain a modified metal work piece. The atmosphere under which the cleaned metal work piece is dried is not limited, and may include an inert atmosphere, dry air, and the like.
  • In another exemplary embodiment, the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof.
  • In another exemplary embodiment, the phosphorous-based acid is a phosphonic acid having the following formula: (OH)2P(O)(RX), wherein R is an alkyl group having more than three carbon atoms, and X is selected from the group consisting of a substituted or unsubstituted hydroxyl group, a substituted or unsubstituted amine group, and a substituted or unsubstituted ester group.
  • In another exemplary embodiment, the phosphorous-based acid is a phosphonic acid having the following formula: (OH)2P(O)(RX), wherein R is an alkyl group having four carbon atoms, five carbon atoms, six carbon atoms, seven carbon atoms, eight carbon atoms, nine carbon atoms, ten carbon atoms, eleven carbon atoms, twelve carbon atoms, thirteen carbon atoms, fourteen carbon atoms, fifteen carbon atoms, sixteen carbon atoms, seventeen carbon atoms, eighteen carbon atoms, nineteen carbon atoms, twenty carbon atoms, twenty-one carbon atoms, twenty-two carbon atoms, twenty-three carbon atoms, twenty-four carbon atoms, or twenty-five carbon atoms.
  • In another exemplary embodiment, X is a substituted or unsubstituted methacrylate group.
  • In another exemplary embodiment, the phosphonic acid is selected from the group consisting of octadecylphosphonic acid, undecalphosphonic acid, decaphosphonic acid, and dodecaphosphonic acid.
  • In another exemplary embodiment, the metal is a non-ferrous metal.
  • In another exemplary embodiment, the metal is selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Al, Co and alloys thereof.
  • In another exemplary embodiment, the metal is selected from the group consisting of titanium, titanium alloys, aluminum and aluminum alloys.
  • In another exemplary embodiment, the solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, propenol, butanol, sec-butanol, tert-butanol, tetrahydrofuran (THF), demethylformamide (DMF), dimethyl sulfoxide (DMSO), and mixtures thereof.
  • In another exemplary embodiment the concentration of the solution is from about 1% to about 10% solution by weight. In another exemplary embodiment the concentration of the solution is about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15%.
  • In another exemplary embodiment, the voltage applied may range from about 1 V to about 300 V. In another exemplary embodiment, the voltage applied may be about 10 V, about 20 V, about 30 V, about 40 V, about 50 V, about 60 V, about 70 V, about 80 V, about 90 V, about 100 V, about 110 V, about 120 V, about 130 V, about 140 V, about 150 V, about 160 V, about 170 V, about 180 V, about 190 V, about 200 V, about 210 V, about 220 V, about 230 V, about 240 V, about 250 V, about 260 V, about 270 V, about 280 V, about 290 V or about 300 V.
  • In another exemplary embodiment, the voltage applied may range from about 1 V to about 100 V. In another exemplary embodiment, the voltage applied may be about 1 V, about 2 V, about 3 V, about 4 V, about 5 V, about 6 V, about 7 V, about 8 V, about 9 V, about 10 V, about 11 V, about 12 V, about 13 V, about 14 V, about 15 V, about 16 V, about 17 V, about 18 V, about 19 V, about 20 V, about 21 V, about 22 V, about 23 V, about 24 V, about 25 V, about 26 V, about 27 V, about 28 V, about 29 V, about 30 V, about 31 V, about 32 V, about 33 V, about 34 V, about 35 V, about 36 V, about 37 V, about 38 V, about 39 V, about 40 V, about 41 V, about 42 V, about 43 V, about 44 V, about 45 V, about 46 V, about 47 V, about 48 V, about 49 V, about 50 V, about 51 V, about 52 V, about 53 V, about 54 V, about 55 V, about 56 V, about 57 V, about 58 V, about 59 V, about 60 V, about 61 V, about 62 V, about 63 V, about 64 V, about 65 V, about 66 V, about 67 V, about 68 V, about 69 V, about 70 V, about 71 V, about 72 V, about 73 V, about 74 V, about 75 V, about 76 V, about 77 V, about 78 V, about 79 V, about 80 V, about 81 V, about 82 V, about 83 V, about 84 V, about 85 V, about 86 V, about 87 V, about 88 V, about 89 V, about 90 V, about 91 V, about 92 V, about 93 V, about 94 V, about 95 V, about 96 V, about 97 V, about 98 V, about 99 V, or about 100 V.
  • In another exemplary embodiment, the duration of time is from about 1 second to about 5 minutes. In another exemplary embodiment, the duration of time is about 1 second, about 5 seconds, about 10 seconds, about 15 seconds, about 20 seconds, about 25 seconds, about 30 seconds, about 35 seconds, about 40 seconds, about 45 seconds, about 50 seconds, about 55 seconds, about 60 seconds, about 65 seconds, about 70 seconds, about 75 seconds, about 80 seconds, about 85 seconds, about 90 seconds, about 95 seconds, about 100 seconds, about 105 seconds, about 110 seconds, about 115 seconds, about 120 seconds, about 130 seconds, about 140 seconds, about 150 seconds, about 160 seconds, about 170 seconds, about 180 seconds, about 190 seconds, about 200 seconds, about 210 seconds, about 220 seconds, about 230 seconds, about 240 seconds, about 250 seconds, about 260 seconds, about 270 seconds, about 280 seconds, about 290 seconds, about 300 seconds, about 6 minutes, about 7 minutes, about 8 minutes, about 9 minutes, or about 10 minutes.
  • In another exemplary embodiment, the inert atmosphere comprises any nonreactive gas. In another exemplary embodiment, the inert atmosphere is nitrogen or argon.
  • Another exemplary embodiment of this application is directed to a method for producing a peptide- or protein-modified metal, the method comprising: attaching a phosphorous-based acid to a surface of the metal according to claim 1; carrying out a coupling reaction between the phosphorous-based acid and the carboxyl end of the peptide or protein; and deprotection after coupling to obtain the peptide or protein-modified metal.
  • Another exemplary embodiment of this application is directed to a method for producing a poly- or oligo- saccharide-modified metal, the method comprising attaching a phosphorous-based acid to a surface of the metal according to claim 1; carrying out a coupling reaction between the phosphorus-based acid and an appropriate functional group of the saccharide to obtain the poly- or oligo-saccharide modified metal.
  • Another exemplary embodiment of this application is comprised of chitosan, quaternized chitosan, oligo-glucosamine/N-acetylglucosamine, quaternized oligo- glucosamine/N-acetylglucosamine.
  • Another exemplary embodiment of this application is directed to a method of modifying a polymer, a biopolymer or a ceramic material by attaching a phosphorous-based acid to a surface of the polymer, the biopolymer or the ceramic material, the method comprising: preparing a solution of the phosphorous-based acid in a solvent; immersing a strip of a work piece comprising the polymer, the biopolymer or the ceramic material into the solution of the phosphorous-based acid; immersing a strip of a reference material into the solution of the phosphorous-based acid; supplying a voltage for a duration of time; removing the work piece; cleaning the work piece; and drying the cleaned work piece to obtain a modified work piece.
  • Another exemplary embodiment of this application is directed to a method of preparing a modified-metal surface, the method comprising: preparing a solution of a phosphorous-based acid in a solvent; exposing a metal work piece or at least a portion of a metal work piece to oxygen plasma to prepare a metal work piece or at least a portion of a metal work piece having a hydroxyl-terminated surface; immersing a metal workpiece or at least a portion of the metal work piece having a hydroxyl-terminated surface into the solution of the phosphorous-based acid; immersing a strip of a reference metal into the solution of the phosphorous-based acid; supplying a voltage for a duration of time to prepare a phosphorous acid-terminated metal work piece; removing the phosphorous acid-terminated metal work piece; activating the said work with a coupling agent spraying the phosphorous acid-terminated metal work piece with a chitosan or modified chitosan solution to prepare the modified-metal surface; and cleaning and drying the modified-metal surface.
  • In another exemplary embodiment, the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof.
  • In another exemplary embodiment, the phosphonic acid is selected from the group consisting of 11-phospho-1-undecanol.
  • In another exemplary embodiment, the metal is a non-ferrous metal.
  • In another exemplary embodiment, the metal is selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Al, Co and alloys thereof.
  • In another exemplary embodiment, the metal is selected from the group consisting of titanium, titanium alloys, aluminum and aluminum alloys.
  • In another exemplary embodiment, the metal is stainless steel.
  • In another exemplary embodiment, the solvent is selected from the group consisting of n-butanol, isopropanol, ethanol, methanol, formic acid, acetic acid, tetrahydrofuran (THF), demethylformamide (DMF), dimethyl sulfoxide (DMSO), and ionic liquids.
  • In another exemplary embodiment, the chitosan solution comprises a chitosan modified with a quaternary ammonium salt.
  • In another exemplary embodiment, the method further comprises preparing the chitosan solution comprising: dissolving chitosan in an acetic acid solution and adding hydrogen peroxide to prepare a first solution; irradiating the first solution at a constant power to prepare a second solution; adding an alkaline solution to the second solution to adjust the pH to be about 9.0 and centrifuging the resulting solution; separating a precipitate from a supernatant of the resulting solution; dissolving the precipitate in an organic solvent to prepare a third solution; adding a reactive quaternary ammonium salt to the third solution, and stirring at room temperature; and precipitating quaternized-oligo-chitosan therefrom; dissolving the quaternized-oligo-chitosan in an organic solvent to prepare the chitosan solution.
  • Another exemplary embodiment of this application is directed to an article comprising a work piece having a modified-metal surface, wherein the modified-metal surface comprises a chitosan modified with a quaternary ammonium salt.
  • In another exemplary embodiment, the chitosan is connected to a surface of the work piece via a phosphorous-based acid linker.
  • In another exemplary embodiment, the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof.
  • In another exemplary embodiment, the phosphonic acid is selected from the group consisting of 11-phosphono-1-undecanol.
  • In another exemplary embodiment, the article has an antimicrobial effect.
  • Details of other exemplary embodiments of the present disclosure will be included in the following detailed description and the accompanying drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows the growth of the MLO-A5 cells on a chitosan-treated surface.
  • FIG. 2 shows the average CFU/ml values for chitosan-coated coupons and control coupons after immersion in various bacterial strains.
  • DETAILED DESCRIPTION
  • Advantages and features of the present disclosure, and methods for accomplishing the same will be more clearly understood from exemplary embodiments described below with reference to the accompanying drawings. However, the present disclosure is not limited to the following exemplary embodiments and may be implemented in various different forms. The exemplary embodiments are provided only to complete disclosure of the present disclosure and to fully provide a person having ordinary skill in the art to which the present disclosure pertains with the category of the invention, and the present disclosure will be defined by any appended claims and combinations thereof
  • Shapes, sizes, ratios, angles, numbers, and the like shown in the accompanying drawings are merely exemplary, and the present disclosure is not limited thereto. Like reference numerals generally denote like elements throughout the present specification. Further, in the following description, a detailed explanation of well-known related technologies may be omitted to avoid unnecessarily obscuring the subject matter of the present disclosure. Terms such as “including,” “having,” and “consisting of” used herein are generally intended to allow other components to be included unless the terms are used in conjunction with the term “only.” Any references to the singular may include the plural unless expressly stated otherwise.
  • Components are interpreted to include an ordinary error range even if not expressly stated.
  • As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or,” unless the context clearly indicates otherwise.
  • When the positional relation between two parts is described using the terms such as “on,” “above,” “below,” and “next,” one or more parts may be positioned between the two parts unless the terms are used in conjunction with the term “immediately” or “directly.”
  • When an element or layer is referred to as being “on” another element or layer, the element or layer may be directly on the other element or layer, or intervening elements or layers may be present.
  • Although the terms “first,” “second,” and the like are used for describing various components, these components are not confined by these terms. These terms are merely used for distinguishing one component from the other components, and a first component may be a second component in a technical concept of the present disclosure.
  • The size and thickness of each component illustrated in the drawings are represented for convenience of explanation, and the drawings are not necessarily to scale.
  • The features of various embodiments of the present disclosure can be partially or entirely bonded to or combined with each other and can be interlocked and operated in various technical ways, and the embodiments can be carried out independently of, or in association with, each other.
  • Hereinafter, various exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
  • The phosphorous-based acids attach to metal surfaces by forming strong P- O-M bonds, where M is a metal, and can serve as interfaces between metallic surfaces and the environment. For example, a phosphonic acid comprises a phosphorous atom with two acidic hydroxyls, a double bonded oxygen and a carbon chain attached to the central phosphorus atom. An exemplary phosphonic acid is represented below:
  • Figure US20230121929A1-20230420-C00001
  • The utility of these functional groups is that the distal end of the organic chain (X) may contain functional groups, which can be further modified. This allows for the installation of a variety of chemistries onto the distal end of these molecules. Thus, covalent attachment of these molecules followed by installation of custom chemistries is tantamount to the covalent attachment of said chemistries onto the surface. Such functional groups may include, but are not limited to, a substituted or unsubstituted hydroxyl, a substituted or unsubstituted amine, a substituted or unsubstituted ester, a substituted or unsubstituted thiol, a substituted or unsubstituted ether, a substituted or unsubstituted phosphonic acid ester, a substituted or unsubstituted phosphinic acid ester, a substituted or unsubstituted phosphoric acid ester, a substituted or unsubstituted carboxylate, a substituted or unsubstituted acrylate, a substituted or unsubstituted sulfonate, a substituted or unsubstituted sulfinate, a substituted or unsubstituted sulfoxide, a substituted or unsubstituted silane, a substituted or unsubstituted siloxane, a substituted or unsubstituted polydimethylsiloxane (PDMS), a substituted or unsubstituted amino ester, a substituted or unsubstituted peptide, both natural and synthetic, a substituted or unsubstituted oligopeptide, proteins, nucleotides, oligonucleotides, polynucleotides, a substituted or unsubstituted sugar, a substituted or unsubstituted polysaccharide, a substituted or unsubstituted oligosaccharide and the like, and these groups may be further modified. The functional group may be a quaternary ammonium salt, and the like.
  • Manipulating the chemical presentation of a surface to the environment changes the behavior of that surface when compared to an untreated surface. For example, surfaces can be made to be hydrophobic, hydrophilic, oleophobic, lubricious, antimicrobial, and the like. Surfaces may also be made to either enhance or attenuate the effectiveness of adhesives. Further, proteins and protein fragments, amino acids (both natural and synthetic), peptides, poly or oligo saccharides may be attached to enhance or attenuate a biological response such as osteointegration or antimicrobial action.
  • As discussed earlier in this application, the traditional method for attaching phosphorous-based acids to metallic surfaces is to spray or dip coat a dilute solution onto a metallic surface and thermally drive attachment of the phosphorus-based acids to the metallic surface through heating. In such traditional methods, heating is typically carried out for multiple hours in an oven, at or above about 130° C. Many metal hydroxides are reactive enough to drive attachment of the phosphorous-based acids without heating while addition of heat increases the efficiency of such reactions. For titanium, however, heat is traditionally an absolute requirement for phosphonic/-phoric/-phinic acid attachment.
  • As described earlier in this application, U.S. Pat. No. 5,126,210 describes an aqueous technique to modify “valve” metals, such as groups IVB and VB, including but not limited to, Ti, Zr, Hf, V, Nb, Ta, Al, and the like, through anodization using small water soluble phosphonic acids. Other researchers, including an inventor of the subject application, have recently expanded on this idea to include anodization using short water soluble phosphonic acids to build a foundational layer upon which antimicrobial surfaces were constructed, for example, as described in U.S. Provisional Application No. 62/408,913. However, the need for water soluble molecules limits the scope and utility of these techniques for attaching phosphonic acids to a metallic surface.
  • The inventors of this application have developed methods and compositions which utilize anodization-like condition in organic solvents to attach phosphorous based acids to metals. The solvents may include, but are not limited to: protic solvents, such as alcohols (including n-butanol, isopropanol, ethanol, methanol, and the like), acids (including formic acid, acetic acid, and the like); wet polar aprotic solvents, such as tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and the like; and ionic liquids. In an exemplary embodiment, the protic solvent may be an alcohol including, but not limited to, ethanol, methanol, isopropanol and n-butanol. In an exemplary embodiment, the ionic liquid may include, but is not limited to, 1-ethyl methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium thiocyanate, triethylsulphonium bis(trifluoromethylsulfonyl)imide, N-methyl-N-trioctylammonium bis(trifluoromethylsulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium trifluoromethylsulfonate.
  • The metal may include any metal that forms a robust native or installed oxide layer, including, but not limited to, titanium, titanium alloys, aluminum and aluminum alloys, vanadium and vanadium alloys, zirconium and zirconium alloys, hafnium and hafnium alloys, niobium and niobium alloys, tantalum and tantalum alloys, tungsten and tungsten alloys, stainless steel, cobalt chrome, and the like. The material to which the phosphorous-based acid is attached is not limited, and may include polymers, biological polymers, ceramics, and the like.
  • An inventive aspect of this application is a method of attaching phosphonic acids to a metallic surface. The method includes: preparing a solution of phosphonic acid in a protic solvent; immersing a clean strip or at least a portion of non-ferrous metal, and coupling the same to the cathode of a DC power supply; immersing a metal workpiece or at least a portion of the metal workpiece to be modified in the solution, while ensuring that there is no physical contact between the two pieces; bringing the positive terminal of the power supply into electrical contact with the workpiece; holding for a period of time; and removing the modified workpiece. This process may be followed by successive sonication processes in organic and aqueous solutions and drying the modified workpiece under an inert atmosphere.
  • The dried workpiece is then analyzed using standard analysis techniques, including, but not limited to, infrared (IR) spectroscopy, contact angle, X-ray Photoelectron Spectroscopy (XPS), Energy-Dispersive X-ray Spectroscopy (EDX), Atomic Force Microscopy (AFM), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Coefficient of Friction (COF) studies, and combinations thereof.
  • In the above-described method, the phosphonic acid solution may be prepared using a solvent, such that the concentration of the solution varies from 0.001% to a saturated composition. Preferred concentrations of the solution may range from about 0.1% to about 20% solution by weight, preferably from about 0.5% to 15% solution by weight, more preferably from about 1% to about 10% solution by weight.
  • The voltage of the DC power supply used in the above-described method may range from about 1 V to about 100 V.
  • The reaction time, during which the metal work piece or the at least the portion of the metal workpiece is held immersed in solution during the supply of electric current, may range from about 1 second to about 30 minutes, from about 1 second to about 5 seconds, from about 1 second to about 10 seconds, from about 1 second to about 15 seconds, from about 1 second to about 20 seconds, from about 1 second to about 30 seconds, from about 1 second to about 1 minute, from about 1 second to about 5 minutes, from about 1 second to about 10 minutes, from about 1 second to about 20 minutes, from about 10 seconds to about 30 minutes; from about 20 seconds to about 20 minutes; from about 30 seconds to about 10 minutes; or from about 30 second to about 5 minutes.
  • The inert atmosphere may be nitrogen or argon.
  • An inventive aspect of this application is a method for the attachment of oligomeric chitosan or oligomeric glucosamine, and related biological materials, to the phosphonic acid to form a surface having chitosan fragments immobilized thereon. Chitosan is a biocompatible and biodegradable cationic polysaccharide, which has a number of commercial and possible biomedical uses.10 Chitosan can easily be processed into functionalized nanoparticles,11 scaffolds for tissue engineering,12 nanofibers,13 and nanomembranes.14 Chitosan and modified chitosan have found use in a wide variety of biomedical applications15 such as wound healing16, gene delivery17, protein/peptide and nucleic acid delivery18, biosensors19 and as an antimicrobial agent20.
  • The chitosan molecules may be further modified with various functional groups, including but not limited to, a substituted or unsubstituted hydroxyl, a substituted or unsubstituted amine, a substituted or unsubstituted ester, a substituted or unsubstituted thiol, a substituted or unsubstituted ether, a substituted or unsubstituted phosphonic acid ester, a substituted or unsubstituted phosphinic acid ester, a substituted or unsubstituted phosphoric acid ester, a substituted or unsubstituted carboxylate, a substituted or unsubstituted acrylate, a substituted or unsubstituted sulfonate, a substituted or unsubstituted sulfinate, a substituted or unsubstituted sulfoxide, a substituted or unsubstituted silane, a substituted or unsubstituted siloxane, a substituted or unsubstituted polydimethylsiloxane (PDMS), a substituted or unsubstituted amino ester, a substituted or unsubstituted peptide, both natural and synthetic, a substituted or unsubstituted oligopeptide, proteins, nucleotides, oligonucleotides, polynucleotides, a substituted or unsubstituted sugar, a substituted or unsubstituted polysaccharide, substituted or unsubstituted aromatics, substituted or unsubstituted iodo compounds, substituted or unsubstituted benzylic systems, substituted or unsubstituted bridged ring-strain systems, substituted or unsubstituted cyclopropyl compounds, substituted or unsubstituted acrylates, substituted or unsubstituted urethanes, substituted or unsubstituted pyridines, substituted or unsubstituted pyrimidines, substituted or unsubstituted purines, substituted or unsubstituted thiols, substituted or unsubstituted conjugated thiols, substituted or unsubstituted phosphonic acids, substituted or unsubstituted carboxylic acids, substituted or unsubstituted esters, substituted or unsubstituted acid chlorides, substituted or unsubstituted carboxylate salts, substituted or unsubstituted amides, substituted or unsubstituted silanes, substituted or unsubstituted ethers, substituted or unsubstituted acetylacetonates, substituted or unsubstituted salicylates, substituted or unsubstituted quaternary ammonium salts, and the like.
  • In a preferred embodiment, the chitosan molecules may be further modified with quaternary ammonium salts.
  • Example 1: Preparation of Modified Chitosan
  • 1) Depolymerization of Chitosan to Make Oligo-Chitosan (Mw: 2,000)
  • In a 100 mL pressure-tight vial with a PTFE-lined cap, 1.25 g of chitosan (DDA=76%; 50-190 kDa) were dissolved in 37.0 mL of a 0.93 mol/L aqueous acetic acid solution (d=1.05 g/cm3, 2.06 g/37 mL) by stirring for 5 min and sonicating for 2 min. 1.46 g of a 30% hydrogen peroxide solution in water were added to the mixture and the vial was sealed by a screw cap. The solution was microwaved at a constant power (1,000 W) for about 30 seconds, resulting in a very hot solution. The solution was shaken for about 1 min, and then 1\4 W irradiated at a constant power (1,000 W) for about 15 seconds, followed by cooling in a water bath to room temperature. The resulting yellow solution was fully translucent. 63 mL of DI water was added to the solution, and the pH adjusted to 9.0 by the addition of an appropriate amount of KOH. The solution was divided into four equal 25 mL portions and placed in 50 mL Falcon tubes which were then centrifuged at 4,000 rpm for about 4 min. The precipitate and the supernatant were separated. The precipitate was washed and centrifuged three times with water and one time with DMSO.
  • 2) Reaction Between Oligo-Chitosan and Glycidyl Trimethylammonium Chloride (Mw: 151.66)
  • 0.444 g of oligo-chitosan (2.688 mmol of NH2 groups, 1 NH2 eq.) was dissolved in 18.0 mL of DMSO under vigorous stirring for about 10 min. 0.82 g of glycidyl trimethylammonium chloride (5.37 mmol, 2.0 eq.) was added dropwise to the solution, and the mixture was stirred at room temperature for 72 hours. The resulting quaternized-oligo-chitosan was precipitated in acetone or toluene and washed/centrifuged two times in DMSO. The white powder was dried under vacuum at 25° C. for 72 h h. This process is illustrated in the following reaction scheme (1):
  • Figure US20230121929A1-20230420-C00002
  • Example 2: Preparation of Surfaces with Modified Chitosan Immobilized Thereon
  • 1) Cleaning of Surfaces (Coupons: Metal)
  • The surface of metallic coupons are extensively cleaned using a series of washes/sonications in Alkanox, water and ethanol followed by exposure to UV/03 (5 min) to remove any residual organics prior to the deposition of a phosphonic acid linker (PUL=11-phosphono-1-undecanol).
  • 2) Electrochemical Deposition of PUL Coating:
  • In a clean ceramic dish were added a thin titanium foil which was covered completely with an insulating silicone mesh. Metallic coupons were placed onto the mesh and the entire assembly was covered with a 1% w/v methanolic solution of PUL. The foil was connected to the negative terminal of a DC power supply and would serve as the cathode in the subsequent electrochemical reaction. The coupon was placed in contact with the positive terminal of the power supply to complete the circuit. Deposition/modification was carried out at 90V for 1 minute followed by sonications in both ethanol and water (2×5 min). Infrared spectroscopy on the cleaned and dried surface confirmed the presence of bound PUL.
  • 3) Surface Activation:
  • PUL coated coupons were racked in a glass chamber and covered completely with dichloromethane (CH2Cl2, 240-250 mL). To the stirred mixture, CDI (3 g) was added, and the chamber covered with a fitted glass lid. The fitted glass lid was wrapped with teflon tape to improve the seal. The resulting mixture was stirred for about 4 hours at room temperature on a magnetic stirrer plate set at approximately 300-500 rpm. Coupons were sonicated twice in acetone for 10 minutes, and dried in vacuo.
  • 4) Attaching Quaternized Chitosan to the Surface
  • The quaternized-oligo-chitosan solution (0.1 g/10 mL DMSO) was sprayed once on the CDI-activated coupons (approximately 0.001 g). The coupons were horizontally placed on the plate to improve the thickness uniformity of coating, and then reacted at 100° C. for 10 minutes. The spraying and reaction processes were carried out on both sides of the coupons. The coupons were then sonicated in EtOH twice for about 10 minutes, and dried in vacuo. This process is illustrated for stainless steel in the following reaction scheme (2):
  • Figure US20230121929A1-20230420-C00003
  • Experimental Results:
  • (1) An In vitro elution cytotoxicity study, ISO 10993-5 was designed to show whether cytotoxic material comes off a treated surface during soaking. Test articles showed a grade of 0 which reveals that there was NO cytotoxicity associated with treated materials. Additionally, a test for irritation and skin sensitization was performed (ISO 10993-10) which showed no irritation following intracutaneous injections of extracts. An ISO systemic toxicity study, ISO 10993-11 also showed no toxicity.
  • As a further demonstration of biocompatibility, murine osteocyte-like cells, ML O-A5 (postosteoblast/preosteocyte-like cell line) were seeded onto titanium coupons prepared in the same manner as described above for stainless steel coupons. After about 16 hours, the coupons were washed, fixed and stained with 100 nM DAPI/100 nM Phalloidine-488 (culture medium supplemented with 5% FBS). DAPI (nuclei) and Phalloidin (cytoskeleton) images were combined to show the growth of the MLO-A5 cells on the treated surface, as shown in FIG. 1 . What can be seen from the figure is that the osteoblasts have attached, spread and are dividing. Cell morphology appears to be that of healthy cells.
  • (2) Study of antibacterial potency of the modified surfaces against four different strains of bacteria:
  • Modified surfaces prepared as described in Example 2 above were treated with four different strains of bacteria (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermis and Psueomonas aeruginosa) to demonstrate the antibacterial potency of the modified surfaces compared to untreated surfaces (control coupons). In each of the following Experimental Examples 1 to 4, the CFU/ml for each of the bacteria was measured for both the modified and unmodified surfaces.
  • TABLE 1
    E. coli-Control and modified coupons were immersed in E. coli
    culture (24 wells, 0.5 ml, OD600 = 0.01) for 1 hour. C = control.
    C. C. C.
    Example Example Example Example Example Example
    1.1 1. 2 1.3 1.1 1.2 1.3
    Dilution 1:1 1:1 1:1 1:1000 1:1000 1:1000
    CFU/ml 0.00E+00 0.00E+00 0.00E+00 2.70E+06 2.80E+06 3.07E+06
  • TABLE 2
    S. aureus-Control and modified coupons were immersed in Staph aureus
    culture (24 wells, 0.5 ml, OD600 = 0.01) for 1 hour
    C. C. C.
    Example Example Example Example Example Example
    2.1 2. 2 2.3 2.1 2.2 2.3
    Dilution 1:1 1:1 1:1 1:1000 1:1000 1:1000
    CFU/ml 0.00E+00 0.00E+00 0.00E+00 3.37E+06 3.20E+06 2.90E+06
  • TABLE 3
    S. epidermidis-Control and modified coupons were immersed in Staph
    epidermidis culture (24 wells, 0.5 ml, OD600 = 0.01) for 1 hour
    C. C. C.
    Example Example Example Example Example Example
    3.1 3. 2 3.3 3.1 3.2 3.3
    Dilution 1:1 1:1 1:1 1:1000 1:1000 1:1000
    CFU/ml 0.00E+00 0.00E+00 0.00E+00 2.53E+06 2.23E+06 2.40E+06
  • TABLE 4
    P. aeruginosa-Control and modified coupons were immersed in P.
    aeriginosa (24 wells, 0.5 ml, OD600 = 0.01) for 1 hour
    C. C. C.
    Example Example Example Example Example Example
    4.1 4. 2 4.3 4.1 4.2 4.3
    Dilution 1:1 1:1 1:1 1:1000 1:1000 1:1000
    CFU/ml 1.87E+04 1.67E+04 1.93E+04 1.13E+06 1.03E+06 1.20E+06
  • The results in Tables 1 to 4 are summarized in Table 5 below, and in FIG. 2 . As can be seen from these results, the modified surfaces have a significantly higher antibacterial effect compared to unmodified surfaces.
  • TABLE 5
    Avg. Avg. Approx.
    CFU/ml SD for CFU/ml SD for bacteria
    (Control control (MST MST killing
    coupons) coupons coupons) coupons power
    E. coli 2.85 0.19 0 0 >100,000
    S. aureus 3.15 0.24 0 0 >100,000
    S. epidermis 2.38 0.15 0 0 >100,000
    P. aeruginosa 1.12 0.18 0.08 0.014 14
  • Although the exemplary embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, the present disclosure is not limited thereto and may be embodied in many different forms without departing from the technical concept of the present disclosure. Therefore, the exemplary embodiments of the present disclosure are provided for illustrative purposes only and are not intended to limit the technical concept of the present disclosure. The protective scope of the present disclosure should be construed based on any appended claims and combinations thereof, and all the technical concepts in the equivalent scope thereof should be construed as falling within the scope of the present disclosure. As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification be considered exemplary only, with the scope and spirit of the invention being indicated by the claims.
  • REFERENCES
    • 1. DUBEY et al., Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100), Langmuir, 2010, 26 (18), pp 14747-14754.
    • 2. DUBEY et al., Characterization of self-assembled organic films using differential charging in X-ray photoelectron spectroscopy, Langmuir, 2006, 22 (10), pp 4649-4653.
    • 3. GAO et al., Solid-State Nmr-Studies of Self-Assembled Monolayers, Langmuir, 1995, 11 (6), pp 1860-1863.
    • 4. GAWALT et al., Enhanced bonding of alkanephosphonic acids to oxidized titanium using surface-bound alkoxyzirconium complex interfaces, Langmuir, 1999, 15 (26), pp 8929-8933.
    • 5. GAWALT et al., Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium, Langmuir, 2001; 17 (19), pp 5736-5738.
    • 6. GAWALT et al., Enhanced bonding of organometallics to titanium via a titanium(III) phosphate interface, Langmuir, 2001; 17 (21), pp 6743— 6745.
    • 7. GOUZMAN et al., Monolayer vs. multilayer self assembled alkylphosphonate films: X-ray photoelectron spectroscopy studies, Surface Science. 2006; 600 (4), pp773-781.
    • 8. HANSON et al., Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon, J. Am. Chem. Soc., 2003, 125 (51), pp 16074-16080.
    • 9. WOODWARD et al., Self-assembled monolayer growth of octadecylphosphonic acid on mica, Langmuir, 1996, 12 (15), pp 3626-3629.
    • 10. JENNINGS et al., Chitosan Based Biomaterials, Vol. 2: Tissue Engineering and Therapeutics, 2017, Elsevier
    • 11. ANITHA et al., Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles, Carbohydrate Polymers, 2009.
    • 12. PRABAHARAN et al., Review paper: chitosan derivatives as promising materials for controlled drug delivery, Journal of Biomaterials Applications, 2008, 23, pp 5-36.
    • 13. Jayakumar et al., Novel chitin and chitosan nanofibers in biomedical applications, Biotechnology Advances, 2010, 28, 142-150.
    • 14. Jayakumar et al., Bioactive and metal uptake studies of carboxymethyl chitosan- graft-D-glucuronic acid membranes for tissue engineering and environmental applications, International Journal of Biological Macromolecules, 2009, 45, 135-139.
    • 15. JENNINGS et al., Chitosan Based Biomaterials, Vol. 1: Fundamentals, 2017, Elsevier.
    • 16. Madhumathi et al., Development of novel chitin/nanosilver composite scaffolds for wound dressing applications, Journal of Materials Science: Materials in Medicine, 2010, 21, 807-813.
    • 17. Borchard, G., Chitosans for gene delivery, Advanced Drug Delivery Reviews, 2001, 52, 145-150.
    • 18. Jayakumar et al., Chitosan conjugated DNA nanoparticles in gene therapy, Carbohydrate Polymers, 2010, 79, 1-8.
    • 19. Tiwari et al., Electrochemical synthesis of chitosan-co-polyaniline/W03-nH2O composite electrode for amperometric detection of NO2 gas, Electroanalysis, 2008, 20, 1775-1781.
    • 20. Hirano et al., Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens, Agricultural and Biological Chemistry, 1989, 53 (11), 3065-3066.

Claims (20)

We claim:
1. A method of preparing a functional surface comprising a metal, polymer, biopolymer, or ceramic material, the method comprising:
preparing a solution of a phosphorous-based acid in a solvent;
immersing at least a portion of a work piece into the solution of the phosphorous-based acid, wherein the workpiece comprises a metal, polymer, biopolymer, or ceramic material;
immersing at least a portion of a reference metal into the solution of the phosphorous-based acid;
supplying a voltage for a duration of time to prepare a phosphorous acid-modified work piece;
removing the phosphorous acid-modified work piece; and
further modifying the phosphorous acid-terminated work piece with a chitosan solution to prepare a functional surface.
2. The method according to claim 1, wherein the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof
3. The method according to claim 2, wherein the phosphonic acid is 11-phosphono-1-undecanol.
4. The method according to claim 1, wherein the solvent is selected from the group consisting of n-butanol, isopropanol, ethanol, methanol, formic acid, acetic acid, tetrahydrofuran (THF), demethylformamide (DMF), dimethyl sulfoxide (DMSO), and ionic liquids.
5. The method of claim 1, wherein the chitosan solution comprises an oligo-chitosan modified with a quaternary phosphonium salt.
6. The method according to claim 1, wherein the workpiece comprises a metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Al, and alloys thereof.
7. The method according to claim 1, wherein the workpiece comprises stainless steel.
8. An article comprising a work piece having a modified surface, wherein the surface comprises a polymer, biopolymer, or ceramic material, and wherein the modified surface comprises a chitosan modified with a quaternary ammonium salt.
9. The article according to claim 8, wherein the chitosan is connected to a surface of the work piece via a phosphorous-based acid linker.
10. The article according to claim 9, wherein the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof
11. The article according to claim 10, wherein the phosphonic acid is 11-phosphono-1-undecanol.
12. The article according to claim 8, wherein the article has an antibacterial effect.
13. The article according to claim 8, wherein the article has an antifungal and/or antiviral effect.
14. An article prepared according to the method of claim 1.
15. The article according to claim 14, wherein the chitosan is connected to a surface of the work piece via a phosphorous-based acid linker.
16. The article according to claim 14, wherein the article has an antibacterial effect.
17. The article according to claim 14, wherein the article has an antifungal or antiviral effect.
18. A method of preparing a functional metal surface, the method comprising:
preparing a solution of a phosphorous-based acid in a solvent;
immersing at least a portion of a metal work piece into the solution of the phosphorous-based acid;
immersing at least a portion of a reference metal into the solution of the phosphorous-based acid;
supplying a voltage for a duration of time to prepare a phosphorous acid-modified metal work piece;
removing the phosphorous acid-modified metal work piece; and
further modifying the phosphorous acid-terminated work piece with a polysaccharide solution to prepare a functional metal surface.
19. The method according to claim 18, wherein the phosphorous-based acid is a phosphonic acid, a phosphoric acid, a phosphinic acid, or mixtures thereof
20. The method according to claim 18, wherein the solvent is selected from the group consisting of n-butanol, isopropanol, ethanol, methanol, formic acid, acetic acid, tetrahydrofuran (THF), demethylformamide (DMF), dimethyl sulfoxide (DMSO), and ionic liquids.
US18/078,469 2019-06-25 2022-12-09 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same Pending US20230121929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/078,469 US20230121929A1 (en) 2019-06-25 2022-12-09 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962866492P 2019-06-25 2019-06-25
US16/906,573 US11540514B2 (en) 2019-06-25 2020-06-19 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same
US18/078,469 US20230121929A1 (en) 2019-06-25 2022-12-09 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/906,573 Continuation US11540514B2 (en) 2019-06-25 2020-06-19 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same

Publications (1)

Publication Number Publication Date
US20230121929A1 true US20230121929A1 (en) 2023-04-20

Family

ID=74042609

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/906,573 Active US11540514B2 (en) 2019-06-25 2020-06-19 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same
US18/078,469 Pending US20230121929A1 (en) 2019-06-25 2022-12-09 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/906,573 Active US11540514B2 (en) 2019-06-25 2020-06-19 Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same

Country Status (3)

Country Link
US (2) US11540514B2 (en)
EP (1) EP3990195A4 (en)
WO (1) WO2020263704A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003955A1 (en) * 2021-07-20 2023-01-26 Molecular Surface Technologies, Llc Antimicrobial with modified-chitosan functionalization via dopamine linkage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114055A1 (en) * 2011-02-07 2014-04-24 Hyun-Su Lee Multifunctional chitosan grafted surfaces and uses thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2370204A1 (en) 1976-11-05 1978-06-02 Pechiney Aluminium ALUMINUM ALLOY PISTON WITH SURFACE TREATED SO THAT IT DOESN'T BIND IN CONTACT WITH AN ALUMINUM ALLOY INTERNAL WALL CYLINDER
US5126210A (en) 1989-08-23 1992-06-30 Aluminum Company Of America Anodic phosphonic/phosphinic acid duplex coating on valve metal surface
US5032237A (en) 1989-08-23 1991-07-16 Aluminum Company Of America Anodic phosphonic/phosphinic acid duplex coating on valve metal surface
US5102507A (en) 1989-10-16 1992-04-07 Aluminum Company Of America Method of making an anodic phosphate ester duplex coating on a valve metal surface
US5277788A (en) 1990-10-01 1994-01-11 Aluminum Company Of America Twice-anodized aluminum article having an organo-phosphorus monolayer and process for making the article
US7396594B2 (en) 2002-06-24 2008-07-08 The Trustees Of Princeton University Carrier applied coating layers
US6645644B1 (en) 1996-10-17 2003-11-11 The Trustees Of Princeton University Enhanced bonding of phosphoric and phosphoric acids to oxidized substrates
US7507483B2 (en) * 1997-02-04 2009-03-24 Jeffrey Schwartz Enhanced bonding layers on native oxide surfaces
US7815963B2 (en) 1996-10-17 2010-10-19 The Trustees Of Princeton University Enhanced bonding layers on titanium materials
US7569285B2 (en) 1996-10-17 2009-08-04 The Trustees Of Princeton University Enhanced bonding layers on titanium materials
US6146767A (en) 1996-10-17 2000-11-14 The Trustees Of Princeton University Self-assembled organic monolayers
US7931943B2 (en) 1999-09-22 2011-04-26 The Trustees Of Princeton University Enhanced bonding layers on native oxide surfaces
BR0315094A (en) 2002-10-09 2005-08-16 Ciba Sc Holding Ag Process for forming ultraviolet absorbent layers on substrates
TWI457433B (en) 2008-01-30 2014-10-21 Chemetall Gmbh Process for coating metallic surfaces with a phosphate layer and then with a polymer lubricant layer
US8192603B2 (en) 2008-12-29 2012-06-05 Basf Coatings Gmbh Electrocoat composition and process replacing phosphate pretreatment
KR20170121209A (en) 2009-02-25 2017-11-01 오소본드 코포레이션 Anti-infective funtionalized surfaces and methods of making same
JP6133017B2 (en) 2012-04-27 2017-05-24 京セラメディカル株式会社 Membrane manufacturing apparatus and artificial joint component manufacturing method
JP6513643B2 (en) * 2013-06-07 2019-05-15 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Immobilization of Activator on Substrate Using Compound Containing Trihydroxyphenyl Group
EP2826890A1 (en) 2013-07-19 2015-01-21 ATOTECH Deutschland GmbH Method for cathodic corrosion protection of chromium surfaces
US11052177B2 (en) * 2013-09-06 2021-07-06 The Trustees Of The University Of Pennsylvania Antimicrobial polymer layers
US9701892B2 (en) 2014-04-17 2017-07-11 Baker Hughes Incorporated Method of pumping aqueous fluid containing surface modifying treatment agent into a well
WO2016065358A1 (en) 2014-10-24 2016-04-28 Orthobond, Inc. Quaternary phosphonium coated surfaces and methods of making the same
CN104984394B (en) * 2015-06-03 2017-06-23 浙江大学 The preparation method of medical metal implant surfaces chitosan quaternary ammonium salt/collagen composite coating
CN106237376B (en) * 2016-03-28 2019-06-07 上海交通大学医学院附属第九人民医院 The modified titanium-based biomaterial for medical purpose and preparation method thereof of chitosan quaternary ammonium salt group compound film
CA3044464A1 (en) 2016-10-17 2018-04-26 Orthobond Corporation Surfaces with oligomeric or polymeric antimicrobials
US11154061B2 (en) * 2016-10-17 2021-10-26 Orthobond Corporation Functional surfaces
US10499750B2 (en) 2017-09-27 2019-12-10 Dorel Juvenile Group, Inc. Juvenile walker
CN111937117A (en) * 2017-11-30 2020-11-13 普林斯顿大学理事会 Adhesive layer bonded to an activated surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114055A1 (en) * 2011-02-07 2014-04-24 Hyun-Su Lee Multifunctional chitosan grafted surfaces and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Midwood, K.S. et al. "Easy and Efficient Bonding of Biomolecules to an Oxide Surface of Silicon" Langmuir 2004, 20, 5501-5505 (Year: 2004) *

Also Published As

Publication number Publication date
EP3990195A4 (en) 2023-10-04
US20200404905A1 (en) 2020-12-31
US11540514B2 (en) 2023-01-03
EP3990195A1 (en) 2022-05-04
WO2020263704A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
Avcu et al. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review
Nizami et al. Graphene oxide: A new direction in dentistry
Molaei et al. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate
Martin et al. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface
US20090123514A1 (en) Electropolymerizable Monomers and Polymeric Coatings on Implantable Devices Prepared Therefrom
Tabesh et al. Development of an in-situ chitosan‑copper nanoparticle coating by electrophoretic deposition
EP2919920B1 (en) Method for grafting polymers on metallic substrates
Ahmed et al. A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti–6Al–4V alloy for orthopedic implants
CN103757683B (en) A kind of electro-deposition preparation method of photo-crosslinking type bio-based coating
Slaney et al. Biocompatible carbohydrate-functionalized stainless steel surfaces: a new method for passivating biomedical implants
US20230121929A1 (en) Electrochemical attachment of phosphonic acids to metallic substrates and antimicrobial medical devices containing same
EP1768717A2 (en) Modified conductive surfaces having active substances attached thereto
CN114395059A (en) Polydopamine-zwitterion polymer anti-adhesion coating modification method and application thereof
Clifford et al. Biomimetically modified chitosan for electrophoretic deposition of composites
US20210207282A1 (en) Electrochemical attachment of phosphonic acids to metallic substrates and osteoconductive medical devices containing same
Yi et al. Substrate-independent adsorption of nanoparticles as anti-biofilm coatings
Peng et al. Polyelectrolytes fabrication on magnesium alloy surface by layer-by-layer assembly technique with antiplatelet adhesion and antibacterial activities
ES2707527T3 (en) Manufacturing process of an adaptable medical device and device obtained by said process
Mayouf et al. Fast pulsed electrodeposition of silver nanoparticles on polypyrrole thin films for antibacterial and biomedical applications
US20230025164A1 (en) Antimicrobial with modified-chitosan functionalization via dopamine linkage
CN116209471A (en) Antibacterial surface of multicomponent chitosan conjugate
Hu et al. Construction of ZnONRs-PDA/PMPC nanocomposites on the surface of magnesium alloy with enhanced corrosion resistance and antibacterial performances
Kim et al. Coordination-driven robust antibacterial coatings using catechol-conjugated carboxymethyl chitosan
Fernández-Solis et al. Molybdate and Phosphate Cross-Linked Chitosan Films for Corrosion Protection of Hot-Dip Galvanized Steel
US7387836B2 (en) Aziridine compounds and their use in medical devices

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: MOLECULAR SURFACE TECHNOLOGIES, LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLEVENGER, RANDELL;DONALD, GORDON D.;KIM, CHEOLJIN;SIGNING DATES FROM 20230203 TO 20230208;REEL/FRAME:062728/0168

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED