US20230010429A1 - Coil catheter, method of use, and method of manufacture - Google Patents

Coil catheter, method of use, and method of manufacture Download PDF

Info

Publication number
US20230010429A1
US20230010429A1 US17/850,389 US202217850389A US2023010429A1 US 20230010429 A1 US20230010429 A1 US 20230010429A1 US 202217850389 A US202217850389 A US 202217850389A US 2023010429 A1 US2023010429 A1 US 2023010429A1
Authority
US
United States
Prior art keywords
catheter
catheter body
sphincter
coil
suture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/850,389
Inventor
Gaines Hammond, JR.
Byron Hodge, JR.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Halo Biomedical LLC
Original Assignee
Blue Halo Biomedical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/012,920 external-priority patent/US20210069470A1/en
Application filed by Blue Halo Biomedical LLC filed Critical Blue Halo Biomedical LLC
Priority to US17/850,389 priority Critical patent/US20230010429A1/en
Assigned to BLUE HALO BIOMEDICAL LLC reassignment BLUE HALO BIOMEDICAL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HODGE, BYRON, JR, HAMMOND, GAINES, JR
Priority to US17/863,795 priority patent/US20220339401A1/en
Publication of US20230010429A1 publication Critical patent/US20230010429A1/en
Priority to PCT/US2023/026083 priority patent/WO2024019861A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0017Catheters; Hollow probes specially adapted for long-term hygiene care, e.g. urethral or indwelling catheters to prevent infections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0041Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M25/04Holding devices, e.g. on the body in the body, e.g. expansible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • A61M27/008Implant devices for drainage of body fluids from one part of the body to another pre-shaped, for use in the urethral or ureteral tract
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/08Bending or folding of tubes or other profiled members
    • B29C53/083Bending or folding of tubes or other profiled members bending longitudinally, i.e. modifying the curvature of the tube axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2002/047Urethrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2002/048Ureters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0091Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • A61F2240/004Using a positive or negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1078Urinary tract
    • A61M2210/1089Urethra

Definitions

  • the present invention relates generally to a coil catheter, method for use thereof, and method of manufacture thereof, and more specifically to a catheter having a retention coil member for repositioning, validation of placement, and removal, method of use, and method of manufacture thereof.
  • Urinary retention in males generally implies that urine is produced normally but is retained within the bladder due to primary detrusor dysfunction or an obstruction at or distal to the bladder neck.
  • Prostatic obstruction causes an increased resistance for the passage of urine with subsequent increased pressure on the bladder musculature resulting in two successive phases; 1) compensation, where bladder emptying still takes place, and 2) decompensation, characterized by increasing amounts of residual urine and ultimately urine retention.
  • Bladder outlet obstruction producing urinary retention may result from, including but not limiting, benign prostatic hypertrophy, prostate cancer, or any acute enlargement of the prostate including but not limited to acute prostatitis, post focal procedures on the prostate, radiation, cryotherapy or instrumentation.
  • Urinary retention occurs primarily in males with benign prostatic hypertrophy being the most common cause in men over the age of 50 years. It has been estimated that one in four men in the United States will have been treated for symptomatic benign prostatic hypertrophy by the time they reach 80 years of age.
  • Dacron a cloth-like material
  • This material can become highly lithogenic when exposed to urine, so it would be ideal to use an alternative material or method.
  • Another issue taught in the prior art is a sheath which becomes a permanent part of the system required to straighten the catheter for insertion and is further used to uncoil and retract the catheter from the bladder. It would be desirable to not require a permanently placed sheath to remove additional obstacles from operation of a catheter.
  • bladder drainage generally accomplished by placement of a transurethral, suprapubic catheter or intermittent self-catheterization. This creates a passageway between the bladder and the exterior of the body that allows a flow of urine to the outside.
  • the invention involves facilitating drainage and, more specifically, but not by way of limitation, to facilitating fluid drainage from the bladder and through the urethra of a patient experiencing either acute or chronic urinary obstruction.
  • the retention member for the device is a coil device which has a straight non coiled iteration for placement. Once placed into the bladder a stylet is removed which allows for the coiled default state to be achieved.
  • the pusher segment is connected during placement and can be utilized for a period of time to collect urine and then removed allowing the device to have only a thread (Monofilament Suture type material) connected externally.
  • the coil tubular portion abutted to the pusher allows for passage and collection of urine. With the disconnection of the pusher segment, the coil catheter allows for the passage of urine without an external tubular structure and external collection device.
  • the converted iteration is from long external catheter to short coil device without the tubular extension thru the sphincter or distal urethra.
  • the invention relates to a catheter system, which embodies the ability to control a coil tip catheter within the bladder or body cavity by an attached thread traversing thru the urethra to the exterior.
  • the coil catheter comprises a body member and a coil retaining member.
  • the body member includes a distal terminating end, a proximal end portion, and a lumen extending within the body member to allow fluid drainage through the body member a well as around the tubular segment. Eyelets are placed in the device at but not limited to at the swan neck section and at the proximal coil tip.
  • a guide wire opening at the tip allows for use of a guide wire to facilitate delivery of the device due to urethral or prostate anatomical challenges.
  • proximal and distal require a point of reference.
  • the point of reference in determining direction is from the perspective of the patient. Therefore, the term proximal will always refer to a direction that points into the patient's body, whereas distal will always refer to a direction that points out of the patient's body.
  • the body member is sized for placement substantially within the bladder and bladder neck, prostate urethra, with the distal terminating end located proximal to an external urethral sphincter to allow normal operation of the external sphincter.
  • the coil retaining member extends from the proximal end portion of the body member.
  • the coil retaining member is straightened into a first state to allow passage of the catheter into the urethra, and the coil retaining member is coiled into a second state when located in a bladder to hold the body member in place substantially within the urethra by removing a straightening stylet.
  • the pusher segment abuts to the distal tubular segment such that the device does not migrate as the straightening stylet is removed.
  • the Coil catheter system is comprised of a coil catheter, a connecting segment, a monofilament suture, and a pusher tubular device.
  • the Coil catheter is comprised of a body member and a proximal coil retaining member.
  • the Swan Neck portion of the coil is the transition from the tubular segment and the coil angles proximally then curves distally into a horizontal portion of the coil.
  • the right angle and swan neck configuration allows for retaining of the device as well as a tolerance to traction prior to removal.
  • the length of the tubular, swan neck and coil can be changed to facilitate a variety of anatomical and gender specific challenges.
  • the Coil replaces the balloon as a retaining member.
  • the coil consists of a tapered tip with guide wire channel, eyelets placed at various and not limited locations on the coil segment.
  • the eyelet placed in the swan neck is perpendicular to the direction of flow.
  • the bladder mucosa trauma is minimized due to the placement of the eyelets.
  • the curve of the coil is fashioned to have a “swan neck” portion which extends from the horizontal plane of the coil device which is a right angle to the tubular portion.
  • the “Swan Neck” portion allows for some allowance for traction on the device prior to uncoiling of the horizontal member.
  • the coil retaining member of the coil catheter can be a tube constructed with coil-shape memory.
  • the coil retaining member also can be rounded at the ends of the tubing to provide user comfort during insertion of the catheter into the patient's urethra.
  • a guide wire channel allows for a guide wire to be utilized with difficult placement due to false passages in the urethra or other anatomical challenges.
  • the process for creating the swan neck vertical dynamic portion of the device with a horizontal coil is a unique process encompassing features defined in the Utility patent identified as Manufacturing Process for integration of retaining member with vertical component coupled with the horizontal coil.
  • the Vectors of pull impact the device in two separate phases of uncoiling, they are coupled with a resistance to pull out which is initially absorbed by the vertical swan neck component.
  • the coil retaining member Prior to and during insertion of the coil catheter into the patient's urethra, the coil retaining member is in a straightened first state. The coil retaining member returns to substantially the second coil state once in the patient's bladder and thereby acts as an anchor to keep the body member of the catheter substantially within the prostatic urethra.
  • the body member can include one or more side openings to allow fluid to drain from the urethra.
  • the lumen of the body member and length of the tube can be designed to be equivalent to a variety of tubular dimensions.
  • One embodiment would include a tubular portion which is constructed to have a star shaped exterior which allows urine to travel predominantly around rather than thru the device.
  • the suture should be long enough to extend from the body member to the outside of the patient's body.
  • the suture can also be comprised of monofilament nylon or other equivalent materials.
  • the coil catheter can be removed easily from the patient's body by pulling downward on the suture.
  • the end of the suture can be connected to a structure (e.g., snap cap, ball, ring, coil) that extends out of the body entirely.
  • the purpose of the snap cap is to facilitate location of the suture's end and eventual removal of the coil catheter by simply pulling on the located suture. Gentle traction on the suture.
  • a magnet can be placed on the snap cap and on the end of the stylet device. This allows for engaging the snap cap with gentle traction and is placed on the device to engage the device into the bladder in females or traverse the sphincter in male patients with sphincter resistance.
  • the device may utilize additional materials which would add qualities such as, but not limited to, lubrication, hydrophilic coating, radiographic enhancing material.
  • the material for the device is, but not limited to, Carbothane and not limited to ID and OD various stiffness of the material.
  • the Pusher, stylet and suture material are not limited in size or characteristics.
  • the invention in another embodiment, relates to a Coil catheter system for draining fluid from a patient's body cavity including but not limited to bladder, stomach, colon, ileal loop, colostomy, and abdominal peritoneal cavity.
  • the invention allows for the manipulation of a variety of devices within the body cavity to be controlled externally with a tethering suture. This allows for episodic movement from a passive state of the device to an active state, which changes the fluid dynamics to favor voiding or continence. To void, the user pulls on the suture, causing the distal end of the coil to move into the bladder neck and through the sphincter valve, allowing the bladder to drain.
  • the device in another device iteration, can be fashioned to have an inverted umbrella membrane, which occludes the bladder neck, allowing continence to be achieved.
  • Another iteration includes the capability of the coil being imbedded with various medications which allows for a unique drug delivery into body cavities such as, but not limited to, the bladder, stomach, colon, ileal loop, colostomy or abdominal cavity.
  • the tethered control also allows for manipulation of the device in the cavity.
  • the device may be configured with monitoring devices allowing for the wireless transmission of images or data.
  • the catheter is used for cervical dilation to induce labor.
  • the catheter is used for widening the nasal passages to treat sleep disorders (e.g., sleep apnea).
  • sleep disorders e.g., sleep apnea
  • the Coil Catheter allows the bladder to fill and contract in synchronous sphincter relaxation without Prostate Urethral resistance. This allows for defining the functional capacity of both the bladder and urinary sphincter.
  • the device acts as a Bladder Rehabilitation Device as well as bladder neck and prostate fossa dilation.
  • the improvement in bladder muscular contraction in a volitional manner may obviate the need for a variety of interventional procedures, which focus on only reduction in Prostate resistance but do nothing to enhance the Vesicular (Bladder) Pressure, which when coupled with reduction in the prostate resistance increases the Flow Rate in patients.
  • More efficient voiding, with reduced residual urine in the bladder, coupled with a competent urinary sphincter and elimination of the need for an external collection device results in a collage of clinical improvements.
  • the coiled shape has been utilized in a variety of medical devices to resist removing of a straight tubular device.
  • the unique feature of the current vertical and horizontal design with the horizontal portion is distal to the Apex of the device. Proximal is inward toward the patient and distal is the direction away from the patient.
  • Prior coiled shapes were an extension proximal to the tubular device. With tension on these designs the uncoiling began with any tension on the distal tubular portion.
  • the current design protects the uncoiling of the horizontal component from the initial tension.
  • the “swan neck” portion allows for lengthening of the vertical tubular component and with release of the tension will “snap back” to its original position due to the horizontal stabilizing effect.
  • the distance for the extension and snap back allows for a variety of medical applications with innate resistance to inappropriate migration which is common in “pig tail curl” or “J” shaped tips.
  • the application defines the unique manufacturing process to construct the vertical—swan neck—horizontal shaped device.
  • FIG. 1 is a diagrammatic representation of a preferred embodiment of the present inventions shown in a typical environment.
  • FIG. 2 is a front elevational view of a preferred embodiment of the present invention shown in a straightened orientation.
  • FIG. 3 is a top plan view thereof.
  • FIG. 4 is a bottom plan view thereof.
  • FIG. 5 is a top plan view of a preferred embodiment of the present invention in a coiled orientation.
  • FIG. 6 is a front elevational view thereof.
  • FIG. 7 is a three-dimensional isometric view thereof.
  • FIG. 8 is a front elevational view of a preferred embodiment of the present invention in combination with a typical pusher device.
  • FIG. 8 A is a detailed view of a portion thereof taken a bout the circle 8 A in FIG. 8 .
  • FIG. 9 is a diagrammatic representation thereof shown in a typical environment with an external container.
  • FIG. 9 A is a detailed view of a portion thereof taken about the circle 9 A in FIG. 9 .
  • FIG. 10 is a diagrammatic representation thereof shown without an external container.
  • FIG. 10 A is a detailed view of a portion thereof taken about the circle 10 A in FIG. 10 .
  • FIG. 10 B is a detailed view of a portion thereof taken about the circle 10 B in FIG. 10 .
  • FIG. 11 is a three-dimensional view showing the preferred embodiment of the present invention in combination with a pusher.
  • FIG. 11 A is a detailed view of a portion thereof taken about the circle 11 A in FIG. 11 .
  • FIG. 12 is a three-dimensional view showing a manufacturing step for manufacturing a preferred embodiment of the present invention.
  • FIG. 13 is a three-dimensional isometric view showing a second manufacturing step thereof.
  • FIG. 14 is a three-dimensional isometric view showing a third manufacturing step thereof.
  • FIG. 15 is a three-dimensional isometric view showing a fourth manufacturing step thereof.
  • FIG. 16 is a three-dimensional isometric view showing a fifth manufacturing step thereof.
  • FIG. 17 is a three-dimensional isometric view showing a sixth manufacturing step thereof.
  • FIG. 18 is a three-dimensional isometric view showing a seventh manufacturing step thereof.
  • FIG. 19 is a flow chart diagramming the method of using a preferred embodiment of the present invention.
  • FIG. 20 is a flow chart diagramming the method of manufacturing a preferred embodiment of the present invention.
  • proximal and distal require a point of reference.
  • the point of reference in determining direction is from the perspective of the patient. Therefore, the term proximal will always refer to a direction that points into the patient's body, whereas distal will always refer to a direction that points out of the patient's body.
  • the present invention is a catheter system 2 which features a coiled catheter 4 having a halo portion 6 connected to a stem portion 8 via a swan neck bend 7 such that the halo portion is along a plane perpendicular to the direction of the stem portion.
  • the halo portion 6 is located within the bladder 16 once properly placed, and serves to provide optimal flow out of the catheter 4 through the stem 8 .
  • FIG. 1 shows a thread 10 connected to a snap cap 12 located outside of the body to prevent the thread 10 from being drawn up into the body, and instead would be stopped at the glans 15 of the penis 13 (as shown). This would function similarly in a female patient.
  • the thread would be formed from a monofilament suture-type material in a preferred embodiment.
  • the snap cap 12 may include a magnet or be made of magnetic material.
  • the catheter 4 stem 8 passes through the prostate gland 14 and the end of the stem is located in proximity with the external sphincter 18 .
  • This system facilitates flow from the bladder 16 through the catheter 4 via eyelets 22 , located at least at the swan neck section 7 and at the proximal coil tip 23 of the coil portion 6 , and out through the urethra 20 (see FIG. 2 ).
  • the stem 8 functions as a short straight arm that un-obstructs the prostatic urethra and sits above the urinary sphincter 18 . It does not retain the urinary sphincter in an open orientation ever. This allows for volitional voiding of the bladder by the patient, facilitated by the internal catheter 4 , without incontinence.
  • the coil portion 6 when the catheter 4 is inserted into the bladder, the coil portion 6 coils, forming the swan neck portion which terminates into a right-angle bend which together form a stabilizing elbow which ensures the catheter remains properly in place within the bladder for optimal drainage through the catheter.
  • FIGS. 2 - 4 show how the catheter 4 would be inserted into the body in a straight orientation for easy placement.
  • a guidewire hole 24 is located at the tip 23 of the coil portion 6 and at the base 25 of the stem portion 8 for use with a pusher 26 and stylet 30 as is typical. As shown in FIG. 2 , the tip 23 is tapered for easy insertion.
  • FIG. 5 - 7 show how the catheter 4 forms into a coiled catheter with a halo portion 6 and swan neck 7 connecting to the stem portion 8 once inserted into its proper environment in the bladder 16 .
  • the catheter 4 defaults to this form due to a manufacturing process discussed below. Once the guidewire of the stylet 30 and pusher 26 elements is removed or at least withdrawn slightly, the catheter 4 will automatically coil into the form shown.
  • FIGS. 8 and 8 A show the catheter 4 in its straight orientation in combination with a pusher 26 having an outer tube 28 and a stylet 30 .
  • the thread 10 and snap cap 12 extend through the pusher 26 and connect to the end of the catheter 4 near its base 25 , shown in more detail in FIG. 11 .
  • These figures also show how the pusher 26 has a smaller diameter than that of the catheter 4 , further easing insertion of the catheter.
  • FIG. 9 shows the catheter 4 and pusher 26 in the typical environment shown in FIG. 1 where the catheter is fully inserted and coiled in position.
  • Flow 17 is indicated via the arrows through the catheter 4 by way of eyelets 22 , vertically downward rather than perpendicular to the catheter as is the case with prior art catheters.
  • the detailed view of FIG. 9 A shows how the thread 10 is retained through receivers 27 in the catheter stem portion 8 to secure the thread to the catheter 4 for removal.
  • the thread is shown external to the pusher 26 , which abuts the base 25 of the catheter 4 with the stylet 30 making contact with the base of the stem portion 8 thereof.
  • FIG. 10 shows the insertion of the catheter 4 using the pusher 26 in a sectional view so as to better show the internal components thereof.
  • FIGS. 10 A and 10 B show additional detail about their respective circles in FIG. 10 , such as FIG. 10 B showing how the stylet 30 of the pusher is a functional guidewire that can be placed up and into the catheter itself to help position it within the bladder.
  • the catheter 4 is straightened by the internally placed stylet 30 with guidewire.
  • the catheter as shown is placed over the guidewire for safe insertion into the bladder, after which the guidewire and stylet are removed leaving only the coiled and unencumbered catheter 4 in the bladder as shown in FIG. 1 .
  • FIG. 11 and FIG. 11 A show in more detail the extra-luminal suture thread 10 which does not obstruct the lumen of the catheter 4 .
  • this is intended to prevent incontinence and is used to safely remove the catheter at a later date. No sheath is required for such procedure.
  • FIGS. 12 - 18 show a manufacturing system 52 for manufacturing the coil catheter 4 .
  • the coil catheter 4 is formed from an originally straight catheter tube by placing it into a mold base 34 .
  • a flexible yet solid tubing support may be inserted into the catheter tubing prior to molding to prevent kinks during the forming process.
  • the mold base 34 has receiver slots 38 for screws 48 to receive the mold cap 46 as shown in FIG. 14 .
  • the mold base 34 also has a forming block with a swan neck form 44 and halo form 40 .
  • the stem 8 is inserted into the stem receiver 42 and the swan neck 7 portion is placed into the swan neck form 44 , and the halo portion 6 is curled around in the halo form 40 .
  • the mold cap 46 is then secured to the mold base 34 via the screws 48 .
  • FIG. 15 shows a heating controller 50 with a temperature gauge 54 and timer 56 .
  • the mold is heated to an appropriate level to thermoset the coil catheter 4 . This process can take approximately 15-19 minutes to reach the proper temperature, at which point the mold 34 is held at that temperature for 15 minutes.
  • FIG. 16 shows a chiller 58 with a temperature gauge 60 and timer 62 .
  • the chiller 58 sets a temperature of 5.00 degrees Celsius and cools the heated coil catheter 4 down to thermoset its shape.
  • a temperature alarm may be included to properly track chilling. Once the temperature gauge 60 indicates a temperature less than 80 degrees Fahrenheit, typically after 15-19 minutes, the chiller 58 is turned off.
  • the mold cap 46 is removed as shown in FIG. 17 and the thermoset coil catheter 4 is removed from the mold base 34 as shown in FIG. 18 . After this step, the coil catheter 4 can be placed on a rack for further cooling and should be covered to reduce contamination risks.
  • FIG. 19 shows the steps taken in practicing a method 102 of using the coil catheter 4 system 2 as described above.
  • the process starts at 104 , where the catheter 4 is obtained at 106 .
  • a pusher 36 is obtained and used with the catheter at 108 , and the catheter 4 is straightened as shown in FIG. 8 at 110 .
  • This allows the catheter 4 to be inserted into the body at 112 using the pusher 36 .
  • a check of whether the catheter is in place at 114 may require the pusher 36 to be extended at 116 to ensure proper placement of the catheter.
  • the bladder will drain through the catheter 4 eyelet 22 into the catheter 4 , out through the pusher 36 , through a connected tube 27 and into an external container 29 at 118 .
  • a determination is made at 120 whether to remove the tube and external container. If not, they remain in place. If so, then the tube and container are removed at 122 .
  • FIG. 20 shows the steps taken in practicing a method 152 of manufacturing the coil catheter 4 as described above using the manufacturing system 52 .
  • the process starts at 154 , where a straight catheter tube is obtained at 156 .
  • This catheter tube should be cut to size, approximately 8.5′′ long, and may be outfitted with a tubing support to reduce the risk of tubing kinks during the forming process at 158 .
  • the catheter and protector are then inserted into the mold at 160 , using the swan neck form 44 and the halo form 40 of the mold base 34 .
  • the mold is capped at 162 and heated at 164 as described above.
  • a check using the temperature gauge 54 is made at 166 to determine if the proper temperature has been reached. If not, heating continues. If so, temperature is maintained at 168 for 15 minutes, after which the chiller is activated at 170 to cool the mold.
  • the catheter may be manufactured of Carbothane or other materials which provide long safety use and biocompatibility.

Abstract

A catheter device and manufacturing process for manufacturing the catheter device, wherein the catheter device has a halo-shaped coiled portion extending away from a perpendicular stem portion through a swan neck portion. Eyelets on the halo coil portion and swan neck portion facilitate flow out of the bladder through the catheter device vertical to the catheter, rather than perpendicularly as is the case with existing catheters. The catheter device is formed by using a straight catheter tube, heating and cooling it within a formed mold to have the halo coil and swan neck, such that it can be straightened using a pusher and stylet, inserted into the body while straightened, and thereafter return to its coiled shape when the stylet is removed.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of and U.S. patent application Ser. No. 17/012,920, filed Sep. 4, 2020 which claims priority in U.S. Provisional Patent Application No. 62/896,724 Filed Sep. 6, 2019, all of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates generally to a coil catheter, method for use thereof, and method of manufacture thereof, and more specifically to a catheter having a retention coil member for repositioning, validation of placement, and removal, method of use, and method of manufacture thereof.
  • 2. Description of the Related Art
  • Urinary retention in males generally implies that urine is produced normally but is retained within the bladder due to primary detrusor dysfunction or an obstruction at or distal to the bladder neck. Prostatic obstruction causes an increased resistance for the passage of urine with subsequent increased pressure on the bladder musculature resulting in two successive phases; 1) compensation, where bladder emptying still takes place, and 2) decompensation, characterized by increasing amounts of residual urine and ultimately urine retention. Bladder outlet obstruction producing urinary retention may result from, including but not limiting, benign prostatic hypertrophy, prostate cancer, or any acute enlargement of the prostate including but not limited to acute prostatitis, post focal procedures on the prostate, radiation, cryotherapy or instrumentation. Urinary retention occurs primarily in males with benign prostatic hypertrophy being the most common cause in men over the age of 50 years. It has been estimated that one in four men in the United States will have been treated for symptomatic benign prostatic hypertrophy by the time they reach 80 years of age.
  • The prior art contains several examples, including devices which are disclosed in U.S. Pat. No. 7,044,980, incorporated herein by reference. Relevant, but distinguishable, prior art also includes U.S. Pat. No. 4,738,667 which teaches a halo-style catheter which presents additional issues that would need to be solved. For example, existing concepts and systems require external draining and a sheath requiring a bulbous end which was designed, at the time, to avoid stiff guidewires. New guidewires for catheter placement have reduced this stiffness, and are superior to such sheathes as taught in the prior art. What is desirable is a tapered end with a guidewire for ease of placement.
  • Material choices in existing systems also can be problematic. For example, Dacron (a cloth-like material) is taught by the prior art for use in coating a catheter. This material can become highly lithogenic when exposed to urine, so it would be ideal to use an alternative material or method. Another issue taught in the prior art is a sheath which becomes a permanent part of the system required to straighten the catheter for insertion and is further used to uncoil and retract the catheter from the bladder. It would be desirable to not require a permanently placed sheath to remove additional obstacles from operation of a catheter.
  • It is also taught through prior systems to transverse the external sphincter of the bladder. This results in incontinence, even though the bladder may be draining through the catheter, because the sphincter is required to be kept open due to the presence of the existing catheters. It is desirable to shorten the upper arm of such a catheter such that it sits above the urinary sphincter rather than retaining that sphincter in an open orientation.
  • Management for urinary retention related to prostate obstruction involves bladder drainage generally accomplished by placement of a transurethral, suprapubic catheter or intermittent self-catheterization. This creates a passageway between the bladder and the exterior of the body that allows a flow of urine to the outside.
  • Heretofore there has not been available a system or method for a catheter with the advantages and features of the present invention.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention involves facilitating drainage and, more specifically, but not by way of limitation, to facilitating fluid drainage from the bladder and through the urethra of a patient experiencing either acute or chronic urinary obstruction.
  • The retention member for the device is a coil device which has a straight non coiled iteration for placement. Once placed into the bladder a stylet is removed which allows for the coiled default state to be achieved. The pusher segment is connected during placement and can be utilized for a period of time to collect urine and then removed allowing the device to have only a thread (Monofilament Suture type material) connected externally. The coil tubular portion abutted to the pusher allows for passage and collection of urine. With the disconnection of the pusher segment, the coil catheter allows for the passage of urine without an external tubular structure and external collection device. The converted iteration is from long external catheter to short coil device without the tubular extension thru the sphincter or distal urethra.
  • In general, and in one aspect, the invention relates to a catheter system, which embodies the ability to control a coil tip catheter within the bladder or body cavity by an attached thread traversing thru the urethra to the exterior. The coil catheter comprises a body member and a coil retaining member. The body member includes a distal terminating end, a proximal end portion, and a lumen extending within the body member to allow fluid drainage through the body member a well as around the tubular segment. Eyelets are placed in the device at but not limited to at the swan neck section and at the proximal coil tip. A guide wire opening at the tip allows for use of a guide wire to facilitate delivery of the device due to urethral or prostate anatomical challenges.
  • The directional terms proximal and distal require a point of reference. In this application, the point of reference in determining direction is from the perspective of the patient. Therefore, the term proximal will always refer to a direction that points into the patient's body, whereas distal will always refer to a direction that points out of the patient's body.
  • The body member is sized for placement substantially within the bladder and bladder neck, prostate urethra, with the distal terminating end located proximal to an external urethral sphincter to allow normal operation of the external sphincter. The coil retaining member extends from the proximal end portion of the body member. The coil retaining member is straightened into a first state to allow passage of the catheter into the urethra, and the coil retaining member is coiled into a second state when located in a bladder to hold the body member in place substantially within the urethra by removing a straightening stylet. The pusher segment abuts to the distal tubular segment such that the device does not migrate as the straightening stylet is removed.
  • Embodiments of this aspect can include the following features. The Coil catheter system is comprised of a coil catheter, a connecting segment, a monofilament suture, and a pusher tubular device. The Coil catheter is comprised of a body member and a proximal coil retaining member. The Swan Neck portion of the coil is the transition from the tubular segment and the coil angles proximally then curves distally into a horizontal portion of the coil. The right angle and swan neck configuration allows for retaining of the device as well as a tolerance to traction prior to removal. The length of the tubular, swan neck and coil can be changed to facilitate a variety of anatomical and gender specific challenges. Multiple coils and a short tubular segment is appropriate for females with short urethra which would allow for catheterization from inside the bladder outward and controlled externally with the control suture. In patients with a dysfunctional sphincter, the device requires bridging the sphincter to empty the bladder then snap back proximal to the sphincter to allow for continence. This is a dynamic catheterization device which passive state in the prostate fossa in men and bladder for females. The Default state for spinal cord patients would be proximal to the urinary sphincter with dynamic positioning for bladder emptying bridging the sphincter. Upon bladder drainage in this spinal cord type patient the suture, without gently pulling, will revert back to a position proximal to the sphincter which allows for continence.
  • The Coil replaces the balloon as a retaining member. The coil consists of a tapered tip with guide wire channel, eyelets placed at various and not limited locations on the coil segment. The eyelet placed in the swan neck is perpendicular to the direction of flow. The bladder mucosa trauma is minimized due to the placement of the eyelets. The curve of the coil is fashioned to have a “swan neck” portion which extends from the horizontal plane of the coil device which is a right angle to the tubular portion. The “Swan Neck” portion allows for some allowance for traction on the device prior to uncoiling of the horizontal member. While the inadvertent removal of an inflated balloon type catheter results in urethral mucosal injury, catheter mucosal injury is minimized if inadvertent removal of the Coil occurs, since the diameter of the device at removal is the same as upon insertion.
  • The coil retaining member of the coil catheter can be a tube constructed with coil-shape memory. The coil retaining member also can be rounded at the ends of the tubing to provide user comfort during insertion of the catheter into the patient's urethra. A guide wire channel allows for a guide wire to be utilized with difficult placement due to false passages in the urethra or other anatomical challenges.
  • The process for creating the swan neck vertical dynamic portion of the device with a horizontal coil is a unique process encompassing features defined in the Utility patent identified as Manufacturing Process for integration of retaining member with vertical component coupled with the horizontal coil. The Vectors of pull impact the device in two separate phases of uncoiling, they are coupled with a resistance to pull out which is initially absorbed by the vertical swan neck component.
  • Prior to and during insertion of the coil catheter into the patient's urethra, the coil retaining member is in a straightened first state. The coil retaining member returns to substantially the second coil state once in the patient's bladder and thereby acts as an anchor to keep the body member of the catheter substantially within the prostatic urethra.
  • In one embodiment, the body member can include one or more side openings to allow fluid to drain from the urethra. The lumen of the body member and length of the tube can be designed to be equivalent to a variety of tubular dimensions. One embodiment would include a tubular portion which is constructed to have a star shaped exterior which allows urine to travel predominantly around rather than thru the device.
  • In one embodiment, the suture should be long enough to extend from the body member to the outside of the patient's body. The suture can also be comprised of monofilament nylon or other equivalent materials. The coil catheter can be removed easily from the patient's body by pulling downward on the suture. The end of the suture can be connected to a structure (e.g., snap cap, ball, ring, coil) that extends out of the body entirely. The purpose of the snap cap is to facilitate location of the suture's end and eventual removal of the coil catheter by simply pulling on the located suture. Gentle traction on the suture. In patients with diminished manual dexterity, a magnet can be placed on the snap cap and on the end of the stylet device. This allows for engaging the snap cap with gentle traction and is placed on the device to engage the device into the bladder in females or traverse the sphincter in male patients with sphincter resistance.
  • The device may utilize additional materials which would add qualities such as, but not limited to, lubrication, hydrophilic coating, radiographic enhancing material. The material for the device is, but not limited to, Carbothane and not limited to ID and OD various stiffness of the material. The Pusher, stylet and suture material are not limited in size or characteristics.
  • In another embodiment, the invention relates to a Coil catheter system for draining fluid from a patient's body cavity including but not limited to bladder, stomach, colon, ileal loop, colostomy, and abdominal peritoneal cavity.
  • In general, in still another aspect, the invention allows for the manipulation of a variety of devices within the body cavity to be controlled externally with a tethering suture. This allows for episodic movement from a passive state of the device to an active state, which changes the fluid dynamics to favor voiding or continence. To void, the user pulls on the suture, causing the distal end of the coil to move into the bladder neck and through the sphincter valve, allowing the bladder to drain.
  • In another device iteration, the device can be fashioned to have an inverted umbrella membrane, which occludes the bladder neck, allowing continence to be achieved.
  • Another iteration includes the capability of the coil being imbedded with various medications which allows for a unique drug delivery into body cavities such as, but not limited to, the bladder, stomach, colon, ileal loop, colostomy or abdominal cavity. The tethered control also allows for manipulation of the device in the cavity. The device may be configured with monitoring devices allowing for the wireless transmission of images or data.
  • In another embodiment, the catheter is used for cervical dilation to induce labor.
  • In yet another embodiment, the catheter is used for widening the nasal passages to treat sleep disorders (e.g., sleep apnea).
  • The Coil Catheter allows the bladder to fill and contract in synchronous sphincter relaxation without Prostate Urethral resistance. This allows for defining the functional capacity of both the bladder and urinary sphincter. In patients with chronic over distension due to prostate obstruction, the device acts as a Bladder Rehabilitation Device as well as bladder neck and prostate fossa dilation. With acute urinary or chronic retention, the improvement in bladder muscular contraction in a volitional manner may obviate the need for a variety of interventional procedures, which focus on only reduction in Prostate resistance but do nothing to enhance the Vesicular (Bladder) Pressure, which when coupled with reduction in the prostate resistance increases the Flow Rate in patients. More efficient voiding, with reduced residual urine in the bladder, coupled with a competent urinary sphincter and elimination of the need for an external collection device results in a collage of clinical improvements.
  • The coiled shape has been utilized in a variety of medical devices to resist removing of a straight tubular device. The unique feature of the current vertical and horizontal design with the horizontal portion is distal to the Apex of the device. Proximal is inward toward the patient and distal is the direction away from the patient. Prior coiled shapes were an extension proximal to the tubular device. With tension on these designs the uncoiling began with any tension on the distal tubular portion. The current design protects the uncoiling of the horizontal component from the initial tension. The “swan neck” portion allows for lengthening of the vertical tubular component and with release of the tension will “snap back” to its original position due to the horizontal stabilizing effect. The distance for the extension and snap back allows for a variety of medical applications with innate resistance to inappropriate migration which is common in “pig tail curl” or “J” shaped tips. The application defines the unique manufacturing process to construct the vertical—swan neck—horizontal shaped device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings constitute a part of this specification and include exemplary embodiments of the present invention illustrating various objects and features thereof.
  • FIG. 1 is a diagrammatic representation of a preferred embodiment of the present inventions shown in a typical environment.
  • FIG. 2 is a front elevational view of a preferred embodiment of the present invention shown in a straightened orientation.
  • FIG. 3 is a top plan view thereof.
  • FIG. 4 is a bottom plan view thereof.
  • FIG. 5 is a top plan view of a preferred embodiment of the present invention in a coiled orientation.
  • FIG. 6 is a front elevational view thereof.
  • FIG. 7 is a three-dimensional isometric view thereof.
  • FIG. 8 is a front elevational view of a preferred embodiment of the present invention in combination with a typical pusher device.
  • FIG. 8A is a detailed view of a portion thereof taken a bout the circle 8A in FIG. 8 .
  • FIG. 9 is a diagrammatic representation thereof shown in a typical environment with an external container.
  • FIG. 9A is a detailed view of a portion thereof taken about the circle 9A in FIG. 9 .
  • FIG. 10 is a diagrammatic representation thereof shown without an external container.
  • FIG. 10A. is a detailed view of a portion thereof taken about the circle 10A in FIG. 10 .
  • FIG. 10B is a detailed view of a portion thereof taken about the circle 10B in FIG. 10 .
  • FIG. 11 is a three-dimensional view showing the preferred embodiment of the present invention in combination with a pusher.
  • FIG. 11A is a detailed view of a portion thereof taken about the circle 11A in FIG. 11 .
  • FIG. 12 is a three-dimensional view showing a manufacturing step for manufacturing a preferred embodiment of the present invention.
  • FIG. 13 is a three-dimensional isometric view showing a second manufacturing step thereof.
  • FIG. 14 is a three-dimensional isometric view showing a third manufacturing step thereof.
  • FIG. 15 is a three-dimensional isometric view showing a fourth manufacturing step thereof.
  • FIG. 16 is a three-dimensional isometric view showing a fifth manufacturing step thereof.
  • FIG. 17 is a three-dimensional isometric view showing a sixth manufacturing step thereof.
  • FIG. 18 is a three-dimensional isometric view showing a seventh manufacturing step thereof.
  • FIG. 19 is a flow chart diagramming the method of using a preferred embodiment of the present invention.
  • FIG. 20 is a flow chart diagramming the method of manufacturing a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS I. Introduction and Environment
  • As required, detailed aspects of the present invention are disclosed herein, however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed structure.
  • Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as orientated in the view being referred to. The words, “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the aspect being described and designated parts thereof. Forwardly and rearwardly are generally in reference to the direction of travel, if appropriate. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
  • The directional terms proximal and distal require a point of reference. In this application, the point of reference in determining direction is from the perspective of the patient. Therefore, the term proximal will always refer to a direction that points into the patient's body, whereas distal will always refer to a direction that points out of the patient's body.
  • II. Preferred Embodiment Catheter System 2
  • As shown in a typical environment in FIG. 1 , the present invention is a catheter system 2 which features a coiled catheter 4 having a halo portion 6 connected to a stem portion 8 via a swan neck bend 7 such that the halo portion is along a plane perpendicular to the direction of the stem portion. The halo portion 6 is located within the bladder 16 once properly placed, and serves to provide optimal flow out of the catheter 4 through the stem 8. FIG. 1 shows a thread 10 connected to a snap cap 12 located outside of the body to prevent the thread 10 from being drawn up into the body, and instead would be stopped at the glans 15 of the penis 13 (as shown). This would function similarly in a female patient. The thread would be formed from a monofilament suture-type material in a preferred embodiment. The snap cap 12 may include a magnet or be made of magnetic material.
  • The catheter 4 stem 8 passes through the prostate gland 14 and the end of the stem is located in proximity with the external sphincter 18. This system facilitates flow from the bladder 16 through the catheter 4 via eyelets 22, located at least at the swan neck section 7 and at the proximal coil tip 23 of the coil portion 6, and out through the urethra 20 (see FIG. 2 ). It is important that the stem 8 functions as a short straight arm that un-obstructs the prostatic urethra and sits above the urinary sphincter 18. It does not retain the urinary sphincter in an open orientation ever. This allows for volitional voiding of the bladder by the patient, facilitated by the internal catheter 4, without incontinence.
  • As shown in FIG. 1 , when the catheter 4 is inserted into the bladder, the coil portion 6 coils, forming the swan neck portion which terminates into a right-angle bend which together form a stabilizing elbow which ensures the catheter remains properly in place within the bladder for optimal drainage through the catheter.
  • FIGS. 2-4 show how the catheter 4 would be inserted into the body in a straight orientation for easy placement. A guidewire hole 24 is located at the tip 23 of the coil portion 6 and at the base 25 of the stem portion 8 for use with a pusher 26 and stylet 30 as is typical. As shown in FIG. 2 , the tip 23 is tapered for easy insertion.
  • FIG. 5-7 show how the catheter 4 forms into a coiled catheter with a halo portion 6 and swan neck 7 connecting to the stem portion 8 once inserted into its proper environment in the bladder 16. The catheter 4 defaults to this form due to a manufacturing process discussed below. Once the guidewire of the stylet 30 and pusher 26 elements is removed or at least withdrawn slightly, the catheter 4 will automatically coil into the form shown.
  • FIGS. 8 and 8A show the catheter 4 in its straight orientation in combination with a pusher 26 having an outer tube 28 and a stylet 30. The thread 10 and snap cap 12 extend through the pusher 26 and connect to the end of the catheter 4 near its base 25, shown in more detail in FIG. 11 . These figures also show how the pusher 26 has a smaller diameter than that of the catheter 4, further easing insertion of the catheter.
  • FIG. 9 shows the catheter 4 and pusher 26 in the typical environment shown in FIG. 1 where the catheter is fully inserted and coiled in position. Flow 17 is indicated via the arrows through the catheter 4 by way of eyelets 22, vertically downward rather than perpendicular to the catheter as is the case with prior art catheters. The detailed view of FIG. 9A shows how the thread 10 is retained through receivers 27 in the catheter stem portion 8 to secure the thread to the catheter 4 for removal. The thread is shown external to the pusher 26, which abuts the base 25 of the catheter 4 with the stylet 30 making contact with the base of the stem portion 8 thereof.
  • FIG. 10 shows the insertion of the catheter 4 using the pusher 26 in a sectional view so as to better show the internal components thereof. FIGS. 10A and 10B show additional detail about their respective circles in FIG. 10 , such as FIG. 10B showing how the stylet 30 of the pusher is a functional guidewire that can be placed up and into the catheter itself to help position it within the bladder. The catheter 4 is straightened by the internally placed stylet 30 with guidewire. The catheter as shown is placed over the guidewire for safe insertion into the bladder, after which the guidewire and stylet are removed leaving only the coiled and unencumbered catheter 4 in the bladder as shown in FIG. 1 .
  • FIG. 11 and FIG. 11A show in more detail the extra-luminal suture thread 10 which does not obstruct the lumen of the catheter 4. Like the positioning of the stem 8 about the sphincter 18, this is intended to prevent incontinence and is used to safely remove the catheter at a later date. No sheath is required for such procedure.
  • III. System 52 for Manufacture of Catheter System 2
  • FIGS. 12-18 show a manufacturing system 52 for manufacturing the coil catheter 4. As shown, the coil catheter 4 is formed from an originally straight catheter tube by placing it into a mold base 34. A flexible yet solid tubing support may be inserted into the catheter tubing prior to molding to prevent kinks during the forming process. The mold base 34 has receiver slots 38 for screws 48 to receive the mold cap 46 as shown in FIG. 14 . The mold base 34 also has a forming block with a swan neck form 44 and halo form 40. The stem 8 is inserted into the stem receiver 42 and the swan neck 7 portion is placed into the swan neck form 44, and the halo portion 6 is curled around in the halo form 40. The mold cap 46 is then secured to the mold base 34 via the screws 48.
  • FIG. 15 shows a heating controller 50 with a temperature gauge 54 and timer 56. The mold is heated to an appropriate level to thermoset the coil catheter 4. This process can take approximately 15-19 minutes to reach the proper temperature, at which point the mold 34 is held at that temperature for 15 minutes. FIG. 16 shows a chiller 58 with a temperature gauge 60 and timer 62. The chiller 58 sets a temperature of 5.00 degrees Celsius and cools the heated coil catheter 4 down to thermoset its shape. A temperature alarm may be included to properly track chilling. Once the temperature gauge 60 indicates a temperature less than 80 degrees Fahrenheit, typically after 15-19 minutes, the chiller 58 is turned off.
  • The mold cap 46 is removed as shown in FIG. 17 and the thermoset coil catheter 4 is removed from the mold base 34 as shown in FIG. 18 . After this step, the coil catheter 4 can be placed on a rack for further cooling and should be covered to reduce contamination risks.
  • IV. Method 102 of Using Catheter System 2
  • FIG. 19 shows the steps taken in practicing a method 102 of using the coil catheter 4 system 2 as described above. The process starts at 104, where the catheter 4 is obtained at 106. A pusher 36 is obtained and used with the catheter at 108, and the catheter 4 is straightened as shown in FIG. 8 at 110. This allows the catheter 4 to be inserted into the body at 112 using the pusher 36. A check of whether the catheter is in place at 114 may require the pusher 36 to be extended at 116 to ensure proper placement of the catheter. Once in place at 114, the bladder will drain through the catheter 4 eyelet 22 into the catheter 4, out through the pusher 36, through a connected tube 27 and into an external container 29 at 118. A determination is made at 120 whether to remove the tube and external container. If not, they remain in place. If so, then the tube and container are removed at 122.
  • A check is then made at 124 and a determination made whether flow is optimal with the pusher 36 in place. If not, the pusher will remain. If so, the pusher can be removed at 126 so that flow is entirely facilitated using the catheter 4 in the body. The process then ends at 128 until such a time that the catheter is to be removed.
  • V. Method 152 of Manufacturing System 52 for Manufacture of Catheter System 2
  • FIG. 20 shows the steps taken in practicing a method 152 of manufacturing the coil catheter 4 as described above using the manufacturing system 52. The process starts at 154, where a straight catheter tube is obtained at 156. This catheter tube should be cut to size, approximately 8.5″ long, and may be outfitted with a tubing support to reduce the risk of tubing kinks during the forming process at 158.
  • The catheter and protector are then inserted into the mold at 160, using the swan neck form 44 and the halo form 40 of the mold base 34. The mold is capped at 162 and heated at 164 as described above. A check using the temperature gauge 54 is made at 166 to determine if the proper temperature has been reached. If not, heating continues. If so, temperature is maintained at 168 for 15 minutes, after which the chiller is activated at 170 to cool the mold.
  • A check to determine if the mold has reached its cooled temperature below 80 degrees Fahrenheit at 172. If not, chilling continues. If so, then the chiller is deactivated at 174, the mold is opened at 176, and the formed catheter 4 is removed at 178, ending the process at 180.
  • The catheter may be manufactured of Carbothane or other materials which provide long safety use and biocompatibility.
  • It is to be understood that while certain embodiments and/or aspects of the invention have been shown and described, the invention is not limited thereto and encompasses various other embodiments and aspects.

Claims (10)

Having thus described the invention, what is claimed as new and desired to be secured by Letters Patent:
1. A catheter system for a halo-style catheter capable of transforming a catheter from a first, straight orientation to a second, coiled orientation, the catheter system comprising:
the catheter having a catheter body including a proximal end and a distal end;
said proximal end of said catheter body comprising a single coil terminating into a swan neck element and a right-angle bend, wherein said swan neck element and said right-angle element are configured to form a stabilizing elbow, and wherein said proximal end terminates into a tapered tip;
said stabilizing elbow configured to allow for dynamic movement and further configured to provide a memory force to allow for snap back in proximity with a sphincter;
said stabilizing elbow terminating into a straight stem culminating in said distal end of said catheter body, said straight stem configured to stent a prostatic urethra and to be placed above said sphincter without penetrating said sphincter during use;
said single coil being perpendicular to said straight portion;
a single first eyelet located along a horizontal plane of said single coil;
a single second eyelet located along said stabilizing elbow; and
whereas the catheter body functions as a prosthetic urethral stent while inserted in said body with said distal end located above said sphincter.
2. The system of claim 1, further comprising:
a suture-to-tube portion configured to allow for bridging said sphincter, positioning the catheter body, and removing the catheter body.
3. The system of claim 2, wherein said suture-to-tube portion comprises an extra-luminal suture threaded through a pair of receivers passing through said catheter body about said distal end of said catheter body.
4. The system of claim 1, further comprising:
said catheter body comprising a suture-to-tube portion configured to place a suture external to a lumen of said catheter body and external to a pusher, thereby being configured to prevent obstruction and tethering of said catheter body and to allow for bridging said sphincter, positioning the catheter body, and removing the catheter body.
5. The system of claim 4, further comprising:
a snap cap configured to keep said suture from migrating and further configured to provide visual validation of placement of said catheter body; and
said snap cap comprising a magnet.
6. The system of claim 1, further comprising:
a pusher including a stylet having a guidewire, said pusher having a diameter smaller than a diameter of said catheter;
said guidewire configured to guide said catheter into place within said bladder while said stylet is inserted at least partially into said catheter; and
wherein said guidewire and said stylet are configured to be withdrawn from said catheter upon insertion into said bladder, thereby transforming said catheter from a first, straight orientation into a second, coiled orientation via said memory force.
7. The system of claim 6, wherein a diameter of said pusher is less than a diameter of said catheter body.
8. The system of claim 1, wherein said catheter body is comprised of Carbothane.
9. The system of claim 1, further comprising:
said catheter body configured to be manufactured from a first straight tube orientation using a mold base comprising a forming block having a swan neck form portion and a halo coil form portion;
said mold base configured to receive a mold cap secured to said mold base, said mold base and said mold cap configured to be heated by a heating element and subsequently configured to be chilled with a chiller; and
whereby said mold base, said heating element, and said chiller are configured to provide said memory force to said stabilizing elbow.
10. A catheter system for a halo-style catheter capable of transforming a catheter from a first, straight orientation to a second, coiled orientation, the catheter system comprising:
the catheter having a catheter body including a proximal end and a distal end;
said proximal end of said catheter body comprising a single coil terminating into a swan neck element and a right-angle bend, wherein said swan neck element and said right-angle element are configured to form a stabilizing elbow, and wherein said proximal end terminates into a tapered tip;
said stabilizing elbow configured to allow for dynamic movement and further configured to provide a memory force to allow for snap back in proximity with a sphincter;
said stabilizing elbow terminating into a straight stem culminating in said distal end of said catheter body, said straight stem configured to stent a prostatic urethra and to be placed above said sphincter without penetrating said sphincter during use;
said single coil being perpendicular to said straight portion;
a single first eyelet located along a horizontal plane of said single coil;
a single second eyelet located along said stabilizing elbow;
a suture-to-tube portion configured to allow for bridging said sphincter, positioning the catheter body, and removing the catheter body, wherein said suture-to-tube portion comprises an extra-luminal suture threaded through a pair of receivers passing through said catheter body about said distal end of said catheter body;
a pusher including a stylet having a guidewire, said pusher having a diameter smaller than a diameter of said catheter;
said guidewire configured to guide said catheter into place within said bladder while said stylet is inserted at least partially into said catheter;
wherein said guidewire and said stylet are configured to be withdrawn from said catheter upon insertion into said bladder, thereby transforming said catheter from a first, straight orientation into a second, coiled orientation via said memory force; and
whereas the catheter body functions as a prosthetic urethral stent while inserted in said body with said distal end located above said sphincter.
US17/850,389 2019-09-06 2022-06-27 Coil catheter, method of use, and method of manufacture Pending US20230010429A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/850,389 US20230010429A1 (en) 2019-09-06 2022-06-27 Coil catheter, method of use, and method of manufacture
US17/863,795 US20220339401A1 (en) 2019-09-06 2022-07-13 Coil catheter method of manufacture
PCT/US2023/026083 WO2024019861A1 (en) 2022-06-27 2023-06-23 Coil catheter, method of use, and method of manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962896724P 2019-09-06 2019-09-06
US17/012,920 US20210069470A1 (en) 2019-09-06 2020-09-04 Coil catheter, method of use, and method of manufacture
US17/850,389 US20230010429A1 (en) 2019-09-06 2022-06-27 Coil catheter, method of use, and method of manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/012,920 Continuation-In-Part US20210069470A1 (en) 2019-09-06 2020-09-04 Coil catheter, method of use, and method of manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/863,795 Continuation US20220339401A1 (en) 2019-09-06 2022-07-13 Coil catheter method of manufacture

Publications (1)

Publication Number Publication Date
US20230010429A1 true US20230010429A1 (en) 2023-01-12

Family

ID=83694763

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/850,389 Pending US20230010429A1 (en) 2019-09-06 2022-06-27 Coil catheter, method of use, and method of manufacture
US17/863,795 Pending US20220339401A1 (en) 2019-09-06 2022-07-13 Coil catheter method of manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/863,795 Pending US20220339401A1 (en) 2019-09-06 2022-07-13 Coil catheter method of manufacture

Country Status (1)

Country Link
US (2) US20230010429A1 (en)

Citations (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568338A (en) * 1983-09-22 1986-02-04 C. R. Bard, Inc. Preformed catheter
US4694838A (en) * 1984-01-30 1987-09-22 Mallinckrodt, Inc. Loop coronary catheter
US4738667A (en) * 1986-11-04 1988-04-19 Galloway Niall T M Preformed catheter assembly
US4834725A (en) * 1986-03-27 1989-05-30 Pfrimmer-Viggo Gmbh & Co. Catheter for percutaneous gastrostomy
US4935004A (en) * 1988-12-20 1990-06-19 Henry Ford Health System Peritoneal dialysis catheter
US5163928A (en) * 1991-01-07 1992-11-17 Franklin Electronic Publishers, Incorporated Self-centering catheter
US5171227A (en) * 1991-04-16 1992-12-15 The Curators Of The University Of Missouri Separable peritoneal dialysis catheter
US5322501A (en) * 1992-10-02 1994-06-21 Mahmud Durrani Ayaz Continent urethral stent for treating and preventing urethral stricture after surgery
US5518498A (en) * 1992-10-09 1996-05-21 Angiomed Ag Stent set
WO1996018428A1 (en) * 1994-12-16 1996-06-20 Imperial College Of Science, Technology & Medicine Modified cannula
US5562622A (en) * 1995-03-20 1996-10-08 Contimed, Inc. Self-cleansing bladder drainage device
US5865815A (en) * 1997-04-25 1999-02-02 Contimed, Inc. Prostatic obstruction relief catheter
US5876417A (en) * 1995-07-10 1999-03-02 Devonec; Marian Detachable catheter apparatus
US6053897A (en) * 1995-11-03 2000-04-25 Sachse; Hans E. Apparatus for maintaining the patency of urine flow through the urethra
US6090121A (en) * 1998-12-02 2000-07-18 Weber; Paul J. Highly flexible, reinforced swan neck liposuction cannulas
US6258098B1 (en) * 1998-05-08 2001-07-10 William N. Taylor Stent placement and removal system
US20010049494A1 (en) * 2000-01-07 2001-12-06 Liu Clifford M. Drainage catheter
US20020010426A1 (en) * 1999-04-30 2002-01-24 Applied Medical Resources Corporation Guidewire
US20020107540A1 (en) * 2001-01-23 2002-08-08 Whalen Mark J. Endourethral device & method
US20020198506A1 (en) * 2001-06-22 2002-12-26 Abbeymoor Medical, Inc. Urethral profiling device & methodology
US20030078467A1 (en) * 2001-10-18 2003-04-24 Whalen Mark J. Endourethral device & method
US6589228B2 (en) * 2001-04-13 2003-07-08 Asher Holzer Device for aiding urination and method of use thereof
US6620202B2 (en) * 2001-10-16 2003-09-16 Scimed Life Systems, Inc. Medical stent with variable coil and related methods
US20030208183A1 (en) * 2000-08-07 2003-11-06 Whalen Mark J. Endourethral device & method
US6652569B1 (en) * 1998-05-08 2003-11-25 Biu Biomedical Innovations (Urology) Inc. Stent placement and removal
US20040097891A1 (en) * 2000-11-01 2004-05-20 Magnus Bolmsjo Method and apparatus for self-draining of urine
US6743198B1 (en) * 1995-03-20 2004-06-01 Conticare Medical, Inc. Self-cleansing bladder drainage device
US20040181235A1 (en) * 2003-03-10 2004-09-16 Daignault Kenneth J. Medical stent and related methods
US6852105B2 (en) * 2000-11-01 2005-02-08 Prostalund Operations Ab Method and apparatus for insertion of self-draining urine apparatus into bladder
US20050080399A1 (en) * 2003-09-17 2005-04-14 Magnus Bolmsjo Urinary catheter and method with increased resistance to obstructions
US7044980B2 (en) * 2000-02-03 2006-05-16 Boston Scientific Scimed, Inc. Facilitating drainage
US20060111691A1 (en) * 2003-09-17 2006-05-25 Magnus Bolmsjo Partial-length indwelling urinary catheter and method permitting selective urine discharge
US20060155250A1 (en) * 2002-12-04 2006-07-13 Masahiro Endo Dialysis catheter set and method of using same
US20060178739A1 (en) * 2005-02-04 2006-08-10 Shalaby Shalaby W Fiber-reinforced composite absorbable endoureteral stent
US20070049907A1 (en) * 2005-08-12 2007-03-01 Fischer Frank J Jr Drainage catheter with extended inflation lumen
US20090157053A1 (en) * 2006-11-30 2009-06-18 Davis Phillip J System and method for implanting a catheter
US20090326560A1 (en) * 2008-06-27 2009-12-31 Lampropoulos Fred P Catheter with radiopaque marker
US7682401B2 (en) * 2005-04-11 2010-03-23 Boston Scientific Scimed, Inc. Ureteral stent
US20100145467A1 (en) * 2008-12-05 2010-06-10 Hamid Davoudi Porous Ureteral Stent
US20110125135A1 (en) * 2009-11-24 2011-05-26 Mahfuza Ahmed Locking Assembly for a Drainage Catheter
US20110150961A1 (en) * 2008-02-22 2011-06-23 Angiotech International Ag Anti-infective catheters
US8287519B2 (en) * 2006-10-27 2012-10-16 Smith Tech Innovations, Llc Self-cleansing bladder drainage catheter
US8328877B2 (en) * 2002-03-19 2012-12-11 Boston Scientific Scimed, Inc. Stent retention element and related methods
US8430894B2 (en) * 2006-03-28 2013-04-30 Spatz-Fgia, Inc. Floating gastrointestinal anchor
US8465551B1 (en) * 2011-07-09 2013-06-18 Bandula Wijay Temporary prostatic stent for benign prostatic hyperplasia
US20140171921A1 (en) * 2012-12-13 2014-06-19 University Of South Florida Urethral catheter assembly with a guide wire
US20140336624A1 (en) * 2013-05-07 2014-11-13 John D. Adams, JR. Retention drainage catheter
US20150088150A1 (en) * 2012-05-19 2015-03-26 Taris Biomedical Llc Implantable urological device with improved retrieval feature
US9079006B1 (en) * 2008-03-28 2015-07-14 Uresil, Llc Suture locking mechanism
US20150328027A1 (en) * 2014-05-16 2015-11-19 Terumo Kabushiki Kaisha Method and apparatus for treating urethral stricture
US20150352321A1 (en) * 2013-03-14 2015-12-10 Hollister Incorporated Urinary Catheters With Protective Tip
US20160220784A1 (en) * 2013-03-08 2016-08-04 Cure Medical, Llc Compact packaged intermittent urinary catheter
US20170266423A1 (en) * 2014-05-26 2017-09-21 Urobrain Gmbh Medicament carrier for the treatment and prevention of pathological conditions in the urogenital region
US20180043135A1 (en) * 2016-08-10 2018-02-15 Catheter Science, LLC Dynamic Catheterization Devices Configured to Facilitate Drainage
US20180078462A1 (en) * 2015-03-17 2018-03-22 Venner Medical Technologies Sa Transnasal Tube
US9950138B2 (en) * 2012-07-23 2018-04-24 University Of Utah Research Foundation Indwelling urinary catheter
US20180161542A1 (en) * 2015-05-19 2018-06-14 Innoventions Ltd. Urine flow system and method of use
CN108245726A (en) * 2018-03-05 2018-07-06 温州市中心医院 A kind of effective drift pipe rectifier of peritoneal dialysis
WO2018186781A1 (en) * 2017-04-04 2018-10-11 Ramstedt Madeleine Urethral device
WO2018200060A1 (en) * 2017-04-27 2018-11-01 Whitmore Willet F Iii Dynamic length ureteral stent for improved patient comfort
CN109276797A (en) * 2018-11-22 2019-01-29 上海市东方医院 Gall-bladder inner drainage tube
US20190091442A1 (en) * 2015-07-20 2019-03-28 Strataca Systems Limited Coated Ureteral Catheter or Ureteral Stent and Method
US20190099584A1 (en) * 2015-07-20 2019-04-04 Strataca Systems Limited Ureteral Catheters, Bladder Catheters, Systems, Kits and Methods for Inducing Negative Pressure to Increase Renal Function
US20190105465A1 (en) * 2015-07-20 2019-04-11 Strataca Systems Limited Percutaneous Ureteral Catheter
US20190262592A1 (en) * 2014-01-26 2019-08-29 Butterfly Medical Ltd. Dilating device and method for prostatic urethra
US10555802B1 (en) * 2019-03-07 2020-02-11 John H. Shadduck Urologic stents and methods of use
US20200069911A1 (en) * 2017-08-16 2020-03-05 Intervaal Pte. Ltd. Catheter device and method of using the same
US20200078568A1 (en) * 2018-09-11 2020-03-12 The Cooper Health System Body cavity irrigation and drainage system and method
WO2020097476A1 (en) * 2018-11-09 2020-05-14 Taris Biomedical Llc Drug delivery devices and systems for local drug delivery to the upper urinary tract
US20200338324A1 (en) * 2019-04-23 2020-10-29 Merit Medical Systems, Inc. Drainage catheter with suture lumen
US20200360667A1 (en) * 2019-05-17 2020-11-19 PAVmed Inc. Catheter Device System and Method of Use
US20210001080A1 (en) * 2019-07-02 2021-01-07 Delbert Kwan Urinary Catheter with Guide Wire
US10888297B2 (en) * 2012-12-05 2021-01-12 Michael B. McDonald Above-the-valve TAVR ventricular catheter
US20210260333A1 (en) * 2019-12-10 2021-08-26 Dentsply Ih Ab Urinary catheter for controlled drainage
WO2021186384A1 (en) * 2020-03-19 2021-09-23 Mor Research Applications Ltd. Ureteral stents
US20220000647A1 (en) * 2019-03-26 2022-01-06 Olympus Corporation Stent delivery apparatus
US20220134054A1 (en) * 2019-02-25 2022-05-05 Coloplast A/S A Urinary Catheterisation Aid
US20230248938A1 (en) * 2017-08-16 2023-08-10 Intervaal Pte. Ltd. Catheter device and method of using the same

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568338A (en) * 1983-09-22 1986-02-04 C. R. Bard, Inc. Preformed catheter
US4694838A (en) * 1984-01-30 1987-09-22 Mallinckrodt, Inc. Loop coronary catheter
US4834725A (en) * 1986-03-27 1989-05-30 Pfrimmer-Viggo Gmbh & Co. Catheter for percutaneous gastrostomy
US4738667A (en) * 1986-11-04 1988-04-19 Galloway Niall T M Preformed catheter assembly
US4935004A (en) * 1988-12-20 1990-06-19 Henry Ford Health System Peritoneal dialysis catheter
US5163928A (en) * 1991-01-07 1992-11-17 Franklin Electronic Publishers, Incorporated Self-centering catheter
US5171227A (en) * 1991-04-16 1992-12-15 The Curators Of The University Of Missouri Separable peritoneal dialysis catheter
US5322501A (en) * 1992-10-02 1994-06-21 Mahmud Durrani Ayaz Continent urethral stent for treating and preventing urethral stricture after surgery
US5518498A (en) * 1992-10-09 1996-05-21 Angiomed Ag Stent set
WO1996018428A1 (en) * 1994-12-16 1996-06-20 Imperial College Of Science, Technology & Medicine Modified cannula
US5562622A (en) * 1995-03-20 1996-10-08 Contimed, Inc. Self-cleansing bladder drainage device
US6743198B1 (en) * 1995-03-20 2004-06-01 Conticare Medical, Inc. Self-cleansing bladder drainage device
US5876417A (en) * 1995-07-10 1999-03-02 Devonec; Marian Detachable catheter apparatus
US6053897A (en) * 1995-11-03 2000-04-25 Sachse; Hans E. Apparatus for maintaining the patency of urine flow through the urethra
US5865815A (en) * 1997-04-25 1999-02-02 Contimed, Inc. Prostatic obstruction relief catheter
US6258098B1 (en) * 1998-05-08 2001-07-10 William N. Taylor Stent placement and removal system
US6652569B1 (en) * 1998-05-08 2003-11-25 Biu Biomedical Innovations (Urology) Inc. Stent placement and removal
US6090121A (en) * 1998-12-02 2000-07-18 Weber; Paul J. Highly flexible, reinforced swan neck liposuction cannulas
US20020010426A1 (en) * 1999-04-30 2002-01-24 Applied Medical Resources Corporation Guidewire
US20010049494A1 (en) * 2000-01-07 2001-12-06 Liu Clifford M. Drainage catheter
US7044980B2 (en) * 2000-02-03 2006-05-16 Boston Scientific Scimed, Inc. Facilitating drainage
US20030208183A1 (en) * 2000-08-07 2003-11-06 Whalen Mark J. Endourethral device & method
US6852105B2 (en) * 2000-11-01 2005-02-08 Prostalund Operations Ab Method and apparatus for insertion of self-draining urine apparatus into bladder
US20040097891A1 (en) * 2000-11-01 2004-05-20 Magnus Bolmsjo Method and apparatus for self-draining of urine
US20020107540A1 (en) * 2001-01-23 2002-08-08 Whalen Mark J. Endourethral device & method
US6589228B2 (en) * 2001-04-13 2003-07-08 Asher Holzer Device for aiding urination and method of use thereof
US20020198506A1 (en) * 2001-06-22 2002-12-26 Abbeymoor Medical, Inc. Urethral profiling device & methodology
US6620202B2 (en) * 2001-10-16 2003-09-16 Scimed Life Systems, Inc. Medical stent with variable coil and related methods
US20030078467A1 (en) * 2001-10-18 2003-04-24 Whalen Mark J. Endourethral device & method
US8328877B2 (en) * 2002-03-19 2012-12-11 Boston Scientific Scimed, Inc. Stent retention element and related methods
US20060155250A1 (en) * 2002-12-04 2006-07-13 Masahiro Endo Dialysis catheter set and method of using same
US20040181235A1 (en) * 2003-03-10 2004-09-16 Daignault Kenneth J. Medical stent and related methods
US7766899B2 (en) * 2003-09-17 2010-08-03 Prostalund Operations Ab Partial-length, indwelling prostatic catheter using coiled inflation tube as an anchor and methods of draining urine and flushing clots
US7662145B2 (en) * 2003-09-17 2010-02-16 Prostalund Operations Ab Partial-length indwelling urinary catheter and method permitting selective urine discharge
US20060111691A1 (en) * 2003-09-17 2006-05-25 Magnus Bolmsjo Partial-length indwelling urinary catheter and method permitting selective urine discharge
US20050080399A1 (en) * 2003-09-17 2005-04-14 Magnus Bolmsjo Urinary catheter and method with increased resistance to obstructions
US20060178739A1 (en) * 2005-02-04 2006-08-10 Shalaby Shalaby W Fiber-reinforced composite absorbable endoureteral stent
US7682401B2 (en) * 2005-04-11 2010-03-23 Boston Scientific Scimed, Inc. Ureteral stent
US20070049907A1 (en) * 2005-08-12 2007-03-01 Fischer Frank J Jr Drainage catheter with extended inflation lumen
US8430894B2 (en) * 2006-03-28 2013-04-30 Spatz-Fgia, Inc. Floating gastrointestinal anchor
US8287519B2 (en) * 2006-10-27 2012-10-16 Smith Tech Innovations, Llc Self-cleansing bladder drainage catheter
US20090157053A1 (en) * 2006-11-30 2009-06-18 Davis Phillip J System and method for implanting a catheter
US20110150961A1 (en) * 2008-02-22 2011-06-23 Angiotech International Ag Anti-infective catheters
US9079006B1 (en) * 2008-03-28 2015-07-14 Uresil, Llc Suture locking mechanism
US20090326560A1 (en) * 2008-06-27 2009-12-31 Lampropoulos Fred P Catheter with radiopaque marker
US20100145467A1 (en) * 2008-12-05 2010-06-10 Hamid Davoudi Porous Ureteral Stent
US20110125135A1 (en) * 2009-11-24 2011-05-26 Mahfuza Ahmed Locking Assembly for a Drainage Catheter
US8465551B1 (en) * 2011-07-09 2013-06-18 Bandula Wijay Temporary prostatic stent for benign prostatic hyperplasia
RU2761981C2 (en) * 2012-05-19 2021-12-14 ТАРИС Биомедикал ЛЛК Implantable urological device with improved extraction characteristic
US20150088150A1 (en) * 2012-05-19 2015-03-26 Taris Biomedical Llc Implantable urological device with improved retrieval feature
US9950138B2 (en) * 2012-07-23 2018-04-24 University Of Utah Research Foundation Indwelling urinary catheter
US10888297B2 (en) * 2012-12-05 2021-01-12 Michael B. McDonald Above-the-valve TAVR ventricular catheter
US20140171921A1 (en) * 2012-12-13 2014-06-19 University Of South Florida Urethral catheter assembly with a guide wire
US20160220784A1 (en) * 2013-03-08 2016-08-04 Cure Medical, Llc Compact packaged intermittent urinary catheter
US20150352321A1 (en) * 2013-03-14 2015-12-10 Hollister Incorporated Urinary Catheters With Protective Tip
US20140336624A1 (en) * 2013-05-07 2014-11-13 John D. Adams, JR. Retention drainage catheter
US20190262592A1 (en) * 2014-01-26 2019-08-29 Butterfly Medical Ltd. Dilating device and method for prostatic urethra
US20150328027A1 (en) * 2014-05-16 2015-11-19 Terumo Kabushiki Kaisha Method and apparatus for treating urethral stricture
US20170266423A1 (en) * 2014-05-26 2017-09-21 Urobrain Gmbh Medicament carrier for the treatment and prevention of pathological conditions in the urogenital region
US20180078462A1 (en) * 2015-03-17 2018-03-22 Venner Medical Technologies Sa Transnasal Tube
US11351341B2 (en) * 2015-05-19 2022-06-07 Innoventions Ltd. Urine flow system and method of use
US20180161542A1 (en) * 2015-05-19 2018-06-14 Innoventions Ltd. Urine flow system and method of use
US20190105465A1 (en) * 2015-07-20 2019-04-11 Strataca Systems Limited Percutaneous Ureteral Catheter
US20190091442A1 (en) * 2015-07-20 2019-03-28 Strataca Systems Limited Coated Ureteral Catheter or Ureteral Stent and Method
US20190099584A1 (en) * 2015-07-20 2019-04-04 Strataca Systems Limited Ureteral Catheters, Bladder Catheters, Systems, Kits and Methods for Inducing Negative Pressure to Increase Renal Function
US20180043135A1 (en) * 2016-08-10 2018-02-15 Catheter Science, LLC Dynamic Catheterization Devices Configured to Facilitate Drainage
WO2018186781A1 (en) * 2017-04-04 2018-10-11 Ramstedt Madeleine Urethral device
WO2018200060A1 (en) * 2017-04-27 2018-11-01 Whitmore Willet F Iii Dynamic length ureteral stent for improved patient comfort
US20230248938A1 (en) * 2017-08-16 2023-08-10 Intervaal Pte. Ltd. Catheter device and method of using the same
US20200069911A1 (en) * 2017-08-16 2020-03-05 Intervaal Pte. Ltd. Catheter device and method of using the same
CN108245726A (en) * 2018-03-05 2018-07-06 温州市中心医院 A kind of effective drift pipe rectifier of peritoneal dialysis
US20200078568A1 (en) * 2018-09-11 2020-03-12 The Cooper Health System Body cavity irrigation and drainage system and method
WO2020097476A1 (en) * 2018-11-09 2020-05-14 Taris Biomedical Llc Drug delivery devices and systems for local drug delivery to the upper urinary tract
US20210386978A1 (en) * 2018-11-09 2021-12-16 Taris Biomedical Llc Drug Delivery Devices and Systems for Local Drug Delivery to the Upper Urinary Tract
CN109276797A (en) * 2018-11-22 2019-01-29 上海市东方医院 Gall-bladder inner drainage tube
US20220134054A1 (en) * 2019-02-25 2022-05-05 Coloplast A/S A Urinary Catheterisation Aid
US10555802B1 (en) * 2019-03-07 2020-02-11 John H. Shadduck Urologic stents and methods of use
US20220000647A1 (en) * 2019-03-26 2022-01-06 Olympus Corporation Stent delivery apparatus
US20200338324A1 (en) * 2019-04-23 2020-10-29 Merit Medical Systems, Inc. Drainage catheter with suture lumen
US20200360667A1 (en) * 2019-05-17 2020-11-19 PAVmed Inc. Catheter Device System and Method of Use
US20210001080A1 (en) * 2019-07-02 2021-01-07 Delbert Kwan Urinary Catheter with Guide Wire
US20210260333A1 (en) * 2019-12-10 2021-08-26 Dentsply Ih Ab Urinary catheter for controlled drainage
WO2021186384A1 (en) * 2020-03-19 2021-09-23 Mor Research Applications Ltd. Ureteral stents

Also Published As

Publication number Publication date
US20220339401A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US6949125B2 (en) Ureteral stent with end-effector and related methods
US20180043135A1 (en) Dynamic Catheterization Devices Configured to Facilitate Drainage
US7320710B2 (en) Draining bodily fluid
US5647843A (en) Anti-reflux ureteral stent
US20200406004A1 (en) Extended-use valved urinary catheter
US8465551B1 (en) Temporary prostatic stent for benign prostatic hyperplasia
US6358229B1 (en) Urinary drain
US20120316656A1 (en) Balloon expandable stent
JPS59111748A (en) Ureter stent
US6311689B1 (en) Female incontinence prevention device
US20020151923A1 (en) Device for aiding urination and method of use thereof
US20210069470A1 (en) Coil catheter, method of use, and method of manufacture
JP7418320B2 (en) Catheter for directing body fluids
US20230010429A1 (en) Coil catheter, method of use, and method of manufacture
WO2024019861A1 (en) Coil catheter, method of use, and method of manufacture
CN210844902U (en) Guide wire catheter device under guide of micropore urethral dilator
CN219614696U (en) Stay wire device convenient for taking out double J-tubes
US20220387199A1 (en) Devices, systems, and methods for ureteral stents
WO2023076162A1 (en) Atraumatic catheter
Wolf Jr Surgical techniques: endoscopic and percutaneous procedures

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLUE HALO BIOMEDICAL LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMMOND, GAINES, JR;HODGE, BYRON, JR;SIGNING DATES FROM 20220624 TO 20220625;REEL/FRAME:060323/0557

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED