US20220347311A1 - Immunoconjugates Targeting HER2 - Google Patents

Immunoconjugates Targeting HER2 Download PDF

Info

Publication number
US20220347311A1
US20220347311A1 US17/854,239 US202217854239A US2022347311A1 US 20220347311 A1 US20220347311 A1 US 20220347311A1 US 202217854239 A US202217854239 A US 202217854239A US 2022347311 A1 US2022347311 A1 US 2022347311A1
Authority
US
United States
Prior art keywords
cancer
immunoconjugate
antibody
antibody construct
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/854,239
Inventor
Shelley Erin Ackerman
Michael N. Alonso
David Y. Jackson
Arthur Lee
Edgar George Engleman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Bolt Biotherapeutics Inc
Original Assignee
Leland Stanford Junior University
Bolt Biotherapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leland Stanford Junior University, Bolt Biotherapeutics Inc filed Critical Leland Stanford Junior University
Priority to US17/854,239 priority Critical patent/US20220347311A1/en
Publication of US20220347311A1 publication Critical patent/US20220347311A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6863Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from stomach or intestines cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention provides an immunoconjugate of formula:
  • subscript r is an integer from 1 to 10
  • subscript n is an integer from about 2 to about 25
  • “Ab” is an antibody construct that has an antigen binding domain that binds the protein human epidermal growth factor receptor 2 (“HER2”).
  • the invention provides a composition comprising a plurality of immunoconjugates described herein.
  • the invention provides a method for treating cancer in a subject comprising administering a therapeutically effective amount of an immunoconjugate or a composition described herein to a subject in need thereof.
  • FIG. 1A shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the HCC1954 human ductal carcinoma tumor cell line.
  • Median fluorescence intensity of co-stimulatory molecule CD40 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1B shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the HCC1954 human ductal carcinoma tumor cell line.
  • Median fluorescence intensity of co-stimulatory molecule CD86 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1C shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the HCC1954 human ductal carcinoma tumor cell.
  • TNF ⁇ secretion was measured by cytokine bead array (cells gated on viable CD45+CD11c+HLA-DR+) for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1D shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the JIMT-1 human ductal carcinoma tumor cell line.
  • Median fluorescence intensity of co-stimulatory molecule CD40 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1E shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the JIMT-1 human ductal carcinoma tumor cell line.
  • Median fluorescence intensity of co-stimulatory molecule CD86 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1F shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the JIMT-1 human ductal carcinoma tumor cell.
  • TNF ⁇ secretion was measured by cytokine bead array (cells gated on viable CD45+CD11c+HLA-DR+) for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1G shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the COLO 205 human colon adenocarcinoma cell line.
  • Median fluorescence intensity of co-stimulatory molecule CD40 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1H shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the COLO 205 human colon adenocarcinoma cell line.
  • Median fluorescence intensity of co-stimulatory molecule CD86 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1I shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the COLO 205 human colon adenocarcinoma cell line.
  • TNF ⁇ secretion was measured by cytokine bead array (cells gated on viable CD45+CD11c+HLA-DR+) for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 2A shows that Immunoconjugate B elicits myeloid differentiation as indicated by CD14 downregulation.
  • FIG. 2B shows that Immunoconjugate B elicits myeloid activation as indicated by CD40 upregulation.
  • FIG. 2C shows that Immunoconjugate B elicits myeloid activation as indicated by CD86 upregulation.
  • FIG. 2D shows TNF ⁇ secretion from myeloid cells following an 18 hour incubation with Immunoconjugate B.
  • FIG. 3A shows that Immunoconjugate C elicits myeloid differentiation as indicated by CD14 downregulation.
  • FIG. 3B shows that Immunoconjugate C elicits myeloid activation as indicated by CD40 upregulation.
  • FIG. 3C shows that Immunoconjugate C elicits myeloid activation as indicated by CD86 upregulation.
  • FIG. 3D shows TNF ⁇ secretion from myeloid cells following an 18 hour incubation with Immunoconjugate C.
  • the invention provides an immunoconjugate of formula:
  • subscript r is an integer from 1 to 10
  • subscript n is an integer from about 2 to about 25
  • “Ab” is an antibody construct that has an antigen binding domain that binds human epidermal growth factor receptor 2 (“HER2”).
  • Antibody-adjuvant immunoconjugates of the invention comprising an antibody construct that has an antigen binding domain that binds HER2 linked to one or more adjuvant of formula:
  • PEG linker polyethylene glycol-based linker
  • PK linker pharmacokinetic
  • immunoconjugate refers to an antibody construct that is covalently bonded to an adjuvant moiety via a linker.
  • antibody construct refers to an antibody or a fusion protein comprising (i) an antigen binding domain and (ii) an Fc domain.
  • antibody refers to a polypeptide comprising an antigen binding region (including the complementarity determining region (CDRs)) from an immunoglobulin gene or fragments thereof that specifically binds and recognizes HER2.
  • CDRs complementarity determining region
  • An exemplary immunoglobulin (antibody) structural unit comprises a tetramer.
  • Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa) connected by disulfide bonds.
  • Each chain is composed of structural domains, which are referred to as immunoglobulin domains. These domains are classified into different categories by size and function, e.g., variable domains or regions on the light and heavy chains (V L and V H , respectively) and constant domains or regions on the light and heavy chains (C L and C H , respectively).
  • each chain defines a variable region of about 100 to 110 or more amino acids, referred to as the paratope, primarily responsible for antigen recognition, i.e., the antigen binding domain.
  • Light chains are classified as either kappa or lambda.
  • Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
  • IgG antibodies are large molecules of about 150 kDa composed of four peptide chains.
  • IgG antibodies contain two identical class ⁇ heavy chains of about 50 kDa and two identical light chains of about 25 kDa, thus a tetrameric quaternary structure.
  • the two heavy chains are linked to each other and to a light chain each by disulfide bonds.
  • the resulting tetramer has two identical halves, which together form the Y-like shape.
  • Each end of the fork contains an identical antigen binding domain.
  • IgG subclasses IgG1, IgG2, IgG3, and IgG4
  • IgG1 is the most abundant.
  • the antigen binding domain of an antibody will be most critical in specificity and affinity of binding to cancer cells.
  • Antibodies can exist as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases.
  • pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′ 2 , a dimer of Fab which itself is a light chain joined to V H -C H 1 by a disulfide bond.
  • the F(ab)′ 2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′ 2 dimer into a Fab′ monomer.
  • the Fab′ monomer is essentially Fab with part of the hinge region (see, e.g., Fundamental Immunology (Paul, editor, 7th edition, 2012)). While various antibody fragments are defined in terms of the digestion of an intact antibody, such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv), or those identified using phage display libraries (see, e.g., McCafferty et al., Nature, 348: 552-554 (1990)).
  • antibody specifically encompasses monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments that exhibit the desired biological activity.
  • epitope means any antigenic determinant or epitopic determinant of an antigen to which an antigen binding domain binds (i.e., at the paratope of the antigen binding domain).
  • Antigenic determinants usually consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
  • HER2 refers to the protein human epidermal growth factor receptor 2 (SEQ ID NO: 1), or an antigen with least about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more sequence identity to SEQ ID NO: 1.
  • Percent (%) identity of sequences can be calculated, for example, as 100 ⁇ [(identical positions)/min(TG A , TG B )], where TG A and TG B are the sum of the number of residues and internal gap positions in peptide sequences A and B in the alignment that minimizes TG A and TG B . See, e.g., Russell et al., J. Mol Biol., 244: 332-350 (1994).
  • the term “adjuvant” refers to a substance capable of eliciting an immune response in a subject exposed to the adjuvant.
  • the phrase “adjuvant moiety” refers to an adjuvant that is covalently bonded to an antibody construct, e.g., through a linker, as described herein.
  • the adjuvant moiety can elicit the immune response while bonded to the antibody construct or after cleavage (e.g., enzymatic cleavage) from the antibody construct following administration of an immunoconjugate to the subject.
  • TLR Toll-like receptor
  • TLR polypeptides share a characteristic structure that includes an extracellular domain that has leucine-rich repeats, a transmembrane domain, and an intracellular domain that is involved in TLR signaling.
  • Toll-like receptor 7 and “TLR7” refer to nucleic acids or polypeptides sharing at least about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or more sequence identity to a publicly-available TLR7 sequence, e.g., GenBank accession number AAZ99026 for human TLR7 polypeptide, or GenBank accession number AAK62676 for murine TLR7 polypeptide.
  • Toll-like receptor 8 and “TLR8” refer to nucleic acids or polypeptides sharing at least about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or more sequence identity to a publicly-available TLR7 sequence, e.g., GenBank accession number AAZ95441 for human TLR8 polypeptide, or GenBank accession number AAK62677 for murine TLR8 polypeptide.
  • TLR agonist is a substance that binds, directly or indirectly, to a TLR (e.g., TLR7 and/or TLR8) to induce TLR signaling. Any detectable difference in TLR signaling can indicate that an agonist stimulates or activates a TLR. Signaling differences can be manifested, for example, as changes in the expression of target genes, in the phosphorylation of signal transduction components, in the intracellular localization of downstream elements such as nuclear factor- ⁇ B (NF- ⁇ B), in the association of certain components (such as IL-1 receptor associated kinase (IRAK)) with other proteins or intracellular structures, or in the biochemical activity of components such as kinases (such as mitogen-activated protein kinase (MAPK)).
  • NF- ⁇ B nuclear factor- ⁇ B
  • IRAK IL-1 receptor associated kinase
  • “Ab” refers to an antibody construct that has an antigen-binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof.
  • HER2 e.g., trastuzumab (also known as HERCEPTINTM)
  • trastuzumab also known as HERCEPTINTM
  • biosimilar refers to an approved antibody construct that has active properties similar to the antibody construct previously approved (e.g., trastuzumab).
  • biobetter refers to an approved antibody construct that is an improvement of a previously approved antibody construct (e.g., trastuzumab).
  • the biobetter can have one or more modifications (e.g., an altered glycan profile, or a unique epitope) over the previously approved antibody construct.
  • amino acid refers to any monomeric unit that can be incorporated into a peptide, polypeptide, or protein.
  • Amino acids include naturally-occurring ⁇ -amino acids and their stereoisomers, as well as unnatural (non-naturally occurring) amino acids and their stereoisomers.
  • “Stereoisomers” of a given amino acid refer to isomers having the same molecular formula and intramolecular bonds but different three-dimensional arrangements of bonds and atoms (e.g., an L-amino acid and the corresponding D-amino acid).
  • the amino acids can be glycosylated (e.g., N-linked glycans, O-linked glycans, phosphoglycans, C-linked glycans, or glypiation) or deglycosylated.
  • Naturally-occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
  • Naturally-occurring ⁇ -amino acids include, without limitation, alanine (Ala), cysteine (Cys), aspartic acid (Asp), glutamic acid (Glu), phenylalanine (Phe), glycine (Gly), histidine (His), isoleucine (Ile), arginine (Arg), lysine (Lys), leucine (Leu), methionine (Met), asparagine (Asn), proline (Pro), glutamine (Gln), serine (Ser), threonine (Thr), valine (Val), tryptophan (Trp), tyrosine (Tyr), and combinations thereof.
  • Stereoisomers of naturally-occurring ⁇ -amino acids include, without limitation, D-alanine (D-Ala), D-cysteine (D-Cys), D-aspartic acid (D-Asp), D-glutamic acid (D-Glu), D-phenylalanine (D-Phe), D-histidine (D-His), D-isoleucine (D-Ile), D-arginine (D-Arg), D-lysine (D-Lys), D-leucine (D-Leu), D-methionine (D-Met), D-asparagine (D-Asn), D-proline (D-Pro), D-glutamine (D-Gln), D-serine (D-Ser), D-threonine (D-Thr), D-valine (D-Val), D-tryptophan (D-Trp), D-tyrosine (D-Tyr), and combinations thereof.
  • D-Ala D
  • Unnatural (non-naturally occurring) amino acids include, without limitation, amino acid analogs, amino acid mimetics, synthetic amino acids, N-substituted glycines, and N-methyl amino acids in either the L- or D-configuration that function in a manner similar to the naturally-occurring amino acids.
  • amino acid analogs can be unnatural amino acids that have the same basic chemical structure as naturally-occurring amino acids (i.e., a carbon that is bonded to a hydrogen, a carboxyl group, an amino group) but have modified side-chain groups or modified peptide backbones, e.g., homoserine, norleucine, methionine sulfoxide, and methionine methyl sulfonium.
  • Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally-occurring amino acid.
  • Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.
  • linker refers to a functional group that covalently bonds two or more moieties in a compound or material.
  • the linking moiety can serve to covalently bond an adjuvant moiety to an antibody construct in an immunoconjugate.
  • the terms “treat,” “treatment,” and “treating” refer to any indicia of success in the treatment or amelioration of an injury, pathology, condition (e.g., cancer), or symptom (e.g., cognitive impairment), including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the symptom, injury, pathology, or condition more tolerable to the patient; reduction in the rate of symptom progression; decreasing the frequency or duration of the symptom or condition; or, in some situations, preventing the onset of the symptom.
  • the treatment or amelioration of symptoms can be based on any objective or subjective parameter, including, for example, the result of a physical examination.
  • cancer refers to cells which exhibit autonomous, unregulated growth, such that the cells exhibit an aberrant growth phenotype characterized by a significant loss of control over cell proliferation.
  • Cells of interest for detection, analysis, and/or treatment in the context of the invention include cancer cells (e.g., cancer cells from an individual with cancer), malignant cancer cells, pre-metastatic cancer cells, metastatic cancer cells, and non-metastatic cancer cells. Cancers of virtually every tissue are known.
  • cancer burden refers to the quantum of cancer cells or cancer volume in a subject. Reducing cancer burden accordingly refers to reducing the number of cancer cells or the cancer cell volume in a subject.
  • cancer cell refers to any cell that is a cancer cell (e.g., from any of the cancers for which an individual can be treated, e.g., isolated from an individual having cancer) or is derived from a cancer cell, e.g., clone of a cancer cell.
  • a cancer cell can be from an established cancer cell line, can be a primary cell isolated from an individual with cancer, can be a progeny cell from a primary cell isolated from an individual with cancer, and the like.
  • the term can also refer to a portion of a cancer cell, such as a sub-cellular portion, a cell membrane portion, or a cell lysate of a cancer cell.
  • cancers are known to those of skill in the art, including solid tumors such as carcinomas, sarcomas, glioblastomas, melanomas, lymphomas, and myelomas, and circulating cancers such as leukemias.
  • solid tumors such as carcinomas, sarcomas, glioblastomas, melanomas, lymphomas, and myelomas
  • circulating cancers such as leukemias.
  • cancer includes any form of cancer, including but not limited to, solid tumor cancers (e.g., lung, prostate, breast, gastric, bladder, colon, ovarian, pancreas, kidney, liver, glioblastoma, medulloblastoma, leiomyosarcoma, head & neck squamous cell carcinomas, melanomas, and neuroendocrine) and liquid cancers (e.g., hematological cancers); carcinomas; soft tissue tumors; sarcomas; teratomas; melanomas; leukemias; lymphomas; and brain cancers, including minimal residual disease, and including both primary and metastatic tumors.
  • solid tumor cancers e.g., lung, prostate, breast, gastric, bladder, colon, ovarian
  • pancreas kidney, liver, glioblastoma, medulloblastoma, leiomyosarcoma, head & neck squamous cell carcinomas, melanomas, and
  • HER2 expression refers to a cell that has a HER2 receptor on the cell's surface.
  • a cell may have from about 20,000 to about 50,000 HER2 receptors on the cell's surface.
  • HER2 overexpression refers to a cell that has more than about 50,000 HER2 receptors.
  • a cell 2, 5, 10, 100, 1,000, 10,000, 100,000, or 1,000,000 times the number of HER2 receptors as compared to corresponding non-cancer cell (e.g., about 1 or 2 million HER2 receptors). It is estimated that HER2 is overexpressed in about 25% to about 30% of breast cancers.
  • Carcinomas are malignancies that originate in the epithelial tissues. Epithelial cells cover the external surface of the body, line the internal cavities, and form the lining of glandular tissues.
  • carcinomas include, but are not limited to, adenocarcinoma (cancer that begins in glandular (secretory) cells such as cancers of the breast, pancreas, lung, prostate, stomach, gastroesophageal junction, and colon) adrenocortical carcinoma; hepatocellular carcinoma; renal cell carcinoma; ovarian carcinoma; carcinoma in situ; ductal carcinoma; carcinoma of the breast; basal cell carcinoma; squamous cell carcinoma; transitional cell carcinoma; colon carcinoma; nasopharyngeal carcinoma; multilocular cystic renal cell carcinoma; oat cell carcinoma; large cell lung carcinoma; small cell lung carcinoma; non-small cell lung carcinoma; and the like.
  • Carcinomas may be found in prostrate, pancreas, colon, brain (usually as secondary metastases), lung, breast, and skin.
  • Soft tissue tumors are a highly diverse group of rare tumors that are derived from connective tissue.
  • soft tissue tumors include, but are not limited to, alveolar soft part sarcoma; angiomatoid fibrous histiocytoma; chondromyoxid fibroma; skeletal chondrosarcoma; extraskeletal myxoid chondrosarcoma; clear cell sarcoma; desmoplastic small round-cell tumor; dermatofibrosarcoma protuberans; endometrial stromal tumor; Ewing's sarcoma; fibromatosis (Desmoid); fibrosarcoma, infantile; gastrointestinal stromal tumor; bone giant cell tumor; tenosynovial giant cell tumor; inflammatory myofibroblastic tumor; uterine leiomyoma; leiomyosarcoma; lipoblastoma; typical lipoma; spindle cell or pleomorphic lipoma; atypical lipo
  • a sarcoma is a rare type of cancer that arises in cells of mesenchymal origin, e.g., in bone or in the soft tissues of the body, including cartilage, fat, muscle, blood vessels, fibrous tissue, or other connective or supportive tissue.
  • Different types of sarcoma are based on where the cancer forms. For example, osteosarcoma forms in bone, liposarcoma forms in fat, and rhabdomyosarcoma forms in muscle.
  • sarcomas include, but are not limited to, askin's tumor; sarcoma botryoides; chondrosarcoma; ewing's sarcoma; malignant hemangioendothelioma; malignant schwannoma; osteosarcoma; and soft tissue sarcomas (e.g., alveolar soft part sarcoma; angiosarcoma; cystosarcoma phyllodesdermatofibrosarcoma protuberans (DFSP); desmoid tumor; desmoplastic small round cell tumor; epithelioid sarcoma; extraskeletal chondrosarcoma; extraskeletal osteosarcoma; fibrosarcoma; gastrointestinal stromal tumor (GIST); hemangiopericytoma; hemangiosarcoma (more commonly referred to as “angiosarcoma”); kaposi's sarcoma; leiomyosarcoma; lipos
  • a teratoma is a type of germ cell tumor that may contain several different types of tissue (e.g., can include tissues derived from any and/or all of the three germ layers: endoderm, mesoderm, and ectoderm), including, for example, hair, muscle, and bone. Teratomas occur most often in the ovaries in women, the testicles in men, and the tailbone in children.
  • Melanoma is a form of cancer that begins in melanocytes (cells that make the pigment melanin). Melanoma may begin in a mole (skin melanoma), but can also begin in other pigmented tissues, such as in the eye or in the intestines.
  • Leukemias are cancers that start in blood-forming tissue, such as the bone marrow, and cause large numbers of abnormal blood cells to be produced and enter the bloodstream.
  • leukemias can originate in bone marrow-derived cells that normally mature in the bloodstream.
  • Leukemias are named for how quickly the disease develops and progresses (e.g., acute versus chronic) and for the type of white blood cell that is affected (e.g., myeloid versus lymphoid).
  • Myeloid leukemias are also called myelogenous or myeloblastic leukemias.
  • Lymphoid leukemias are also called lymphoblastic or lymphocytic leukemia.
  • Lymphoid leukemia cells may collect in the lymph nodes, which can become swollen.
  • leukemias include, but are not limited to, Acute myeloid leukemia (AML), Acute lymphoblastic leukemia (ALL), Chronic myeloid leukemia (CML), and Chronic lymphocytic leukemia (CLL).
  • Lymphomas are cancers that begin in cells of the immune system.
  • lymphomas can originate in bone marrow-derived cells that normally mature in the lymphatic system.
  • One category of lymphoma is Hodgkin lymphoma (HL), which is marked by the presence of a type of cell called the Reed-Sternberg cell.
  • HL Hodgkin lymphoma
  • Examples of Hodgkin lymphomas include nodular sclerosis classical Hodgkin lymphoma (CHL), mixed cellularity CHL, lymphocyte-depletion CHL, lymphocyte-rich CHL, and nodular lymphocyte predominant HL.
  • NHL non-Hodgkin lymphomas
  • non-Hodgkin lymphomas include, but are not limited to, AIDS-related Lymphomas, anaplastic large-cell lymphoma, angioimmunoblastic lymphoma, blastic NK-cell lymphoma, Burkitt's lymphoma, Burkitt-like lymphoma (small non-cleaved cell lymphoma), chronic lymphocytic leukemia/small lymphocytic lymphoma, cutaneous T-Cell lymphoma, diffuse large B-Cell lymphoma, enteropathy-type T-Cell lymphoma, follicular lymphoma, hepatosplenic gamma-delta T-Cell lymphomas, T-Cell leukemias, lymphoblastic lymphoma, mantle cell lymphoma, marginal zone lymphoma, nasal T-Cell lymphoma, pediatric lymphoma, peripheral T-Cell lymphomas, primary central nervous system lymphoma, transformed lymphomas
  • Brain cancers include any cancer of the brain tissues.
  • Examples of brain cancers include, but are not limited to, gliomas (e.g., glioblastomas, astrocytomas, oligodendrogliomas, ependymomas, and the like), meningiomas, pituitary adenomas, and vestibular schwannomas, primitive neuroectodermal tumors (medulloblastomas).
  • the “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, and invasion of surrounding or distant tissues or organs, such as lymph nodes.
  • cancer recurrence and “tumor recurrence,” and grammatical variants thereof, refer to further growth of neoplastic or cancerous cells after diagnosis of cancer. Particularly, recurrence may occur when further cancerous cell growth occurs in the cancerous tissue.
  • Tuor spread similarly, occurs when the cells of a tumor disseminate into local or distant tissues and organs, therefore, tumor spread encompasses tumor metastasis.
  • Tuor invasion occurs when the tumor growth spread out locally to compromise the function of involved tissues by compression, destruction, or prevention of normal organ function.
  • Metastasis refers to the growth of a cancerous tumor in an organ or body part, which is not directly connected to the organ of the original cancerous tumor. Metastasis will be understood to include micrometastasis, which is the presence of an undetectable amount of cancerous cells in an organ or body part that is not directly connected to the organ of the original cancerous tumor. Metastasis can also be defined as several steps of a process, such as the departure of cancer cells from an original tumor site, and migration and/or invasion of cancer cells to other parts of the body.
  • the phrases “effective amount” and “therapeutically effective amount” refer to a dose of a substance such as an immunoconjugate that produces therapeutic effects for which it is administered.
  • the exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11 th Edition (McGraw-Hill, 2006); and Remington: The Science and Practice of Pharmacy, 22 nd Edition, (Pharmaceutical Press, London, 2012)).
  • the terms “recipient,” “individual,” “subject,” “host,” and “patient” are used interchangeably and refer to any mammalian subject for whom diagnosis, treatment, or therapy is desired (e.g., humans).
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, sheep, goats, pigs, camels, etc. In certain embodiments, the mammal is human.
  • the phrase “synergistic adjuvant” or “synergistic combination” in the context of this invention includes the combination of two immune modulators such as a receptor agonist, cytokine, and adjuvant polypeptide, that in combination elicit a synergistic effect on immunity relative to either administered alone.
  • the immunoconjugates disclosed herein comprise synergistic combinations of the claimed adjuvant and antibody construct. These synergistic combinations upon administration elicit a greater effect on immunity, e.g., relative to when the antibody construct or adjuvant is administered in the absence of the other moiety. Further, a decreased amount of the immunoconjugate may be administered (as measured by the total number of antibody constructs or the total number of adjuvants administered as part of the immunoconjugate) compared to when either the antibody construct or adjuvant is administered alone.
  • administering refers to parenteral, intravenous, intraperitoneal, intramuscular, intratumoral, intralesional, intranasal, or subcutaneous administration, oral administration, administration as a suppository, topical contact, intrathecal administration, or the implantation of a slow-release device, e.g., a mini-osmotic pump, to the subject.
  • a slow-release device e.g., a mini-osmotic pump
  • the invention provides an immunoconjugate of formula:
  • “Ab” is an antibody construct that has an antigen binding domain that binds human epidermal growth factor receptor 2 (“HER2”).
  • “Ab” can be any suitable antibody construct that has an antigen binding domain that binds HER2, such as, for example, trastuzumab and pertuzumab.
  • “Ab” is trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof.
  • “Ab” can be MYL-14010, ABP 980, BCD-022, CT-P6, EG12014, HD201, ONS-1050, PF-05280014, Ontruzant, Saiputing, Herzuma, or HLX02.
  • “Ab” is trastuzumab (also known as HERCEPTINTM).
  • the immunoconjugates of the invention comprise about 1 to about 10 adjuvants, each adjuvant linked via a PEG linker to the antibody construct, as designated with subscript “r.”
  • Each of the adjuvants linked via a PEG linker to the antibody construct is conjugated to the antibody construct at an amine of a lysine residue of the antibody construct.
  • r is 1, such that there is a single adjuvant linked via a PEG linker to the antibody construct.
  • r is an integer from about 2 to about 10 (e.g., about 2 to about 9, about 3 to about 9, about 4 to about 9, about 5 to about 9, about 6 to about 9, about 3 to about 8, about 3 to about 7, about 3 to about 6, about 4 to about 8, about 4 to about 7, about 4 to about 6, about 5 to about 6, about 1 to about 6, about 1 to about 4, about 2 to about 4, or about 1 to about 3).
  • the immunoconjugates can have (i.e., subscript “r” can be) 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 adjuvants linked via a PEG linker.
  • the immunoconjugates have (i.e., subscript “r” can be) 1, 2, 3, or 4 adjuvants linked via a PEG linker.
  • the desirable adjuvant to antibody construct ratio i.e., the value of the subscript “r” can be determined by a skilled artisan depending on the desired effect of the treatment.
  • the immunoconjugates of the invention comprise about 2 to about 25 (e.g., about 2 to about 16, about 6 to about 25, about 6 to about 16, about 8 to about 25, about 8 to about 16, about 6 to about 12, or about 8 to about 12) ethylene glycol units, as designated with subscript “n.”
  • the immunoconjugates of the invention can comprise at least 2 ethylene glycol groups (e.g., at least 3 ethylene glycol groups, at least 4 ethylene glycol groups, at least 5 ethylene glycol groups, at least 6 ethylene glycol groups, at least 7 ethylene glycol groups, at least 8 ethylene glycol groups, at least 9 ethylene glycol groups, or at least 10 ethylene glycol groups).
  • the immunoconjugate can comprise from about 2 to about 25 ethylene glycol units, for example, from about 6 to about 25 ethylene glycol units, from about 6 to about 16 ethylene glycol units, from about 8 to about 25 ethylene glycol units, from about 8 to about 16 ethylene glycol units, from about 8 to about 12 ethylene glycol units, or from about 8 to about 12 ethylene glycol units.
  • the immunoconjugate comprises a di(ethylene glycol) group, a tri(ethylene glycol) group, a tetra(ethylene glycol) group, 5 ethylene glycol groups, 6 ethylene glycol groups, 7 ethylene glycol groups, 8 ethylene glycol groups, 9 ethylene glycol groups, 10 ethylene glycol groups, 11 ethylene glycol groups, 12 ethylene glycol groups, 13 ethylene glycol groups, 14 ethylene glycol groups, 15 ethylene glycol groups, 16 ethylene glycol groups, 24 ethylene glycol groups, or 25 ethylene glycol groups.
  • the immunoconjugate comprises 6 ethylene glycol groups, 8 ethylene glycol groups, 10 ethylene glycol groups, or 12 ethylene glycol groups (i.e., about 6 ethylene glycol groups to about 12 ethylene glycol groups).
  • the PEG linker can be linked to the antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof) via an amine of a lysine residue of the antibody construct.
  • HER2 e.g., trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof
  • the immunoconjugates of the invention can be represented by the following formula:
  • the adjuvant can be linked via the PEG linker to any suitable residue of the antibody construct, but desirably is linked to any lysine residue of the antibody construct.
  • the adjuvant can be linked via the PEG linker to one or more of K103, K107, K149, K169, K183, and/or K188 of the light chain of the antibody construct, as numbered using the Kabat numbering system.
  • the adjuvant can be linked via the PEG linker to one or more of K30, K43, K65, K76, K136, K216, K217, K225, K293, K320, K323, K337, K395, and/or K417 of the heavy chain of the antibody construct, as numbered using the Kabat numbering system.
  • the adjuvant is predominantly linked via the PEG linker at K107 or K188 of the light chain of the antibody construct, or K30, K43, K65, or K417 of the heavy chain of the antibody construct.
  • the adjuvant is linked via the PEG linker at K188 of the light chain of the antibody construct, and optionally one or more other lysine residues of the antibody construct.
  • Immunoconjugates as described herein can provide an unexpectedly increased activation response of an antigen presenting cell (“APC”).
  • APC antigen presenting cell
  • This increased activation can be detected in vitro or in vivo.
  • the increased APC activation can be detected in the form of a reduced time to achieve a specified level of APC activation.
  • % APC activation can be achieved at an equivalent dose with an immunoconjugate within about 1%, about 10%, about 20%, about 30%, about 40%, or about 50% of the time required to obtain the same or similar percentage of APC activation with a mixture of unconjugated antibody construct and adjuvant, under otherwise identical concentrations and conditions.
  • an immunoconjugate can activate APCs (e.g., dendritic cells) and/or NK cells in a reduced amount of time.
  • APCs e.g., dendritic cells
  • a mixture of unconjugated antibody construct and adjuvant can activate APCs (e.g., dendritic cells) and/or NK cells and/or induce dendritic cell differentiation after incubation with the mixture for 2, 3, 4, 5, 1-5, 2-5, 3-5, or 4-7 days, while, in contrast, immunoconjugates described herein can activate and/or induce differentiation within 4 hours, 8 hours, 12 hours, 16 hours, or 1 day, under otherwise identical concentrations and conditions.
  • the increased APC activation can be detected in the form of a reduced concentration of immunoconjugate required to achieve an amount (e.g., percent APCs), level (e.g., as measured by a level of upregulation of a suitable marker) or rate (e.g., as detected by a time of incubation required to activate) of APC activation.
  • an amount e.g., percent APCs
  • level e.g., as measured by a level of upregulation of a suitable marker
  • rate e.g., as detected by a time of incubation required to activate
  • the immunoconjugates of the invention provide more than an about 5% increase in activity compared to a mixture of unconjugated antibody construct and adjuvant, under otherwise identical conditions. In other embodiments, the immunoconjugates of the invention provide more than an about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, or about 70% increase in activity compared to a mixture of unconjugated antibody construct and adjuvant, under otherwise identical conditions.
  • the increase in activity can be assessed by any suitable means, many of which are known to those ordinarily skilled in the art and can include myeloid activation, assessment by cytokine secretion, or a combination thereof.
  • the invention provides an immunoconjugate of formula:
  • HER2 human epidermal growth factor receptor 2
  • the invention provides an immunoconjugate of formula:
  • “Ab” is trastuzumab (also known as HERCEPTINTM), pertuzumab, biosimilars thereof, and biobetters thereof.
  • “Ab” can be MYL-14010, ABP 980, BCD-022, CT-P6, EG12014, HD201, ONS-1050, PF-05280014, Ontruzant, Saiputing, Herzuma, or HLX02.
  • the invention provides an immunoconjugate of formula:
  • r is an integer from 1 to 10 and “Ab” is trastuzumab (also known as HERCEPTINTM)
  • the immunoconjugate of the invention comprises an adjuvant moiety of formula:
  • dashed line (“ ”) represents a point of attachment of the adjuvant moiety to the linker.
  • the adjuvant moiety described herein is a TLR agonist.
  • the immunoconjugates of the invention comprise an antibody construct that comprises an antigen binding domain that binds HER2.
  • the antibody construct further comprises an Fc domain.
  • the antibody construct is an antibody.
  • the antibody construct is a fusion protein.
  • the antigen binding domain can be a single-chain variable region fragment (scFv).
  • scFv single-chain variable region fragment
  • dsFv disulfide-stabilized variable region fragments
  • An embodiment of the invention provides antibody construct or antigen binding domain which specifically recognizes and binds to HER2 (SEQ ID NO: 1).
  • the antibody construct or antigen binding domain may comprise one or more variable regions (e.g., two variable regions) of an antigen binding domain of an anti-HER2 antibody, each variable region comprising a CDR1, a CDR2, and a CDR3.
  • an embodiment of the invention provides an antibody construct or antigen binding domain comprising the CDR regions of trastuzumab.
  • the antibody construct or antigen binding domain may comprise a first variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 2 (CDR1 of first variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 3 (CDR2 of first variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 4 (CDR3 of first variable region), and a second variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 5 (CDR1 of second variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 6 (CDR2 of second variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 7 (CDR3 of second variable region).
  • the antibody construct can comprise (i) all of SEQ ID NOs: 2-4, (ii) all of SEQ ID NOs: 5-7, or (iii) all of SEQ ID NOs: 2-7.
  • the antibody construct or antigen binding domain comprises all of SEQ ID NOs: 2-7.
  • the antibody construct or antigen binding domain comprising the CDR regions of trastuzumab further comprises the framework regions of the trastuzumab.
  • the antibody construct or antigen binding domain comprising the CDR regions of the trastuzumab further comprises the amino acid sequence of SEQ ID NO: 8 (framework region (“FR”) 1 of first variable region), the amino acid sequence of SEQ ID NO: 9 (FR2 of first variable region), the amino acid sequence of SEQ ID NO: 10 (FR3 of first variable region), the amino acid sequence of SEQ ID NO: 11 (FR4 of first variable region), the amino acid sequence of SEQ ID NO: 12 (FR1 of second variable region), the amino acid sequence of SEQ ID NO: 13 (FR2 of second variable region), the amino acid sequence of SEQ ID NO: 14 (FR3 of second variable region), and the amino acid sequence of SEQ ID NO: 15 (FR4 of second variable region).
  • the antibody construct or antigen binding domain can comprise (i) all of SEQ ID NOs: 2-4 and 8-11, (ii) all of SEQ ID NOs: 5-7 and 12-15; or (iii) all of SEQ ID NOs: 2-7 and 8-15.
  • an embodiment of the invention provides an antibody construct or antigen binding domain comprising one or both variable regions of trastuzumab.
  • the first variable region may comprise SEQ ID NO: 16.
  • the second variable region may comprise SEQ ID NO: 17.
  • the antibody construct or antigen binding domain comprises SEQ ID NO: 16, SEQ ID NO: 17, or both SEQ ID NOs: 16 and 17.
  • the polypeptide comprises both of SEQ ID NOs: 16-17.
  • an embodiment of the invention provides an antibody construct or antigen binding domain comprising the CDR regions of pertuzumab.
  • the antibody construct or antigen binding domain may comprise a first variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 18 (CDR1 of first variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 19 (CDR2 of first variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 20 (CDR3 of first variable region), and a second variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 21 (CDR1 of second variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 22 (CDR2 of second variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 23 (CDR3 of second variable region).
  • the antibody construct can comprise (i) all of SEQ ID NOs: 18-20, (ii) all of SEQ ID NOs: 21-23, or (iii) all of SEQ ID NOs: 18-23.
  • the antibody construct or antigen binding domain comprises all of SEQ ID NOs: 18-23.
  • the antibody construct or antigen binding domain comprising the CDR regions of pertuzumab further comprises the framework regions of the pertuzumab.
  • the antibody construct or antigen binding domain comprising the CDR regions of the pertuzumab further comprises the amino acid sequence of SEQ ID NO: 24 (framework region (“FR”) 1 of first variable region), the amino acid sequence of SEQ ID NO: 25 (FR2 of first variable region), the amino acid sequence of SEQ ID NO: 26 (FR3 of first variable region), the amino acid sequence of SEQ ID NO: 27 (FR4 of first variable region), the amino acid sequence of SEQ ID NO: 28 (FR1 of second variable region), the amino acid sequence of SEQ ID NO: 29 (FR2 of second variable region), the amino acid sequence of SEQ ID NO: 30 (FR3 of second variable region), and the amino acid sequence of SEQ ID NO: 31 (FR4 of second variable region).
  • the antibody construct or antigen binding domain can comprise (i) all of SEQ ID NOs: 18-20 and 24-26, (ii) all of SEQ ID NOs: 21-23 and 27-31; or (iii) all of SEQ ID NOs: 18-21 and 24-31.
  • an embodiment of the invention provides an antibody construct or antigen binding domain comprising one or both variable regions of pertuzumab.
  • the first variable region may comprise SEQ ID NO: 32.
  • the second variable region may comprise SEQ ID NO: 33.
  • the antibody construct or antigen binding domain comprises SEQ ID NO: 32, SEQ ID NO: 33, or both SEQ ID NOs: 32 and 33.
  • the polypeptide comprises both of SEQ ID NOs: 32-33.
  • the term “functional variant” as used herein refers to an antibody construct having an antigen binding domain with substantial or significant sequence identity or similarity to a parent antibody construct or antigen binding domain, which functional variant retains the biological activity of the antibody construct or antigen binding domain of which it is a variant.
  • Functional variants encompass, for example, those variants of the antibody constructs or antigen binding domain described herein (the parent antibody construct or antigen binding domain) that retain the ability to recognize target cells expressing HER2 to a similar extent, the same extent, or to a higher extent, as the parent antibody construct or antigen binding domain.
  • the functional variant can, for instance, be at least about 30%, about 50%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more identical in amino acid sequence to the antibody construct or antigen binding domain.
  • a functional variant can, for example, comprise the amino acid sequence of the parent antibody construct or antigen binding domain with at least one conservative amino acid substitution.
  • the functional variants can comprise the amino acid sequence of the parent antibody construct or antigen binding domain with at least one non-conservative amino acid substitution.
  • the non-conservative amino acid substitution may enhance the biological activity of the functional variant, such that the biological activity of the functional variant is increased as compared to the parent antibody construct or antigen binding domain.
  • Amino acid substitutions of the inventive antibody constructs or antigen binding domains are preferably conservative amino acid substitutions.
  • Conservative amino acid substitutions are known in the art, and include amino acid substitutions in which one amino acid having certain physical and/or chemical properties is exchanged for another amino acid that has the same or similar chemical or physical properties.
  • the conservative amino acid substitution can be an acidic/negatively charged polar amino acid substituted for another acidic/negatively charged polar amino acid (e.g., Asp or Glu), an amino acid with a nonpolar side chain substituted for another amino acid with a nonpolar side chain (e.g., Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Cys, Val, etc.), a basic/positively charged polar amino acid substituted for another basic/positively charged polar amino acid (e.g., Lys, His, Arg, etc.), an uncharged amino acid with a polar side chain substituted for another uncharged amino acid with a polar side chain (e.g., Asn, Gln, Ser, Thr, Tyr, etc.), an amino acid with a beta-branched side-chain substituted for another amino acid with a beta-branched side-chain (e.g., Ile, Thr, and Val), an amino acid with an aromatic side-chain substitute
  • the antibody construct or antigen binding domain can consist essentially of the specified amino acid sequence or sequences described herein, such that other components, e.g., other amino acids, do not materially change the biological activity of the antibody construct or antigen binding domain functional variant.
  • the antibody constructs and antigen binding domains of embodiments of the invention can be of any length, i.e., can comprise any number of amino acids, provided that the antibody constructs (or functional portions or functional variants thereof) retain their biological activity, e.g., the ability to specifically bind to HER2, detect cancer cells in a mammal, or treat or prevent cancer in a mammal, etc.
  • the antibody construct or antigen binding domain can be about 50 to about 5,000 amino acids long, such as 50, 70, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, or more amino acids in length.
  • the antibody constructs and antigen binding domains of embodiments of the invention can comprise synthetic amino acids in place of one or more naturally-occurring amino acids.
  • synthetic amino acids are known in the art, and include, for example, aminocyclohexane carboxylic acid, norleucine, ⁇ -amino n-decanoic acid, homoserine, S-acetylaminomethyl-cysteine, trans-3- and trans-4-hydroxyproline, 4-aminophenylalanine, 4-nitrophenylalanine, 4-chlorophenylalanine, 4-carboxyphenylalanine, ⁇ -phenylserine ⁇ -hydroxyphenylalanine, phenylglycine, ⁇ -naphthylalanine, cyclohexylalanine, cyclohexylglycine, indoline-2-carboxylic acid, 1,2,3,4-tetrahydroisoquinoline-3-carbox
  • the antibody constructs of embodiments of the invention can be glycosylated, amidated, carboxylated, phosphorylated, esterified, N-acylated, cyclized via, e.g., a disulfide bridge, or converted into an acid addition salt and/or optionally dimerized or polymerized.
  • the antibody construct is a monoclonal antibody of a defined sub-class (e.g., IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 , or IgA 2 ). If combinations of antibodies are used, the antibodies can be from the same subclass or from different subclasses. Typically, the antibody construct is an IgG 1 antibody. Various combinations of different subclasses, in different relative proportions, can be obtained by those of skill in the art. In some embodiments, a specific subclass or a specific combination of different subclasses can be particularly effective at cancer treatment or tumor size reduction. Accordingly, some embodiments of the invention provide immunoconjugates wherein the antibody is a monoclonal antibody. In some embodiments, the monoclonal antibody is a humanized monoclonal antibody.
  • a defined sub-class e.g., IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 , or
  • the antibody construct or antigen binding domain binds to HER2 on a cancer or immune cell at a higher affinity than a corresponding HER2 antigen on a non-cancer cell.
  • the antibody construct or antigen binding domain may preferentially recognize HER2 containing a polymorphism that is found on a cancer or immune cell as compared to recognition of a corresponding wild-type HER2 antigen on the non-cancer.
  • the antibody construct or antigen binding domain binds a cancer cell with greater avidity than a non-cancer cell.
  • the cancer cell can express a higher density of HER2, thereby providing for a higher affinity binding of a multivalent antibody to the cancer cell.
  • the antibody construct or antigen binding domain does not significantly bind non-cancer antigens (e.g., the antibody binds one or more non-cancer antigens with at least 10, 100, 1,000, 10,000, 100,000, or 1,000,000-fold lower affinity (higher Kd) than HER2).
  • the corresponding non-cancer cell is a cell of the same tissue or origin that is not hyperproliferative or otherwise cancerous.
  • HER2 need not be specific to the cancer cell or even enriched in cancer cells relative to other cells (e.g., HER2 can be expressed by other cells).
  • the term “specifically” refers to the specificity of the antibody construct and not to the uniqueness of the presence of HER2 in that particular cell type.
  • the antibodies in the immunoconjugates contain a modified Fc region, wherein the modification modulates the binding of the Fc region to one or more Fc receptors.
  • Fc receptor refers to a receptor that binds to the Fc region of an antibody.
  • Fc ⁇ R which binds to IgG
  • Fc ⁇ R which binds to IgA
  • FcR which binds to IgE.
  • the Fc ⁇ R family includes several members, such as Fc ⁇ I (CD64), Fc ⁇ RIIA (CD32A), Fc ⁇ RIIB (CD32B), Fc ⁇ RIIIA (CD16A), and Fc ⁇ RIIIB (CD16B).
  • the Fc ⁇ receptors differ in their affinity for IgG and also have different affinities for the IgG subclasses (e.g., IgG1, IgG2, IgG3, and IgG4).
  • the antibodies in the immunoconjugates contain one or more modifications (e.g., amino acid insertion, deletion, and/or substitution) in the Fc region that results in modulated binding (e.g., increased binding or decreased binding) to one or more Fc receptors (e.g., Fc ⁇ RI (CD64), Fc ⁇ RIIA (CD32A), Fc ⁇ RIIB (CD32B), Fc ⁇ RIIIA (CD16a), and/or Fc ⁇ RIIIB (CD16b)) as compared to the native antibody lacking the mutation in the Fc region.
  • modifications e.g., amino acid insertion, deletion, and/or substitution
  • Fc receptors e.g., Fc ⁇ RI (CD64), Fc ⁇ RIIA (CD32A), Fc ⁇ RIIB (CD32B), Fc ⁇ RIIIA (CD16a), and/or Fc ⁇ RIIIB (CD16b)
  • the antibodies in the immunoconjugates contain one or more modifications (e.g., amino acid insertion, deletion, and/or substitution) in the Fc region that reduce the binding of the Fc region of the antibody to Fc ⁇ RIIB. In some embodiments, the antibodies in the immunoconjugates contain one or more modifications (e.g., amino acid insertion, deletion, and/or substitution) in the Fc region of the antibody that reduce the binding of the antibody to Fc ⁇ RIIB while maintaining the same binding or having increased binding to Fc ⁇ RI (CD64), Fc ⁇ RIIA (CD32A), and/or FcR ⁇ IIIA (CD16a) as compared to the native antibody lacking the mutation in the Fc region. In some embodiments, the antibodies in the immunoconjugates contain one of more modifications in the Fc region that increase the binding of the Fc region of the antibody to Fc ⁇ RIIB.
  • modifications e.g., amino acid insertion, deletion, and/or substitution
  • the modulated binding is provided by mutations in the Fc region of the antibody relative to the native Fc region of the antibody.
  • the mutations can be in a CH2 domain, a CH3 domain, or a combination thereof.
  • a “native Fc region” is synonymous with a “wild-type Fc region” and comprises an amino acid sequence that is identical to the amino acid sequence of an Fc region found in nature or identical to the amino acid sequence of the Fc region found in the native antibody (e.g., trastuzumab).
  • Native sequence human Fc regions include a native sequence human IgG1 Fc region, native sequence human IgG2 Fc region, native sequence human IgG3 Fc region, and native sequence human IgG4 Fc region, as well as naturally occurring variants thereof.
  • Native sequence Fc includes the various allotypes of Fcs (see, e.g., Jefferis et al., mAbs, 1(4): 332-338 (2009)).
  • the mutations in the Fc region that result in modulated binding to one or more Fc receptors can include one or more of the following mutations: SD (S239D), SDIE (S239D/I332E), SE (S267E), SELF (S267E/L328F), SDIE (S239D/I332E), SDIEAL (S239D/I332E/A330L), GA (G236A), ALIE (A330L/I332E), GASDALIE (G236A/S239D/A330L/I332E), V9 (G237D/P238D/P271G/A330R), and V11 (G237D/P238D/H268D/P271G/A330R), and/or one or more mutations at the following amino acids: E233, G237, P238, H268, P271, L328 and A330.
  • the Fc region of the antibodies of the immunoconjugates are modified to have an altered glycosylation pattern of the Fc region compared to the native non-modified Fc region.
  • Human immunoglobulin is glycosylated at the Asn297 residue in the C ⁇ 2 domain of each heavy chain.
  • This N-linked oligosaccharide is composed of a core heptasaccharide, N-acetylglucosamine4Mannose3 (GlcNAc4Man3). Removal of the heptasaccharide with endoglycosidase or PNGase F is known to lead to conformational changes in the antibody Fc region, which can significantly reduce antibody-binding affinity to activating Fc ⁇ R and lead to decreased effector function.
  • the core heptasaccharide is often decorated with galactose, bisecting GlcNAc, fucose, or sialic acid, which differentially impacts Fc binding to activating and inhibitory Fc ⁇ R. Additionally, it has been demonstrated that ⁇ 2,6-sialyation enhances anti-inflammatory activity in vivo, while defucosylation leads to improved Fc ⁇ RIIIa binding and a 10-fold increase in antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis. Specific glycosylation patterns, therefore, can be used to control inflammatory effector functions.
  • the modification to alter the glycosylation pattern is a mutation.
  • Asn297 is mutated to glutamine (N297Q).
  • the antibodies of the immunoconjugates are modified to contain an engineered Fab region with a non-naturally occurring glycosylation pattern.
  • hybridomas can be genetically engineered to secrete afucosylated mAb, desialylated mAb or deglycosylated Fc with specific mutations that enable increased FcR ⁇ IIIa binding and effector function.
  • the antibodies of the immunoconjugates are engineered to be afucosylated.
  • the entire Fc region of an antibody construct in the immunoconjugates is exchanged with a different Fc region, so that the Fab region of the antibody is conjugated to a non-native Fc region.
  • the Fab region of trastuzumab which normally comprises an IgG1 Fc region
  • the Fab region of nivolumab which normally comprises an IgG4 Fc region
  • the Fc modified antibody with a non-native Fc domain also comprises one or more amino acid modification, such as the S228P mutation within the IgG4 Fc, that modulate the stability of the Fc domain described.
  • the Fc modified antibody with a non-native Fc domain also comprises one or more amino acid modifications described herein that modulate Fc binding to FcR.
  • the modifications that modulate the binding of the Fc region to FcR do not alter the binding of the Fab region of the antibody to its antigen when compared to the native non-modified antibody. In other embodiments, the modifications that modulate the binding of the Fc region to FcR also increase the binding of the Fab region of the antibody to its antigen when compared to the native non-modified antibody.
  • Some of the immunoconjugates disclosed herein can be easier to purify than an immunoconjugate comprising the same adjuvant, the same antibody construct, and a different PEG linker length (e.g., PEG6 to PEG12 vs. PEG2 or PEG25). Without wishing to be bound by any particular theory, it is believed that the PEG6 to PEG12 immunoconjugates described herein provide a good balance of hydrophobicity and hydrophilicity to facilitate the purification process. Some of the immunoconjugates disclosed herein can be easier to solubilize than an immunoconjugate comprising the same adjuvant, the same antibody construct, and a different PEG linker length (e.g., PEG6 to PEG12 vs.
  • the PEG6 to PEG12 immunoconjugate described herein provide a good balance of hydrophobicity and hydrophilicity to maintain solubility and be effective under biological conditions. It is also believed that the PEG6 to PEG12 immunoconjugate include a desirable number PEG units to provide enough hydrophobicity to be readily purified and/or isolated, while maintaining enough hydrophilicity to be easily solubilized.
  • the immunoconjugate comprises a PEG10 linker.
  • the invention provides a composition, e.g., a pharmaceutically acceptable composition or formulation, comprising a plurality of immunoconjugates as described herein and optionally a carrier therefor, e.g., a pharmaceutically acceptable carrier.
  • the immunoconjugates can be the same or different in the composition, i.e., the composition can comprise immunoconjugates that have the same number of adjuvants linked to the same positions on the antibody construct and/or immunoconjugates that have the same number of adjuvants linked to different positions on the antibody construct, that have different numbers of adjuvants linked to the same positions on the antibody construct, or that have different numbers of adjuvants linked to different positions on the antibody construct.
  • the adjuvant can be linked via the PEG linker to any suitable residue of the antibody construct, desirably to a lysine residue of the antibody construct.
  • the composition can comprise a plurality of immunoconjugates, wherein, for each immunoconjugate, one or more adjuvants are linked via PEG linkers to one or more lysine residues selected from K103, K107, K149, K169, K183, and K188 of the light chain of the antibody construct, and K30, K43, K65, K76, K136, K216, K217, K225, K293, K320, K323, K337, K395, and K417 of the heavy chain of the antibody construct, as numbered using the Kabat numbering system.
  • the composition generally has a distribution of conjugation sites such that there is an average adjuvant to antibody construct ratio with a given profile of preferred conjugation sites.
  • at least about 40% e.g., at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%
  • at least about 90% of the sum total of lysine linkages occur at K188 of the light chain of the antibody construct.
  • a composition of immunoconjugates of the invention can have an average adjuvant to antibody construct ratio of about 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, 8, 8.2, 8.4, 8.6, 8.8, 9, 9.2, 9.4, 9.6, 9.8, or 10, or within a range bounded by any two of the aforementioned values.
  • the number of adjuvant conjugated to the antibody construct may vary from immunoconjugate to immunoconjugate in a composition comprising multiple immunoconjugates of the invention, and, thus, the adjuvant to antibody construct (e.g., antibody) ratio can be measured as an average.
  • the adjuvant to antibody construct (e.g., antibody) ratio can be assessed by any suitable means, many of which are known in the art.
  • the composition further comprises one or more pharmaceutically acceptable excipients.
  • the immunoconjugates of the invention can be formulated for parenteral administration, such as IV administration or administration into a body cavity or lumen of an organ.
  • the immunoconjugates can be injected intra-tumorally.
  • Compositions for injection will commonly comprise a solution of the immunoconjugate dissolved in a pharmaceutically acceptable carrier.
  • acceptable vehicles and solvents that can be employed are water and an isotonic solution of one or more salts such as sodium chloride, e.g., Ringer's solution.
  • sterile fixed oils can conventionally be employed as a solvent or suspending medium.
  • any bland fixed oil can be employed, including synthetic monoglycerides or diglycerides.
  • fatty acids such as oleic acid can likewise be used in the preparation of injectables.
  • These compositions desirably are sterile and generally free of undesirable matter.
  • These compositions can be sterilized by conventional, well known sterilization techniques.
  • the compositions can contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
  • the composition can contain any suitable concentration of the immunoconjugate.
  • concentration of the immunoconjugate in the composition can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight, and the like, in accordance with the particular mode of administration selected and the patient's needs.
  • concentration of an immunoconjugate in a solution formulation for injection will range from about 0.1% (w/w) to about 10% (w/w).
  • the invention provides a method for treating cancer.
  • the method includes comprising administering a therapeutically effective amount of an immunoconjugate as described herein (e.g., as a composition as described herein) to a subject in need thereof, e.g., a subject that has cancer and is in need of treatment for the cancer.
  • an immunoconjugate as described herein e.g., as a composition as described herein
  • trastuzumab and pertuzumab, biosimilars thereof, and biobetters thereof are known to be useful in the treatment of cancer, particularly breast cancer, especially HER2-overexpressing breast cancer, gastric cancer, especially HER2-overexpressing gastric cancer, and gastroesophageal junction adenocarcinoma.
  • the immunoconjugate described herein can be used to treat the same types of cancers as trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof particularly breast cancer, especially HER2-overexpressing breast cancer, gastric cancer, especially HER2-overexpressing gastric cancer, and gastroesophageal junction adenocarcinoma.
  • the immunoconjugate is administered to a subject in need thereof in any therapeutically effective amount using any suitable dosing regimen, such as the dosing regimens utilized for trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof.
  • the methods can include administering the immunoconjugate to provide a dose of from about 100 ng/kg to about 50 mg/kg to the subject.
  • the immunoconjugate dose can range from about 5 mg/kg to about 50 mg/kg, from about 10 ⁇ g/kg to about 5 mg/kg, or from about 100 ⁇ g/kg to about 1 mg/kg.
  • the immunoconjugate dose can be about 100, 200, 300, 400, or 500 ⁇ g/kg.
  • the immunoconjugate dose can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/kg.
  • the immunoconjugate dose can also be outside of these ranges, depending on the particular conjugate as well as the type and severity of the cancer being treated. Frequency of administration can range from a single dose to multiple doses per week, or more frequently.
  • the immunoconjugate is administered from about once per month to about five times per week. In some embodiments, the immunoconjugate is administered once per week.
  • the invention provides a method for preventing cancer.
  • the method comprises administering a therapeutically effective amount of an immunoconjugate (e.g., as a composition as described above) to a subject.
  • the subject is susceptible to a certain cancer to be prevented.
  • the methods can include administering the immunoconjugate to provide a dose of from about 100 ng/kg to about 50 mg/kg to the subject.
  • the immunoconjugate dose can range from about 5 mg/kg to about 50 mg/kg, from about 10 ⁇ g/kg to about 5 mg/kg, or from about 100 ⁇ g/kg to about 1 mg/kg.
  • the immunoconjugate dose can be about 100, 200, 300, 400, or 500 ⁇ g/kg.
  • the immunoconjugate dose can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/kg.
  • the immunoconjugate dose can also be outside of these ranges, depending on the particular conjugate as well as the type and severity of the cancer being treated. Frequency of administration can range from a single dose to multiple doses per week, or more frequently.
  • the immunoconjugate is administered from about once per month to about five times per week. In some embodiments, the immunoconjugate is administered once per week.
  • Some embodiments of the invention provide methods for treating cancer as described above, wherein the cancer is breast cancer.
  • Breast cancer can originate from different areas in the breast, and a number of different types of breast cancer have been characterized.
  • the immunoconjugates of the invention can be used for treating ductal carcinoma in situ; invasive ductal carcinoma (e.g., tubular carcinoma; medullary carcinoma; mucinous carcinoma; papillary carcinoma; or cribriform carcinoma of the breast); lobular carcinoma in situ; invasive lobular carcinoma; inflammatory breast cancer; and other forms of breast cancer.
  • methods for treating breast cancer include administering an immunoconjugate containing an antibody construct that is capable of binding HER2 (e.g., trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof).
  • Some embodiments of the invention provide methods for treating cancer as described above, wherein the cancer is gastric cancer.
  • Gastric (stomach) cancer can originate from different cells in the stomach and several types of gastric cancer have been characterized including adenocarcinoma, carcinoid tumors, squamous cell carcinoma, small cell carcinoma, leiomyosarcoma, and gastrointestinal stromal tumors.
  • methods for treating gastric cancer include administering an immunoconjugate containing an antibody construct that is capable of binding HER2 (e.g., trastuzumab).
  • Some embodiments of the invention provide methods for treating cancer as described above, wherein the cancer is gastroesophageal junction carcinoma.
  • This carcinoma occurs in the area where the esophagus meats the stomach.
  • Type 1 the cancer the cancer grows down from above and into the gastroesophageal junction. The normal lining of the lower end of the esophagus is replaced by mutations (also called Barrett's esophagus).
  • Type 2 the cancer grows at the gastroesophageal junction by itself.
  • Type 3 the cancer grows up into the gastroesophageal junction from the stomach upwards.
  • methods for treating gastroesophageal junction carcinoma include administering an immunoconjugate containing an antibody construct that is capable of binding HER2 (e.g., trastuzumab).
  • the cancer is susceptible to a pro-inflammatory response induced by TLR7 and/or TLR8.
  • subscript r is an integer from 1 to 10
  • subscript n is an integer from about 2 to about 25
  • “Ab” is an antibody construct that has an antigen binding domain that binds HER2.
  • HER2 e.g., trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof).
  • trastuzumab also known as HERCEPTINTM
  • HER2 e.g., trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof).
  • trastuzumab also known as HERCEPTINTM
  • HER2 e.g., trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof).
  • trastuzumab also known as HERCEPTINTM
  • HER2 e.g., trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof).
  • trastuzumab also known as HERCEPTINTM
  • HER2 e.g., trastuzumab (also known as HERCEPTINTM), a biosimilar thereof, or a biobetter thereof).
  • trastuzumab also known as HERCEPTINTM
  • composition comprising a plurality of immunoconjugates according to any one of aspects 1-18.
  • composition of aspect 19, wherein the average adjuvant to antibody construct ratio is from about 0.01 to about 10.
  • composition of aspect 20, wherein the average adjuvant to antibody construct ratio is from about 1 to about 10.
  • composition of aspect 21, wherein the average adjuvant to antibody construct ratio is from about 1 to about 6.
  • composition of aspect 22, wherein the average adjuvant to antibody construct ratio is from about 1 to about 4.
  • composition of aspect 23, wherein the average adjuvant to antibody construct ratio is from about 1 to about 3.
  • a method for treating cancer comprising administering a therapeutically effective amount of an immunoconjugate according to any one of aspects 1-18 or a composition according to any one of aspects 19-24 to a subject in need thereof.
  • NiCl 2 .6H 2 O (0.36 g, 1.5 mmol, 0.1 eq.) was added to 6-bromo-2-chloro-4-(2,4-dimethoxybenzyl)amino-3-nitroquinoline (6.9 g, 15.3 mmol, 88%) in methanol (200 mL) at 0° C.
  • Sodium borohydride pelletlets, 1.42 g, 38 mmol, 2.5 eq.
  • Glacial acetic acid (5 mL) was added until a pH of ⁇ 5 was obtained.
  • Neat valeroyl chloride (2.0 mL, 2.0 g, 16 mmol, 1.2 eq) was added to a solution of 3-amino-6-bromo-2-chloro-4-(2,4-dimethoxybenzyl)aminoquinoline (5.75 g, 13.6 mmol, 1 eq.) in dichloromethane (100 mL) containing triethylamine (2.1 g, 2.8 mL, 20 mmol, 1.5 eq.) while stirred at room temperature. The mixture was washed with water (150 mL), brine (150 mL), separated, then dried (Na 2 SO 4 ), filtered, and concentrated.
  • Pd 2 dba 3 45 mg, 0.05 mmol, 0.1 eq.
  • tri-tert-butylphosphine tetrafluoroborate 29 mg, 0.10 mmol, 0.2 eq
  • sodium tert-butoxide 144 mg, 1.5 mmol, 3 eq
  • the mixture was heated in a capped vial at 110° C. for 30 minutes.
  • the mixture was cooled then partitioned between ethyl acetate (50 mL) and water (50 mL).
  • the organic layer was washed with brine (50 mL), dried with sodium sulfate, filtered and concentrated in vacuo.
  • the 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oic acid hydrochloride obtained was azeotroped 4 times with acetonitrile (75 mL) then suspended in acetonitrile (75 mL) and centrifuged at 4000 rpm for 4 minutes. This process was repeated.
  • Trastuzumab was buffer exchanged into the conjugation buffer containing 100 mM boric acid, 50 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid at pH 83, using G-25 SEPHADEXTM desalting columns (Sigma-Aldrich, St. Louis, Mo.). The eluates were then each adjusted to 6 mg/ml using the buffer and sterile filtered. Trastuzumab at 6 mg/ml was pre-warmed to 30° C. and rapidly mixed with 7 molar equivalents of Compound 10. The reaction was allowed to proceed for 16 hours at 30° C.
  • Immunoconjugate A was separated from reactants by running over two successive G-25 desalting columns equilibrated in phosphate buffered saline at pH 7.2.
  • Adjuvant-antibody ratios was determined by liquid chromatography mass spectrometry analysis using a C4 reverse phase column on an ACQUITYTM UPLC H-class (Waters Corporation, Milford, Mass.) connected to a XEVOTM G2-XS TOF mass spectrometer (Waters Corporation).
  • Immunoconjugate A had a DAR of 2.5.
  • Trastuzumab was buffer exchanged into the conjugation buffer containing 100 mM boric acid, 50 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid at pH 8.3, using C-25 SEPHADEXTM desalting columns (Sigma-Aldrich). The eluates were then each adjusted to 6 mg/ml using the buffer and sterile filtered. Trastuzumab at 6 mg/ml was pre-warmed to 30° C. and rapidly mixed with 8.5 molar equivalents of Compound 13. The reaction was allowed to proceed for 16 hours at 30° C.
  • Immunoconjugate B was separated from reactants by running over two successive G-25 SEPHADEXTM desalting columns (Sigma-Aldrich) equilibrated in phosphate buffered saline at pH 7.2.
  • Adjuvant-antibody ratios (DAR) was determined by liquid chromatography mass spectrometry analysis using a C4 reverse phase column on an ACQUITYTM UPLC H-class (Waters Corporation, Milford, Mass.) connected to a XEVOTM G2-XS TOF mass spectrometer (Waters Corporation).
  • Immunoconjugate B had a DAR of 2.37.
  • Trastuzumab was buffer exchanged into the conjugation buffer containing 100 mM boric acid, 50 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid at pH 8.3, using G-25 SEPHADEXTM desalting columns (Sigma-Aldrich). The eluates were then each adjusted to 6 mg/ml using the buffer and sterile filtered, Trastuzunab at 6 mg/mil was pre-warmed to 30° C. and rapidly mixed with 6 molar equivalents of Compound 16. The reaction was allowed to proceed for 16 hours at 30° C.
  • Immunoconjugate C was separated from reactants by running over two successive G-25 desalting columns equilibrated in phosphate buffered saline at pH 7.2.
  • Adjuvant-antibody ratios was determined by liquid chromatography mass spectrometry analysis using a C4 reverse phase column on an ACQUITYTM UPLC H-class (Waters Corporation, Milford, Mass.) connected to a XEVOTM G2-XS TOF mass spectrometer (Waters Corporation).
  • Immunoconjugate C had a DAR of 2.15.
  • Immunoconjugate A shows that Immunoconjugate A, Immunoconjugate B, and Immunoconjugate C are effective at eliciting myeloid activation, and therefore are useful for the treatment of cancer.
  • Human myeloid antigen presenting cells were negatively selected from human peripheral blood obtained from healthy blood donors (Stanford Blood Center, Palo Alto, Calif.) by density gradient centrifugation using a ROSETTESEPTM Human Monocyte Enrichment Cocktail (Stem Cell Technologies, Vancouver, Canada) containing monoclonal antibodies against CD14, CD16, CD40, CD86, CD123, and HLA-DR.
  • Immature APCs were subsequently purified to >97% purity via negative selection using an EASYSEPTM Human Monocyte Enrichment Kit (Stem Cell Technologies) without CD16 depletion containing monoclonal antibodies against CD14, CD16, CD40, CD86, CD123, and HLA-DR.
  • HCC1954, JIMT-1, and COLO 205 Three tumor cell lines were used: HCC1954, JIMT-1, and COLO 205.
  • HCC1954 American Type Culture Collection (ATCC), Manassas, Va.) was derived from a primary stage IIA, grade 3 invasive ductal carcinoma with no lymph node metastases.
  • HCC1954 is positive for the epithelial cell specific marker Epithelial Glycoprotein 2 and for cytokeratin 19, and is negative for expression of estrogen receptor (ER) and progesterone receptor (PR).
  • ER estrogen receptor
  • PR progesterone receptor
  • HCC1954 overexpresses HER2 (as determined by enzyme-linked immunosorbent assay (ELISA)).
  • JIMT-1 (DSMZ, Braunschweig, Germany) was derived from the pleural effusion of a woman with ductal breast cancer (grade 3 invasive, stage IIB) following postoperative radiation. JIMT-1 overexpresses HER2 at what is considered to be a “medium” level of overexpression, but is insensitive to HER2-inhibiting drugs (e.g. trastuzumab).
  • COLO 205 (ATCC) was derived from the ascites fluid of man with carcinoma of the colon. COLO 205 expresses carcinoembryonic antigen (CEA), keratin, interleukin 10 (IL-10), and is considered to overexpress HER2 at relatively “low” level of overexpression.
  • CEA carcinoembryonic antigen
  • IL-10 interleukin 10
  • Tumor cells from each cell line were separately re-suspended in PBS with 0.1% fetal bovine serum (FBS) at 1 to 10 ⁇ 10 6 cells/mL. Cells were subsequently incubated with 2 ⁇ M carboxyfluorescein succinimidyl ester (CFSE) to yield a final concentration of 1 ⁇ M. The reaction was quenched after 2 minutes via the addition of 10 mL complete medium with 10% FBS and washed twice with complete medium. Cells were either fixed in 2% paraformaldehyde and washed three times with PBS or left viable prior to use.
  • FBS fetal bovine serum
  • CFSE carboxyfluorescein succinimidyl ester
  • APC-Tumor Co-cultures 2 ⁇ 10 5 APCs were incubated with (e.g., FIG. 1A-1I ) or without (e.g., FIG. 2A-3D ) CFSE-labeled tumor cells between a 5:1 and 10:1 effector to target (tumor) cell ratio in 96-well plates (Corning, Corning, N.Y.) containing iscove's modified dulbecco's medium (IMDM) (Thermo Fisher Scientific, Waltham, Mass.) supplemented with 10% FBS, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin, 2 mM L-glutamine, sodium pyruvate, non-essential amino acids, and, where indicated, various concentrations of unconjugated HER2 antibody, Immunoconjugate A, Immunoconjugate B, and Immunoconjugate C of the invention (as prepared according to the examples above). Cells and cell-free supernatants were analyzed after
  • FIG. 1A CD40 and FIG. 1B (CD86) for Immunoconjugate A on the HCC1954 cell line
  • FIG. 1D CD40
  • FIG. 1E CD86
  • FIG. 1G CD40
  • FIG. 1H CD86
  • FIG. 2A shows that Immunoconjugate B elicits myeloid differentiation as indicated by CD14 downregulation.
  • FIG. 2B shows that Immunoconjugate B elicits myeloid activation as indicated by CD40 upregulation.
  • FIG. 2C shows that Immunoconjugate B elicits myeloid activation as indicated by CD86 upregulation.
  • FIG. 3A shows that Immunoconjugate C elicits myeloid differentiation as indicated by CD14 downregulation.
  • FIG. 3B shows that Immunoconjugate C elicits myeloid activation as indicated by CD40 upregulation.
  • FIG. 3C shows that Immunoconjugate C elicits myeloid activation as indicated by CD86 upregulation.
  • FIG. 1C shows TNF ⁇ secretion from myeloid cells following an 18 hour incubation with Immunoconjugate B.
  • FIG. 3D shows TNF ⁇ secretion from myeloid cells following an 18 hour incubation with Immunoconjugate C.
  • Cynomolgus primates ( Macaca fascicularis ) were dosed with 10 mg/kg of Immunoconjugate B, Immunoconjugate C, Immunoconjugate D, Immunoconjugate E, Immunoconjugate F, or Immunoconjugate G, as shown in Scheme 1, and the PK properties were assessed for 28 days following administration.
  • a trastuzumab PK assay was configured to capture trastuzumab with HCA169 anti-idiotype mAb and to detect with peroxidase labeled HCA176 (HCA176P).
  • An antibody drug conjugate assay was configured to capture trastuzumab with HCA169 anti-idiotype mAb and to detect with a rabbit mAb to A103 followed by detection with peroxidase labeled Goat anti-rabbit IgG.
  • Immunoconjugate B and Immunoconjugate C demonstrated higher serum levels in both PK assays as compared to Immunoconjugate D, Immunoconjugate E, Immunoconjugate, F, and Immunoconjugate G.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention provides an immunoconjugate of formula:or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10, subscript n is an integer from about 2 to about 25, and “Ab” is an antibody construct that has an antigen binding domain that binds HER2. The invention further provides compositions comprising and methods of treating cancer with the immunoconjugate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a continuation of U.S. patent application Ser. No. 17/465,284, filed Sep. 2, 2021, which is a continuation of International Patent Application PCT/US2020/022645, filed Mar. 13, 2020, which claims the benefit of U.S. Provisional Patent Application No. 62/819,356, filed Mar. 15, 2019, each of which is incorporated by reference in its entirety herein.
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY
  • Incorporated by reference in its entirety herein is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith and identified as follows: one 28,689 Byte ASCII (Text) file named “763418_SequenceListing.txt,” created Jun. 23, 2022.
  • BACKGROUND OF THE INVENTION
  • It is now well appreciated that tumor growth necessitates the acquisition of mutations that facilitate immune evasion. Even so, tumorigenesis results in the accumulation of mutated antigens, or neoantigens, that are readily recognized by the host immune system following ex vivo stimulation. Why and how the immune system fails to recognize neoantigens are beginning to be elucidated. Groundbreaking studies by Carmi et al. (Nature, 521: 99-104 (2015)) have indicated that immune ignorance can be overcome by delivering neoantigens to activated dendritic cells via antibody-tumor immune complexes. In these studies, simultaneous delivery of tumor binding antibodies and dendritic cell adjuvants via intratumoral injections resulted in robust anti-tumor immunity. New compositions and methods for the delivery of antibodies and dendritic cell adjuvants are needed in order to reach inaccessible tumors and/or to expand treatment options for cancer patients and other subjects. The invention provides such compositions and methods.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention provides an immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00002
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10, subscript n is an integer from about 2 to about 25, and “Ab” is an antibody construct that has an antigen binding domain that binds the protein human epidermal growth factor receptor 2 (“HER2”).
  • The invention provides a composition comprising a plurality of immunoconjugates described herein.
  • The invention provides a method for treating cancer in a subject comprising administering a therapeutically effective amount of an immunoconjugate or a composition described herein to a subject in need thereof.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the HCC1954 human ductal carcinoma tumor cell line. Median fluorescence intensity of co-stimulatory molecule CD40 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1B shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the HCC1954 human ductal carcinoma tumor cell line. Median fluorescence intensity of co-stimulatory molecule CD86 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1C shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the HCC1954 human ductal carcinoma tumor cell. TNFα secretion was measured by cytokine bead array (cells gated on viable CD45+CD11c+HLA-DR+) for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1D shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the JIMT-1 human ductal carcinoma tumor cell line. Median fluorescence intensity of co-stimulatory molecule CD40 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1E shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the JIMT-1 human ductal carcinoma tumor cell line. Median fluorescence intensity of co-stimulatory molecule CD86 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1F shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the JIMT-1 human ductal carcinoma tumor cell. TNFα secretion was measured by cytokine bead array (cells gated on viable CD45+CD11c+HLA-DR+) for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1G shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the COLO 205 human colon adenocarcinoma cell line. Median fluorescence intensity of co-stimulatory molecule CD40 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1H shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the COLO 205 human colon adenocarcinoma cell line. Median fluorescence intensity of co-stimulatory molecule CD86 (cells gated on viable CD45+CD11c+HLA-DR+) was measured by flow cytometry and is shown for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 1I shows the effect of Immunoconjugate A on myeloid activation in myeloid APC-tumor co-cultures, using the COLO 205 human colon adenocarcinoma cell line. TNFα secretion was measured by cytokine bead array (cells gated on viable CD45+CD11c+HLA-DR+) for trastuzumab (dotted line, circle), trastuzumab+Compound 7 (dashed line, triangle) or Immunoconjugate A (solid line, square).
  • FIG. 2A shows that Immunoconjugate B elicits myeloid differentiation as indicated by CD14 downregulation.
  • FIG. 2B shows that Immunoconjugate B elicits myeloid activation as indicated by CD40 upregulation.
  • FIG. 2C shows that Immunoconjugate B elicits myeloid activation as indicated by CD86 upregulation.
  • FIG. 2D shows TNFα secretion from myeloid cells following an 18 hour incubation with Immunoconjugate B.
  • FIG. 3A shows that Immunoconjugate C elicits myeloid differentiation as indicated by CD14 downregulation.
  • FIG. 3B shows that Immunoconjugate C elicits myeloid activation as indicated by CD40 upregulation.
  • FIG. 3C shows that Immunoconjugate C elicits myeloid activation as indicated by CD86 upregulation.
  • FIG. 3D shows TNFα secretion from myeloid cells following an 18 hour incubation with Immunoconjugate C.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides an immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00003
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10, subscript n is an integer from about 2 to about 25, and “Ab” is an antibody construct that has an antigen binding domain that binds human epidermal growth factor receptor 2 (“HER2”).
  • Antibody-adjuvant immunoconjugates of the invention, comprising an antibody construct that has an antigen binding domain that binds HER2 linked to one or more adjuvant of formula:
  • Figure US20220347311A1-20221103-C00004
  • demonstrate superior pharmacological properties over conventional antibody conjugates. The polyethylene glycol-based linker (“PEG linker”) is the preferred linker to provide adequate purification and isolation of the immunoconjugate, maintain function of the one or more adjuvant moieties and antibody construct, and produce ideal pharmacokinetic (“PK”) properties of the immunoconjugate. Additional embodiments and benefits of the inventive antibody-adjuvant immunoconjugates will be apparent from description herein.
  • Definitions
  • As used herein, the term “immunoconjugate” refers to an antibody construct that is covalently bonded to an adjuvant moiety via a linker.
  • As used herein, the phrase “antibody construct” refers to an antibody or a fusion protein comprising (i) an antigen binding domain and (ii) an Fc domain.
  • As used herein, the term “antibody” refers to a polypeptide comprising an antigen binding region (including the complementarity determining region (CDRs)) from an immunoglobulin gene or fragments thereof that specifically binds and recognizes HER2.
  • An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa) connected by disulfide bonds. Each chain is composed of structural domains, which are referred to as immunoglobulin domains. These domains are classified into different categories by size and function, e.g., variable domains or regions on the light and heavy chains (VL and VH, respectively) and constant domains or regions on the light and heavy chains (CL and CH, respectively). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids, referred to as the paratope, primarily responsible for antigen recognition, i.e., the antigen binding domain. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. IgG antibodies are large molecules of about 150 kDa composed of four peptide chains. IgG antibodies contain two identical class γ heavy chains of about 50 kDa and two identical light chains of about 25 kDa, thus a tetrameric quaternary structure. The two heavy chains are linked to each other and to a light chain each by disulfide bonds. The resulting tetramer has two identical halves, which together form the Y-like shape. Each end of the fork contains an identical antigen binding domain. There are four IgG subclasses (IgG1, IgG2, IgG3, and IgG4) in humans, named in order of their abundance in serum (i.e., IgG1 is the most abundant). Typically, the antigen binding domain of an antibody will be most critical in specificity and affinity of binding to cancer cells.
  • Antibodies can exist as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH-C H1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′2 dimer into a Fab′ monomer. The Fab′ monomer is essentially Fab with part of the hinge region (see, e.g., Fundamental Immunology (Paul, editor, 7th edition, 2012)). While various antibody fragments are defined in terms of the digestion of an intact antibody, such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv), or those identified using phage display libraries (see, e.g., McCafferty et al., Nature, 348: 552-554 (1990)).
  • The term “antibody” specifically encompasses monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments that exhibit the desired biological activity.
  • As used herein, the term “epitope” means any antigenic determinant or epitopic determinant of an antigen to which an antigen binding domain binds (i.e., at the paratope of the antigen binding domain). Antigenic determinants usually consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
  • As used herein, “HER2” refers to the protein human epidermal growth factor receptor 2 (SEQ ID NO: 1), or an antigen with least about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more sequence identity to SEQ ID NO: 1.
  • Percent (%) identity of sequences can be calculated, for example, as 100×[(identical positions)/min(TGA, TGB)], where TGA and TGB are the sum of the number of residues and internal gap positions in peptide sequences A and B in the alignment that minimizes TGA and TGB. See, e.g., Russell et al., J. Mol Biol., 244: 332-350 (1994).
  • As used herein, the term “adjuvant” refers to a substance capable of eliciting an immune response in a subject exposed to the adjuvant. The phrase “adjuvant moiety” refers to an adjuvant that is covalently bonded to an antibody construct, e.g., through a linker, as described herein. The adjuvant moiety can elicit the immune response while bonded to the antibody construct or after cleavage (e.g., enzymatic cleavage) from the antibody construct following administration of an immunoconjugate to the subject.
  • As used herein, the terms “Toll-like receptor” and “TLR” refer to any member of a family of highly-conserved mammalian proteins which recognizes pathogen-associated molecular patterns and acts as key signaling elements in innate immunity. TLR polypeptides share a characteristic structure that includes an extracellular domain that has leucine-rich repeats, a transmembrane domain, and an intracellular domain that is involved in TLR signaling.
  • The terms “Toll-like receptor 7” and “TLR7” refer to nucleic acids or polypeptides sharing at least about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or more sequence identity to a publicly-available TLR7 sequence, e.g., GenBank accession number AAZ99026 for human TLR7 polypeptide, or GenBank accession number AAK62676 for murine TLR7 polypeptide.
  • The terms “Toll-like receptor 8” and “TLR8” refer to nucleic acids or polypeptides sharing at least about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or more sequence identity to a publicly-available TLR7 sequence, e.g., GenBank accession number AAZ95441 for human TLR8 polypeptide, or GenBank accession number AAK62677 for murine TLR8 polypeptide.
  • A “TLR agonist” is a substance that binds, directly or indirectly, to a TLR (e.g., TLR7 and/or TLR8) to induce TLR signaling. Any detectable difference in TLR signaling can indicate that an agonist stimulates or activates a TLR. Signaling differences can be manifested, for example, as changes in the expression of target genes, in the phosphorylation of signal transduction components, in the intracellular localization of downstream elements such as nuclear factor-κB (NF-κB), in the association of certain components (such as IL-1 receptor associated kinase (IRAK)) with other proteins or intracellular structures, or in the biochemical activity of components such as kinases (such as mitogen-activated protein kinase (MAPK)).
  • As used herein, “Ab” refers to an antibody construct that has an antigen-binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof.
  • As used herein, the term “biosimilar” refers to an approved antibody construct that has active properties similar to the antibody construct previously approved (e.g., trastuzumab).
  • As used herein, the term “biobetter” refers to an approved antibody construct that is an improvement of a previously approved antibody construct (e.g., trastuzumab). The biobetter can have one or more modifications (e.g., an altered glycan profile, or a unique epitope) over the previously approved antibody construct.
  • As used herein, the term “amino acid” refers to any monomeric unit that can be incorporated into a peptide, polypeptide, or protein. Amino acids include naturally-occurring α-amino acids and their stereoisomers, as well as unnatural (non-naturally occurring) amino acids and their stereoisomers. “Stereoisomers” of a given amino acid refer to isomers having the same molecular formula and intramolecular bonds but different three-dimensional arrangements of bonds and atoms (e.g., an L-amino acid and the corresponding D-amino acid). The amino acids can be glycosylated (e.g., N-linked glycans, O-linked glycans, phosphoglycans, C-linked glycans, or glypiation) or deglycosylated.
  • Naturally-occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Naturally-occurring α-amino acids include, without limitation, alanine (Ala), cysteine (Cys), aspartic acid (Asp), glutamic acid (Glu), phenylalanine (Phe), glycine (Gly), histidine (His), isoleucine (Ile), arginine (Arg), lysine (Lys), leucine (Leu), methionine (Met), asparagine (Asn), proline (Pro), glutamine (Gln), serine (Ser), threonine (Thr), valine (Val), tryptophan (Trp), tyrosine (Tyr), and combinations thereof. Stereoisomers of naturally-occurring α-amino acids include, without limitation, D-alanine (D-Ala), D-cysteine (D-Cys), D-aspartic acid (D-Asp), D-glutamic acid (D-Glu), D-phenylalanine (D-Phe), D-histidine (D-His), D-isoleucine (D-Ile), D-arginine (D-Arg), D-lysine (D-Lys), D-leucine (D-Leu), D-methionine (D-Met), D-asparagine (D-Asn), D-proline (D-Pro), D-glutamine (D-Gln), D-serine (D-Ser), D-threonine (D-Thr), D-valine (D-Val), D-tryptophan (D-Trp), D-tyrosine (D-Tyr), and combinations thereof.
  • Unnatural (non-naturally occurring) amino acids include, without limitation, amino acid analogs, amino acid mimetics, synthetic amino acids, N-substituted glycines, and N-methyl amino acids in either the L- or D-configuration that function in a manner similar to the naturally-occurring amino acids. For example, “amino acid analogs” can be unnatural amino acids that have the same basic chemical structure as naturally-occurring amino acids (i.e., a carbon that is bonded to a hydrogen, a carboxyl group, an amino group) but have modified side-chain groups or modified peptide backbones, e.g., homoserine, norleucine, methionine sulfoxide, and methionine methyl sulfonium. “Amino acid mimetics” refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally-occurring amino acid.
  • Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.
  • As used herein, the term “linker” refers to a functional group that covalently bonds two or more moieties in a compound or material. For example, the linking moiety can serve to covalently bond an adjuvant moiety to an antibody construct in an immunoconjugate.
  • As used herein, the terms “treat,” “treatment,” and “treating” refer to any indicia of success in the treatment or amelioration of an injury, pathology, condition (e.g., cancer), or symptom (e.g., cognitive impairment), including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the symptom, injury, pathology, or condition more tolerable to the patient; reduction in the rate of symptom progression; decreasing the frequency or duration of the symptom or condition; or, in some situations, preventing the onset of the symptom. The treatment or amelioration of symptoms can be based on any objective or subjective parameter, including, for example, the result of a physical examination.
  • The terms “cancer,” “neoplasm,” and “tumor” are used herein to refer to cells which exhibit autonomous, unregulated growth, such that the cells exhibit an aberrant growth phenotype characterized by a significant loss of control over cell proliferation. Cells of interest for detection, analysis, and/or treatment in the context of the invention include cancer cells (e.g., cancer cells from an individual with cancer), malignant cancer cells, pre-metastatic cancer cells, metastatic cancer cells, and non-metastatic cancer cells. Cancers of virtually every tissue are known. The phrase “cancer burden” refers to the quantum of cancer cells or cancer volume in a subject. Reducing cancer burden accordingly refers to reducing the number of cancer cells or the cancer cell volume in a subject. The term “cancer cell” as used herein refers to any cell that is a cancer cell (e.g., from any of the cancers for which an individual can be treated, e.g., isolated from an individual having cancer) or is derived from a cancer cell, e.g., clone of a cancer cell. For example, a cancer cell can be from an established cancer cell line, can be a primary cell isolated from an individual with cancer, can be a progeny cell from a primary cell isolated from an individual with cancer, and the like. In some embodiments, the term can also refer to a portion of a cancer cell, such as a sub-cellular portion, a cell membrane portion, or a cell lysate of a cancer cell. Many types of cancers are known to those of skill in the art, including solid tumors such as carcinomas, sarcomas, glioblastomas, melanomas, lymphomas, and myelomas, and circulating cancers such as leukemias.
  • As used herein, the term “cancer” includes any form of cancer, including but not limited to, solid tumor cancers (e.g., lung, prostate, breast, gastric, bladder, colon, ovarian, pancreas, kidney, liver, glioblastoma, medulloblastoma, leiomyosarcoma, head & neck squamous cell carcinomas, melanomas, and neuroendocrine) and liquid cancers (e.g., hematological cancers); carcinomas; soft tissue tumors; sarcomas; teratomas; melanomas; leukemias; lymphomas; and brain cancers, including minimal residual disease, and including both primary and metastatic tumors. Any HER2 expressing cancer is a suitable cancer to be treated by the subject methods and compositions. As used herein “HER2 expression” refers to a cell that has a HER2 receptor on the cell's surface. For example, a cell may have from about 20,000 to about 50,000 HER2 receptors on the cell's surface. As used herein “HER2 overexpression” refers to a cell that has more than about 50,000 HER2 receptors. For example, a cell 2, 5, 10, 100, 1,000, 10,000, 100,000, or 1,000,000 times the number of HER2 receptors as compared to corresponding non-cancer cell (e.g., about 1 or 2 million HER2 receptors). It is estimated that HER2 is overexpressed in about 25% to about 30% of breast cancers.
  • Carcinomas are malignancies that originate in the epithelial tissues. Epithelial cells cover the external surface of the body, line the internal cavities, and form the lining of glandular tissues. Examples of carcinomas include, but are not limited to, adenocarcinoma (cancer that begins in glandular (secretory) cells such as cancers of the breast, pancreas, lung, prostate, stomach, gastroesophageal junction, and colon) adrenocortical carcinoma; hepatocellular carcinoma; renal cell carcinoma; ovarian carcinoma; carcinoma in situ; ductal carcinoma; carcinoma of the breast; basal cell carcinoma; squamous cell carcinoma; transitional cell carcinoma; colon carcinoma; nasopharyngeal carcinoma; multilocular cystic renal cell carcinoma; oat cell carcinoma; large cell lung carcinoma; small cell lung carcinoma; non-small cell lung carcinoma; and the like. Carcinomas may be found in prostrate, pancreas, colon, brain (usually as secondary metastases), lung, breast, and skin.
  • Soft tissue tumors are a highly diverse group of rare tumors that are derived from connective tissue. Examples of soft tissue tumors include, but are not limited to, alveolar soft part sarcoma; angiomatoid fibrous histiocytoma; chondromyoxid fibroma; skeletal chondrosarcoma; extraskeletal myxoid chondrosarcoma; clear cell sarcoma; desmoplastic small round-cell tumor; dermatofibrosarcoma protuberans; endometrial stromal tumor; Ewing's sarcoma; fibromatosis (Desmoid); fibrosarcoma, infantile; gastrointestinal stromal tumor; bone giant cell tumor; tenosynovial giant cell tumor; inflammatory myofibroblastic tumor; uterine leiomyoma; leiomyosarcoma; lipoblastoma; typical lipoma; spindle cell or pleomorphic lipoma; atypical lipoma; chondroid lipoma; well-differentiated liposarcoma; myxoid/round cell liposarcoma; pleomorphic liposarcoma; myxoid malignant fibrous histiocytoma; high-grade malignant fibrous histiocytoma; myxofibrosarcoma; malignant peripheral nerve sheath tumor; mesothelioma; neuroblastoma; osteochondroma; osteosarcoma; primitive neuroectodermal tumor; alveolar rhabdomyosarcoma; embryonal rhabdomyosarcoma; benign or malignant schwannoma; synovial sarcoma; Evan's tumor; nodular fasciitis; desmoid-type fibromatosis; solitary fibrous tumor; dermatofibrosarcoma protuberans (DFSP); angiosarcoma; epithelioid hemangioendothelioma; tenosynovial giant cell tumor (TGCT); pigmented villonodular synovitis (PVNS); fibrous dysplasia; myxofibrosarcoma; fibrosarcoma; synovial sarcoma; malignant peripheral nerve sheath tumor; neurofibroma; pleomorphic adenoma of soft tissue; and neoplasias derived from fibroblasts, myofibroblasts, histiocytes, vascular cells/endothelial cells, and nerve sheath cells.
  • A sarcoma is a rare type of cancer that arises in cells of mesenchymal origin, e.g., in bone or in the soft tissues of the body, including cartilage, fat, muscle, blood vessels, fibrous tissue, or other connective or supportive tissue. Different types of sarcoma are based on where the cancer forms. For example, osteosarcoma forms in bone, liposarcoma forms in fat, and rhabdomyosarcoma forms in muscle. Examples of sarcomas include, but are not limited to, askin's tumor; sarcoma botryoides; chondrosarcoma; ewing's sarcoma; malignant hemangioendothelioma; malignant schwannoma; osteosarcoma; and soft tissue sarcomas (e.g., alveolar soft part sarcoma; angiosarcoma; cystosarcoma phyllodesdermatofibrosarcoma protuberans (DFSP); desmoid tumor; desmoplastic small round cell tumor; epithelioid sarcoma; extraskeletal chondrosarcoma; extraskeletal osteosarcoma; fibrosarcoma; gastrointestinal stromal tumor (GIST); hemangiopericytoma; hemangiosarcoma (more commonly referred to as “angiosarcoma”); kaposi's sarcoma; leiomyosarcoma; liposarcoma; lymphangiosarcoma; malignant peripheral nerve sheath tumor (MPNST); neurofibrosarcoma; synovial sarcoma; and undifferentiated pleomorphic sarcoma).
  • A teratoma is a type of germ cell tumor that may contain several different types of tissue (e.g., can include tissues derived from any and/or all of the three germ layers: endoderm, mesoderm, and ectoderm), including, for example, hair, muscle, and bone. Teratomas occur most often in the ovaries in women, the testicles in men, and the tailbone in children.
  • Melanoma is a form of cancer that begins in melanocytes (cells that make the pigment melanin). Melanoma may begin in a mole (skin melanoma), but can also begin in other pigmented tissues, such as in the eye or in the intestines.
  • Leukemias are cancers that start in blood-forming tissue, such as the bone marrow, and cause large numbers of abnormal blood cells to be produced and enter the bloodstream. For example, leukemias can originate in bone marrow-derived cells that normally mature in the bloodstream. Leukemias are named for how quickly the disease develops and progresses (e.g., acute versus chronic) and for the type of white blood cell that is affected (e.g., myeloid versus lymphoid). Myeloid leukemias are also called myelogenous or myeloblastic leukemias. Lymphoid leukemias are also called lymphoblastic or lymphocytic leukemia. Lymphoid leukemia cells may collect in the lymph nodes, which can become swollen. Examples of leukemias include, but are not limited to, Acute myeloid leukemia (AML), Acute lymphoblastic leukemia (ALL), Chronic myeloid leukemia (CML), and Chronic lymphocytic leukemia (CLL).
  • Lymphomas are cancers that begin in cells of the immune system. For example, lymphomas can originate in bone marrow-derived cells that normally mature in the lymphatic system. There are two basic categories of lymphomas. One category of lymphoma is Hodgkin lymphoma (HL), which is marked by the presence of a type of cell called the Reed-Sternberg cell. There are currently 6 recognized types of HL. Examples of Hodgkin lymphomas include nodular sclerosis classical Hodgkin lymphoma (CHL), mixed cellularity CHL, lymphocyte-depletion CHL, lymphocyte-rich CHL, and nodular lymphocyte predominant HL.
  • The other category of lymphoma is non-Hodgkin lymphomas (NHL), which includes a large, diverse group of cancers of immune system cells. Non-Hodgkin lymphomas can be further divided into cancers that have an indolent (slow-growing) course and those that have an aggressive (fast-growing) course. There are currently 61 recognized types of NHL. Examples of non-Hodgkin lymphomas include, but are not limited to, AIDS-related Lymphomas, anaplastic large-cell lymphoma, angioimmunoblastic lymphoma, blastic NK-cell lymphoma, Burkitt's lymphoma, Burkitt-like lymphoma (small non-cleaved cell lymphoma), chronic lymphocytic leukemia/small lymphocytic lymphoma, cutaneous T-Cell lymphoma, diffuse large B-Cell lymphoma, enteropathy-type T-Cell lymphoma, follicular lymphoma, hepatosplenic gamma-delta T-Cell lymphomas, T-Cell leukemias, lymphoblastic lymphoma, mantle cell lymphoma, marginal zone lymphoma, nasal T-Cell lymphoma, pediatric lymphoma, peripheral T-Cell lymphomas, primary central nervous system lymphoma, transformed lymphomas, treatment-related T-Cell lymphomas, and Waldenstrom's macroglobulinemia.
  • Brain cancers include any cancer of the brain tissues. Examples of brain cancers include, but are not limited to, gliomas (e.g., glioblastomas, astrocytomas, oligodendrogliomas, ependymomas, and the like), meningiomas, pituitary adenomas, and vestibular schwannomas, primitive neuroectodermal tumors (medulloblastomas).
  • The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, and invasion of surrounding or distant tissues or organs, such as lymph nodes.
  • As used herein, the phrases “cancer recurrence” and “tumor recurrence,” and grammatical variants thereof, refer to further growth of neoplastic or cancerous cells after diagnosis of cancer. Particularly, recurrence may occur when further cancerous cell growth occurs in the cancerous tissue. “Tumor spread,” similarly, occurs when the cells of a tumor disseminate into local or distant tissues and organs, therefore, tumor spread encompasses tumor metastasis. “Tumor invasion” occurs when the tumor growth spread out locally to compromise the function of involved tissues by compression, destruction, or prevention of normal organ function.
  • As used herein, the term “metastasis” refers to the growth of a cancerous tumor in an organ or body part, which is not directly connected to the organ of the original cancerous tumor. Metastasis will be understood to include micrometastasis, which is the presence of an undetectable amount of cancerous cells in an organ or body part that is not directly connected to the organ of the original cancerous tumor. Metastasis can also be defined as several steps of a process, such as the departure of cancer cells from an original tumor site, and migration and/or invasion of cancer cells to other parts of the body.
  • As used herein the phrases “effective amount” and “therapeutically effective amount” refer to a dose of a substance such as an immunoconjugate that produces therapeutic effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th Edition (McGraw-Hill, 2006); and Remington: The Science and Practice of Pharmacy, 22nd Edition, (Pharmaceutical Press, London, 2012)).
  • As used herein, the terms “recipient,” “individual,” “subject,” “host,” and “patient” are used interchangeably and refer to any mammalian subject for whom diagnosis, treatment, or therapy is desired (e.g., humans). “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, sheep, goats, pigs, camels, etc. In certain embodiments, the mammal is human.
  • The phrase “synergistic adjuvant” or “synergistic combination” in the context of this invention includes the combination of two immune modulators such as a receptor agonist, cytokine, and adjuvant polypeptide, that in combination elicit a synergistic effect on immunity relative to either administered alone. Particularly, the immunoconjugates disclosed herein comprise synergistic combinations of the claimed adjuvant and antibody construct. These synergistic combinations upon administration elicit a greater effect on immunity, e.g., relative to when the antibody construct or adjuvant is administered in the absence of the other moiety. Further, a decreased amount of the immunoconjugate may be administered (as measured by the total number of antibody constructs or the total number of adjuvants administered as part of the immunoconjugate) compared to when either the antibody construct or adjuvant is administered alone.
  • As used herein, the term “administering” refers to parenteral, intravenous, intraperitoneal, intramuscular, intratumoral, intralesional, intranasal, or subcutaneous administration, oral administration, administration as a suppository, topical contact, intrathecal administration, or the implantation of a slow-release device, e.g., a mini-osmotic pump, to the subject.
  • The terms “about” and “around,” as used herein to modify a numerical value, indicate a close range surrounding the numerical value. Thus, if “X” is the value, “about X” or “around X” indicates a value of from 0.9X to 1.1X, e.g., from 0.95X to 1.05X or from 0.99X to 1.01X. A reference to “about X” or “around X” specifically indicates at least the values X, 0.95X, 0.96X, 0.97X, 0.98X, 0.99X, 1.01X, 1.02X, 1.03X, 1.04X, and 1.05X. Accordingly, “about X” and “around X” are intended to teach and provide written description support for a claim limitation of, e.g., “0.98×.”
  • Antibody Adjuvant Conjugates
  • The invention provides an immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00005
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10, subscript n is an integer from about 2 to about 25 (e.g., about 2 to about 16, about 6 to about 25, about 6 to about 16, about 8 to about 25, about 8 to about 16, about 6 to about 12, or about 8 to about 12), and “Ab” is an antibody construct that has an antigen binding domain that binds human epidermal growth factor receptor 2 (“HER2”). “Ab” can be any suitable antibody construct that has an antigen binding domain that binds HER2, such as, for example, trastuzumab and pertuzumab. In certain embodiments, “Ab” is trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof. For example, “Ab” can be MYL-14010, ABP 980, BCD-022, CT-P6, EG12014, HD201, ONS-1050, PF-05280014, Ontruzant, Saiputing, Herzuma, or HLX02. In preferred embodiments, “Ab” is trastuzumab (also known as HERCEPTIN™).
  • Generally, the immunoconjugates of the invention comprise about 1 to about 10 adjuvants, each adjuvant linked via a PEG linker to the antibody construct, as designated with subscript “r.” Each of the adjuvants linked via a PEG linker to the antibody construct is conjugated to the antibody construct at an amine of a lysine residue of the antibody construct. In an embodiment, r is 1, such that there is a single adjuvant linked via a PEG linker to the antibody construct. In some embodiments, r is an integer from about 2 to about 10 (e.g., about 2 to about 9, about 3 to about 9, about 4 to about 9, about 5 to about 9, about 6 to about 9, about 3 to about 8, about 3 to about 7, about 3 to about 6, about 4 to about 8, about 4 to about 7, about 4 to about 6, about 5 to about 6, about 1 to about 6, about 1 to about 4, about 2 to about 4, or about 1 to about 3). Accordingly, the immunoconjugates can have (i.e., subscript “r” can be) 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 adjuvants linked via a PEG linker. In preferred embodiments, the immunoconjugates have (i.e., subscript “r” can be) 1, 2, 3, or 4 adjuvants linked via a PEG linker. The desirable adjuvant to antibody construct ratio (i.e., the value of the subscript “r”) can be determined by a skilled artisan depending on the desired effect of the treatment.
  • Generally, the immunoconjugates of the invention comprise about 2 to about 25 (e.g., about 2 to about 16, about 6 to about 25, about 6 to about 16, about 8 to about 25, about 8 to about 16, about 6 to about 12, or about 8 to about 12) ethylene glycol units, as designated with subscript “n.” Accordingly, the immunoconjugates of the invention can comprise at least 2 ethylene glycol groups (e.g., at least 3 ethylene glycol groups, at least 4 ethylene glycol groups, at least 5 ethylene glycol groups, at least 6 ethylene glycol groups, at least 7 ethylene glycol groups, at least 8 ethylene glycol groups, at least 9 ethylene glycol groups, or at least 10 ethylene glycol groups). Accordingly, the immunoconjugate can comprise from about 2 to about 25 ethylene glycol units, for example, from about 6 to about 25 ethylene glycol units, from about 6 to about 16 ethylene glycol units, from about 8 to about 25 ethylene glycol units, from about 8 to about 16 ethylene glycol units, from about 8 to about 12 ethylene glycol units, or from about 8 to about 12 ethylene glycol units. In certain embodiments, the immunoconjugate comprises a di(ethylene glycol) group, a tri(ethylene glycol) group, a tetra(ethylene glycol) group, 5 ethylene glycol groups, 6 ethylene glycol groups, 7 ethylene glycol groups, 8 ethylene glycol groups, 9 ethylene glycol groups, 10 ethylene glycol groups, 11 ethylene glycol groups, 12 ethylene glycol groups, 13 ethylene glycol groups, 14 ethylene glycol groups, 15 ethylene glycol groups, 16 ethylene glycol groups, 24 ethylene glycol groups, or 25 ethylene glycol groups. In preferred embodiments, the immunoconjugate comprises 6 ethylene glycol groups, 8 ethylene glycol groups, 10 ethylene glycol groups, or 12 ethylene glycol groups (i.e., about 6 ethylene glycol groups to about 12 ethylene glycol groups).
  • The PEG linker can be linked to the antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof) via an amine of a lysine residue of the antibody construct. Accordingly, the immunoconjugates of the invention can be represented by the following formula:
  • Figure US20220347311A1-20221103-C00006
  • wherein
  • Figure US20220347311A1-20221103-C00007
  • is an antibody construct that has an antigen binding domain that binds HER2 with residue
  • Figure US20220347311A1-20221103-C00008
  • representing a lysine residue of the antibody construct, wherein “
    Figure US20220347311A1-20221103-P00001
    ” represents a point of attachment to the linker.
  • The adjuvant can be linked via the PEG linker to any suitable residue of the antibody construct, but desirably is linked to any lysine residue of the antibody construct. For example, the adjuvant can be linked via the PEG linker to one or more of K103, K107, K149, K169, K183, and/or K188 of the light chain of the antibody construct, as numbered using the Kabat numbering system. Alternatively, or additionally, the adjuvant can be linked via the PEG linker to one or more of K30, K43, K65, K76, K136, K216, K217, K225, K293, K320, K323, K337, K395, and/or K417 of the heavy chain of the antibody construct, as numbered using the Kabat numbering system. Generally, the adjuvant is predominantly linked via the PEG linker at K107 or K188 of the light chain of the antibody construct, or K30, K43, K65, or K417 of the heavy chain of the antibody construct. In certain embodiments, the adjuvant is linked via the PEG linker at K188 of the light chain of the antibody construct, and optionally one or more other lysine residues of the antibody construct.
  • Immunoconjugates as described herein can provide an unexpectedly increased activation response of an antigen presenting cell (“APC”). This increased activation can be detected in vitro or in vivo. In some embodiments, the increased APC activation can be detected in the form of a reduced time to achieve a specified level of APC activation. For example, in an in vitro assay, % APC activation can be achieved at an equivalent dose with an immunoconjugate within about 1%, about 10%, about 20%, about 30%, about 40%, or about 50% of the time required to obtain the same or similar percentage of APC activation with a mixture of unconjugated antibody construct and adjuvant, under otherwise identical concentrations and conditions. In some embodiments, an immunoconjugate can activate APCs (e.g., dendritic cells) and/or NK cells in a reduced amount of time. For example, in some embodiments, a mixture of unconjugated antibody construct and adjuvant can activate APCs (e.g., dendritic cells) and/or NK cells and/or induce dendritic cell differentiation after incubation with the mixture for 2, 3, 4, 5, 1-5, 2-5, 3-5, or 4-7 days, while, in contrast, immunoconjugates described herein can activate and/or induce differentiation within 4 hours, 8 hours, 12 hours, 16 hours, or 1 day, under otherwise identical concentrations and conditions. Alternatively, the increased APC activation can be detected in the form of a reduced concentration of immunoconjugate required to achieve an amount (e.g., percent APCs), level (e.g., as measured by a level of upregulation of a suitable marker) or rate (e.g., as detected by a time of incubation required to activate) of APC activation.
  • In some embodiments, the immunoconjugates of the invention provide more than an about 5% increase in activity compared to a mixture of unconjugated antibody construct and adjuvant, under otherwise identical conditions. In other embodiments, the immunoconjugates of the invention provide more than an about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, or about 70% increase in activity compared to a mixture of unconjugated antibody construct and adjuvant, under otherwise identical conditions. The increase in activity can be assessed by any suitable means, many of which are known to those ordinarily skilled in the art and can include myeloid activation, assessment by cytokine secretion, or a combination thereof.
  • In some embodiments, the invention provides an immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00009
    Figure US20220347311A1-20221103-C00010
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is an antibody construct that has an antigen binding domain that binds human epidermal growth factor receptor 2 (“HER2”).
  • In certain embodiments, the invention provides an immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00011
    Figure US20220347311A1-20221103-C00012
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is trastuzumab (also known as HERCEPTIN™), pertuzumab, biosimilars thereof, and biobetters thereof. For example, “Ab” can be MYL-14010, ABP 980, BCD-022, CT-P6, EG12014, HD201, ONS-1050, PF-05280014, Ontruzant, Saiputing, Herzuma, or HLX02.
  • In preferred embodiments, the invention provides an immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00013
    Figure US20220347311A1-20221103-C00014
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is trastuzumab (also known as HERCEPTIN™)
  • Adjuvants
  • The immunoconjugate of the invention comprises an adjuvant moiety of formula:
  • Figure US20220347311A1-20221103-C00015
  • wherein the dashed line (“
    Figure US20220347311A1-20221103-P00002
    ”) represents a point of attachment of the adjuvant moiety to the linker.
  • The adjuvant moiety described herein is a TLR agonist.
  • Antigen Binding Domain and Fc Domain
  • The immunoconjugates of the invention comprise an antibody construct that comprises an antigen binding domain that binds HER2. In some embodiments, the antibody construct further comprises an Fc domain. In certain embodiments, the antibody construct is an antibody. In certain embodiments, the antibody construct is a fusion protein.
  • The antigen binding domain can be a single-chain variable region fragment (scFv). A single-chain variable region fragment (scFv), which is a truncated Fab fragment including the variable (V) domain of an antibody heavy chain linked to a V domain of a light antibody chain via a synthetic peptide, can be generated using routine recombinant DNA technology techniques. Similarly, disulfide-stabilized variable region fragments (dsFv) can be prepared by recombinant DNA technology.
  • An embodiment of the invention provides antibody construct or antigen binding domain which specifically recognizes and binds to HER2 (SEQ ID NO: 1). The antibody construct or antigen binding domain may comprise one or more variable regions (e.g., two variable regions) of an antigen binding domain of an anti-HER2 antibody, each variable region comprising a CDR1, a CDR2, and a CDR3.
  • An embodiment of the invention provides an antibody construct or antigen binding domain comprising the CDR regions of trastuzumab. In this regard, the antibody construct or antigen binding domain may comprise a first variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 2 (CDR1 of first variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 3 (CDR2 of first variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 4 (CDR3 of first variable region), and a second variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 5 (CDR1 of second variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 6 (CDR2 of second variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 7 (CDR3 of second variable region). In this regard, the antibody construct can comprise (i) all of SEQ ID NOs: 2-4, (ii) all of SEQ ID NOs: 5-7, or (iii) all of SEQ ID NOs: 2-7. Preferably, the antibody construct or antigen binding domain comprises all of SEQ ID NOs: 2-7.
  • In an embodiment of the invention, the antibody construct or antigen binding domain comprising the CDR regions of trastuzumab further comprises the framework regions of the trastuzumab. In this regard, the antibody construct or antigen binding domain comprising the CDR regions of the trastuzumab further comprises the amino acid sequence of SEQ ID NO: 8 (framework region (“FR”) 1 of first variable region), the amino acid sequence of SEQ ID NO: 9 (FR2 of first variable region), the amino acid sequence of SEQ ID NO: 10 (FR3 of first variable region), the amino acid sequence of SEQ ID NO: 11 (FR4 of first variable region), the amino acid sequence of SEQ ID NO: 12 (FR1 of second variable region), the amino acid sequence of SEQ ID NO: 13 (FR2 of second variable region), the amino acid sequence of SEQ ID NO: 14 (FR3 of second variable region), and the amino acid sequence of SEQ ID NO: 15 (FR4 of second variable region). In this regard, the antibody construct or antigen binding domain can comprise (i) all of SEQ ID NOs: 2-4 and 8-11, (ii) all of SEQ ID NOs: 5-7 and 12-15; or (iii) all of SEQ ID NOs: 2-7 and 8-15.
  • An embodiment of the invention provides an antibody construct or antigen binding domain comprising one or both variable regions of trastuzumab. In this regard, the first variable region may comprise SEQ ID NO: 16. The second variable region may comprise SEQ ID NO: 17. Accordingly, in an embodiment of the invention, the antibody construct or antigen binding domain comprises SEQ ID NO: 16, SEQ ID NO: 17, or both SEQ ID NOs: 16 and 17. Preferably, the polypeptide comprises both of SEQ ID NOs: 16-17.
  • An embodiment of the invention provides an antibody construct or antigen binding domain comprising the CDR regions of pertuzumab. In this regard, the antibody construct or antigen binding domain may comprise a first variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 18 (CDR1 of first variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 19 (CDR2 of first variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 20 (CDR3 of first variable region), and a second variable region comprising a CDR1 comprising the amino acid sequence of SEQ ID NO: 21 (CDR1 of second variable region), a CDR2 comprising the amino acid sequence of SEQ ID NO: 22 (CDR2 of second variable region), and a CDR3 comprising the amino acid sequence of SEQ ID NO: 23 (CDR3 of second variable region). In this regard, the antibody construct can comprise (i) all of SEQ ID NOs: 18-20, (ii) all of SEQ ID NOs: 21-23, or (iii) all of SEQ ID NOs: 18-23. Preferably, the antibody construct or antigen binding domain comprises all of SEQ ID NOs: 18-23.
  • In an embodiment of the invention, the antibody construct or antigen binding domain comprising the CDR regions of pertuzumab further comprises the framework regions of the pertuzumab. In this regard, the antibody construct or antigen binding domain comprising the CDR regions of the pertuzumab further comprises the amino acid sequence of SEQ ID NO: 24 (framework region (“FR”) 1 of first variable region), the amino acid sequence of SEQ ID NO: 25 (FR2 of first variable region), the amino acid sequence of SEQ ID NO: 26 (FR3 of first variable region), the amino acid sequence of SEQ ID NO: 27 (FR4 of first variable region), the amino acid sequence of SEQ ID NO: 28 (FR1 of second variable region), the amino acid sequence of SEQ ID NO: 29 (FR2 of second variable region), the amino acid sequence of SEQ ID NO: 30 (FR3 of second variable region), and the amino acid sequence of SEQ ID NO: 31 (FR4 of second variable region). In this regard, the antibody construct or antigen binding domain can comprise (i) all of SEQ ID NOs: 18-20 and 24-26, (ii) all of SEQ ID NOs: 21-23 and 27-31; or (iii) all of SEQ ID NOs: 18-21 and 24-31.
  • An embodiment of the invention provides an antibody construct or antigen binding domain comprising one or both variable regions of pertuzumab. In this regard, the first variable region may comprise SEQ ID NO: 32. The second variable region may comprise SEQ ID NO: 33. Accordingly, in an embodiment of the invention, the antibody construct or antigen binding domain comprises SEQ ID NO: 32, SEQ ID NO: 33, or both SEQ ID NOs: 32 and 33. Preferably, the polypeptide comprises both of SEQ ID NOs: 32-33.
  • Included in the scope of the embodiments of the invention are functional variants of the antibody constructs or antigen binding domain described herein. The term “functional variant” as used herein refers to an antibody construct having an antigen binding domain with substantial or significant sequence identity or similarity to a parent antibody construct or antigen binding domain, which functional variant retains the biological activity of the antibody construct or antigen binding domain of which it is a variant. Functional variants encompass, for example, those variants of the antibody constructs or antigen binding domain described herein (the parent antibody construct or antigen binding domain) that retain the ability to recognize target cells expressing HER2 to a similar extent, the same extent, or to a higher extent, as the parent antibody construct or antigen binding domain.
  • In reference to the antibody construct or antigen binding domain, the functional variant can, for instance, be at least about 30%, about 50%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more identical in amino acid sequence to the antibody construct or antigen binding domain.
  • A functional variant can, for example, comprise the amino acid sequence of the parent antibody construct or antigen binding domain with at least one conservative amino acid substitution. Alternatively, or additionally, the functional variants can comprise the amino acid sequence of the parent antibody construct or antigen binding domain with at least one non-conservative amino acid substitution. In this case, it is preferable for the non-conservative amino acid substitution to not interfere with or inhibit the biological activity of the functional variant. The non-conservative amino acid substitution may enhance the biological activity of the functional variant, such that the biological activity of the functional variant is increased as compared to the parent antibody construct or antigen binding domain.
  • Amino acid substitutions of the inventive antibody constructs or antigen binding domains are preferably conservative amino acid substitutions. Conservative amino acid substitutions are known in the art, and include amino acid substitutions in which one amino acid having certain physical and/or chemical properties is exchanged for another amino acid that has the same or similar chemical or physical properties. For instance, the conservative amino acid substitution can be an acidic/negatively charged polar amino acid substituted for another acidic/negatively charged polar amino acid (e.g., Asp or Glu), an amino acid with a nonpolar side chain substituted for another amino acid with a nonpolar side chain (e.g., Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Cys, Val, etc.), a basic/positively charged polar amino acid substituted for another basic/positively charged polar amino acid (e.g., Lys, His, Arg, etc.), an uncharged amino acid with a polar side chain substituted for another uncharged amino acid with a polar side chain (e.g., Asn, Gln, Ser, Thr, Tyr, etc.), an amino acid with a beta-branched side-chain substituted for another amino acid with a beta-branched side-chain (e.g., Ile, Thr, and Val), an amino acid with an aromatic side-chain substituted for another amino acid with an aromatic side chain (e.g., His, Phe, Trp, and Tyr), etc.
  • The antibody construct or antigen binding domain can consist essentially of the specified amino acid sequence or sequences described herein, such that other components, e.g., other amino acids, do not materially change the biological activity of the antibody construct or antigen binding domain functional variant.
  • The antibody constructs and antigen binding domains of embodiments of the invention (including functional portions and functional variants) can be of any length, i.e., can comprise any number of amino acids, provided that the antibody constructs (or functional portions or functional variants thereof) retain their biological activity, e.g., the ability to specifically bind to HER2, detect cancer cells in a mammal, or treat or prevent cancer in a mammal, etc. For example, the antibody construct or antigen binding domain can be about 50 to about 5,000 amino acids long, such as 50, 70, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, or more amino acids in length.
  • The antibody constructs and antigen binding domains of embodiments of the invention (including functional portions and functional variants of the invention) can comprise synthetic amino acids in place of one or more naturally-occurring amino acids. Such synthetic amino acids are known in the art, and include, for example, aminocyclohexane carboxylic acid, norleucine, α-amino n-decanoic acid, homoserine, S-acetylaminomethyl-cysteine, trans-3- and trans-4-hydroxyproline, 4-aminophenylalanine, 4-nitrophenylalanine, 4-chlorophenylalanine, 4-carboxyphenylalanine, β-phenylserine β-hydroxyphenylalanine, phenylglycine, α-naphthylalanine, cyclohexylalanine, cyclohexylglycine, indoline-2-carboxylic acid, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, aminomalonic acid, aminomalonic acid monoamide, N′-benzyl-N′-methyl-lysine, N′,N′-dibenzyl-lysine, 6-hydroxylysine, ornithine, α-aminocyclopentane carboxylic acid, α-aminocyclohexane carboxylic acid, α-aminocycloheptane carboxylic acid, α-(2-amino-2-norbornane)-carboxylic acid, α,γ-diaminobutyric acid, α,β-diaminopropionic acid, homophenylalanine, and α-tert-butylglycine.
  • The antibody constructs of embodiments of the invention (including functional portions and functional variants) can be glycosylated, amidated, carboxylated, phosphorylated, esterified, N-acylated, cyclized via, e.g., a disulfide bridge, or converted into an acid addition salt and/or optionally dimerized or polymerized.
  • In some embodiments, the antibody construct is a monoclonal antibody of a defined sub-class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2). If combinations of antibodies are used, the antibodies can be from the same subclass or from different subclasses. Typically, the antibody construct is an IgG1 antibody. Various combinations of different subclasses, in different relative proportions, can be obtained by those of skill in the art. In some embodiments, a specific subclass or a specific combination of different subclasses can be particularly effective at cancer treatment or tumor size reduction. Accordingly, some embodiments of the invention provide immunoconjugates wherein the antibody is a monoclonal antibody. In some embodiments, the monoclonal antibody is a humanized monoclonal antibody.
  • In some embodiments, the antibody construct or antigen binding domain binds to HER2 on a cancer or immune cell at a higher affinity than a corresponding HER2 antigen on a non-cancer cell. For example, the antibody construct or antigen binding domain may preferentially recognize HER2 containing a polymorphism that is found on a cancer or immune cell as compared to recognition of a corresponding wild-type HER2 antigen on the non-cancer. In some embodiments, the antibody construct or antigen binding domain binds a cancer cell with greater avidity than a non-cancer cell. For example, the cancer cell can express a higher density of HER2, thereby providing for a higher affinity binding of a multivalent antibody to the cancer cell.
  • In some embodiments, the antibody construct or antigen binding domain does not significantly bind non-cancer antigens (e.g., the antibody binds one or more non-cancer antigens with at least 10, 100, 1,000, 10,000, 100,000, or 1,000,000-fold lower affinity (higher Kd) than HER2). In some embodiments, the corresponding non-cancer cell is a cell of the same tissue or origin that is not hyperproliferative or otherwise cancerous. HER2 need not be specific to the cancer cell or even enriched in cancer cells relative to other cells (e.g., HER2 can be expressed by other cells). Thus, in the phrase “an antibody construct that specifically binds to an antigen of a cancer cell,” the term “specifically” refers to the specificity of the antibody construct and not to the uniqueness of the presence of HER2 in that particular cell type.
  • Modified Fc Region
  • In some embodiments, the antibodies in the immunoconjugates contain a modified Fc region, wherein the modification modulates the binding of the Fc region to one or more Fc receptors.
  • The terms “Fc receptor” or “FcR” refer to a receptor that binds to the Fc region of an antibody. There are three main classes of Fc receptors: (1) FcγR which bind to IgG, (2) FcαR which binds to IgA, and (3) FcR which binds to IgE. The FcγR family includes several members, such as FcγI (CD64), FcγRIIA (CD32A), FcγRIIB (CD32B), FcγRIIIA (CD16A), and FcγRIIIB (CD16B). The Fcγ receptors differ in their affinity for IgG and also have different affinities for the IgG subclasses (e.g., IgG1, IgG2, IgG3, and IgG4).
  • In some embodiments, the antibodies in the immunoconjugates (e.g., antibodies conjugated to at least two adjuvant moieties) contain one or more modifications (e.g., amino acid insertion, deletion, and/or substitution) in the Fc region that results in modulated binding (e.g., increased binding or decreased binding) to one or more Fc receptors (e.g., FcγRI (CD64), FcγRIIA (CD32A), FcγRIIB (CD32B), FcγRIIIA (CD16a), and/or FcγRIIIB (CD16b)) as compared to the native antibody lacking the mutation in the Fc region. In some embodiments, the antibodies in the immunoconjugates contain one or more modifications (e.g., amino acid insertion, deletion, and/or substitution) in the Fc region that reduce the binding of the Fc region of the antibody to FcγRIIB. In some embodiments, the antibodies in the immunoconjugates contain one or more modifications (e.g., amino acid insertion, deletion, and/or substitution) in the Fc region of the antibody that reduce the binding of the antibody to FcγRIIB while maintaining the same binding or having increased binding to FcγRI (CD64), FcγRIIA (CD32A), and/or FcRγIIIA (CD16a) as compared to the native antibody lacking the mutation in the Fc region. In some embodiments, the antibodies in the immunoconjugates contain one of more modifications in the Fc region that increase the binding of the Fc region of the antibody to FcγRIIB.
  • In some embodiments, the modulated binding is provided by mutations in the Fc region of the antibody relative to the native Fc region of the antibody. The mutations can be in a CH2 domain, a CH3 domain, or a combination thereof. A “native Fc region” is synonymous with a “wild-type Fc region” and comprises an amino acid sequence that is identical to the amino acid sequence of an Fc region found in nature or identical to the amino acid sequence of the Fc region found in the native antibody (e.g., trastuzumab). Native sequence human Fc regions include a native sequence human IgG1 Fc region, native sequence human IgG2 Fc region, native sequence human IgG3 Fc region, and native sequence human IgG4 Fc region, as well as naturally occurring variants thereof. Native sequence Fc includes the various allotypes of Fcs (see, e.g., Jefferis et al., mAbs, 1(4): 332-338 (2009)).
  • In some embodiments, the mutations in the Fc region that result in modulated binding to one or more Fc receptors can include one or more of the following mutations: SD (S239D), SDIE (S239D/I332E), SE (S267E), SELF (S267E/L328F), SDIE (S239D/I332E), SDIEAL (S239D/I332E/A330L), GA (G236A), ALIE (A330L/I332E), GASDALIE (G236A/S239D/A330L/I332E), V9 (G237D/P238D/P271G/A330R), and V11 (G237D/P238D/H268D/P271G/A330R), and/or one or more mutations at the following amino acids: E233, G237, P238, H268, P271, L328 and A330. Additional Fc region modifications for modulating Fc receptor binding are described in, for example, U.S. Patent Application Publication 2016/0145350 and U.S. Pat. Nos. 7,416,726 and 5,624,821, which are hereby incorporated by reference in their entireties.
  • In some embodiments, the Fc region of the antibodies of the immunoconjugates are modified to have an altered glycosylation pattern of the Fc region compared to the native non-modified Fc region.
  • Human immunoglobulin is glycosylated at the Asn297 residue in the Cγ2 domain of each heavy chain. This N-linked oligosaccharide is composed of a core heptasaccharide, N-acetylglucosamine4Mannose3 (GlcNAc4Man3). Removal of the heptasaccharide with endoglycosidase or PNGase F is known to lead to conformational changes in the antibody Fc region, which can significantly reduce antibody-binding affinity to activating FcγR and lead to decreased effector function. The core heptasaccharide is often decorated with galactose, bisecting GlcNAc, fucose, or sialic acid, which differentially impacts Fc binding to activating and inhibitory FcγR. Additionally, it has been demonstrated that α2,6-sialyation enhances anti-inflammatory activity in vivo, while defucosylation leads to improved FcγRIIIa binding and a 10-fold increase in antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis. Specific glycosylation patterns, therefore, can be used to control inflammatory effector functions.
  • In some embodiments, the modification to alter the glycosylation pattern is a mutation. For example, a substitution at Asn297. In some embodiments, Asn297 is mutated to glutamine (N297Q). Methods for controlling immune response with antibodies that modulate FcγR-regulated signaling are described, for example, in U.S. Pat. No. 7,416,726 and U.S. Patent Application Publications 2007/0014795 and 2008/0286819, which are hereby incorporated by reference in their entireties.
  • In some embodiments, the antibodies of the immunoconjugates are modified to contain an engineered Fab region with a non-naturally occurring glycosylation pattern. For example, hybridomas can be genetically engineered to secrete afucosylated mAb, desialylated mAb or deglycosylated Fc with specific mutations that enable increased FcRγIIIa binding and effector function. In some embodiments, the antibodies of the immunoconjugates are engineered to be afucosylated.
  • In some embodiments, the entire Fc region of an antibody construct in the immunoconjugates is exchanged with a different Fc region, so that the Fab region of the antibody is conjugated to a non-native Fc region. For example, the Fab region of trastuzumab, which normally comprises an IgG1 Fc region, can be conjugated to IgG2, IgG3, IgG4, or IgA, or the Fab region of nivolumab, which normally comprises an IgG4 Fc region, can be conjugated to IgG1, IgG2, IgG3, IgA1, or IgG2. In some embodiments, the Fc modified antibody with a non-native Fc domain also comprises one or more amino acid modification, such as the S228P mutation within the IgG4 Fc, that modulate the stability of the Fc domain described. In some embodiments, the Fc modified antibody with a non-native Fc domain also comprises one or more amino acid modifications described herein that modulate Fc binding to FcR.
  • In some embodiments, the modifications that modulate the binding of the Fc region to FcR do not alter the binding of the Fab region of the antibody to its antigen when compared to the native non-modified antibody. In other embodiments, the modifications that modulate the binding of the Fc region to FcR also increase the binding of the Fab region of the antibody to its antigen when compared to the native non-modified antibody.
  • Linker
  • Some of the immunoconjugates disclosed herein can be easier to purify than an immunoconjugate comprising the same adjuvant, the same antibody construct, and a different PEG linker length (e.g., PEG6 to PEG12 vs. PEG2 or PEG25). Without wishing to be bound by any particular theory, it is believed that the PEG6 to PEG12 immunoconjugates described herein provide a good balance of hydrophobicity and hydrophilicity to facilitate the purification process. Some of the immunoconjugates disclosed herein can be easier to solubilize than an immunoconjugate comprising the same adjuvant, the same antibody construct, and a different PEG linker length (e.g., PEG6 to PEG12 vs. PEG2 or PEG25). Without wishing to be bound by any particular theory, it is believed that the PEG6 to PEG12 immunoconjugate described herein provide a good balance of hydrophobicity and hydrophilicity to maintain solubility and be effective under biological conditions. It is also believed that the PEG6 to PEG12 immunoconjugate include a desirable number PEG units to provide enough hydrophobicity to be readily purified and/or isolated, while maintaining enough hydrophilicity to be easily solubilized. In preferred embodiments, the immunoconjugate comprises a PEG10 linker.
  • Immunoconjugate Composition
  • The invention provides a composition, e.g., a pharmaceutically acceptable composition or formulation, comprising a plurality of immunoconjugates as described herein and optionally a carrier therefor, e.g., a pharmaceutically acceptable carrier. The immunoconjugates can be the same or different in the composition, i.e., the composition can comprise immunoconjugates that have the same number of adjuvants linked to the same positions on the antibody construct and/or immunoconjugates that have the same number of adjuvants linked to different positions on the antibody construct, that have different numbers of adjuvants linked to the same positions on the antibody construct, or that have different numbers of adjuvants linked to different positions on the antibody construct.
  • As described herein, the adjuvant can be linked via the PEG linker to any suitable residue of the antibody construct, desirably to a lysine residue of the antibody construct. Thus, for example, the composition can comprise a plurality of immunoconjugates, wherein, for each immunoconjugate, one or more adjuvants are linked via PEG linkers to one or more lysine residues selected from K103, K107, K149, K169, K183, and K188 of the light chain of the antibody construct, and K30, K43, K65, K76, K136, K216, K217, K225, K293, K320, K323, K337, K395, and K417 of the heavy chain of the antibody construct, as numbered using the Kabat numbering system. Without wishing to be bound by any particular theory, the composition generally has a distribution of conjugation sites such that there is an average adjuvant to antibody construct ratio with a given profile of preferred conjugation sites. In some embodiments, at least about 40% (e.g., at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%) of the sum total of lysine linkages occur at K188 of the light chain of the antibody construct.
  • A composition of immunoconjugates of the invention can have an average adjuvant to antibody construct ratio of about 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, 8, 8.2, 8.4, 8.6, 8.8, 9, 9.2, 9.4, 9.6, 9.8, or 10, or within a range bounded by any two of the aforementioned values. A skilled artisan will recognize that the number of adjuvant conjugated to the antibody construct may vary from immunoconjugate to immunoconjugate in a composition comprising multiple immunoconjugates of the invention, and, thus, the adjuvant to antibody construct (e.g., antibody) ratio can be measured as an average. The adjuvant to antibody construct (e.g., antibody) ratio can be assessed by any suitable means, many of which are known in the art.
  • In some embodiments, the composition further comprises one or more pharmaceutically acceptable excipients. For example, the immunoconjugates of the invention can be formulated for parenteral administration, such as IV administration or administration into a body cavity or lumen of an organ. Alternatively, the immunoconjugates can be injected intra-tumorally. Compositions for injection will commonly comprise a solution of the immunoconjugate dissolved in a pharmaceutically acceptable carrier. Among the acceptable vehicles and solvents that can be employed are water and an isotonic solution of one or more salts such as sodium chloride, e.g., Ringer's solution. In addition, sterile fixed oils can conventionally be employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed, including synthetic monoglycerides or diglycerides. In addition, fatty acids such as oleic acid can likewise be used in the preparation of injectables. These compositions desirably are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well known sterilization techniques. The compositions can contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
  • The composition can contain any suitable concentration of the immunoconjugate. The concentration of the immunoconjugate in the composition can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight, and the like, in accordance with the particular mode of administration selected and the patient's needs. In certain embodiments, the concentration of an immunoconjugate in a solution formulation for injection will range from about 0.1% (w/w) to about 10% (w/w).
  • Methods of Using the Immunoconjugate
  • The invention provides a method for treating cancer. The method includes comprising administering a therapeutically effective amount of an immunoconjugate as described herein (e.g., as a composition as described herein) to a subject in need thereof, e.g., a subject that has cancer and is in need of treatment for the cancer.
  • Trastuzumab and pertuzumab, biosimilars thereof, and biobetters thereof are known to be useful in the treatment of cancer, particularly breast cancer, especially HER2-overexpressing breast cancer, gastric cancer, especially HER2-overexpressing gastric cancer, and gastroesophageal junction adenocarcinoma. The immunoconjugate described herein can be used to treat the same types of cancers as trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof particularly breast cancer, especially HER2-overexpressing breast cancer, gastric cancer, especially HER2-overexpressing gastric cancer, and gastroesophageal junction adenocarcinoma.
  • The immunoconjugate is administered to a subject in need thereof in any therapeutically effective amount using any suitable dosing regimen, such as the dosing regimens utilized for trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof. For example, the methods can include administering the immunoconjugate to provide a dose of from about 100 ng/kg to about 50 mg/kg to the subject. The immunoconjugate dose can range from about 5 mg/kg to about 50 mg/kg, from about 10 μg/kg to about 5 mg/kg, or from about 100 μg/kg to about 1 mg/kg. The immunoconjugate dose can be about 100, 200, 300, 400, or 500 μg/kg. The immunoconjugate dose can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/kg. The immunoconjugate dose can also be outside of these ranges, depending on the particular conjugate as well as the type and severity of the cancer being treated. Frequency of administration can range from a single dose to multiple doses per week, or more frequently. In some embodiments, the immunoconjugate is administered from about once per month to about five times per week. In some embodiments, the immunoconjugate is administered once per week.
  • In another aspect, the invention provides a method for preventing cancer. The method comprises administering a therapeutically effective amount of an immunoconjugate (e.g., as a composition as described above) to a subject. In certain embodiments, the subject is susceptible to a certain cancer to be prevented. For example, the methods can include administering the immunoconjugate to provide a dose of from about 100 ng/kg to about 50 mg/kg to the subject. The immunoconjugate dose can range from about 5 mg/kg to about 50 mg/kg, from about 10 μg/kg to about 5 mg/kg, or from about 100 μg/kg to about 1 mg/kg. The immunoconjugate dose can be about 100, 200, 300, 400, or 500 μg/kg. The immunoconjugate dose can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/kg. The immunoconjugate dose can also be outside of these ranges, depending on the particular conjugate as well as the type and severity of the cancer being treated. Frequency of administration can range from a single dose to multiple doses per week, or more frequently. In some embodiments, the immunoconjugate is administered from about once per month to about five times per week. In some embodiments, the immunoconjugate is administered once per week.
  • Some embodiments of the invention provide methods for treating cancer as described above, wherein the cancer is breast cancer. Breast cancer can originate from different areas in the breast, and a number of different types of breast cancer have been characterized. For example, the immunoconjugates of the invention can be used for treating ductal carcinoma in situ; invasive ductal carcinoma (e.g., tubular carcinoma; medullary carcinoma; mucinous carcinoma; papillary carcinoma; or cribriform carcinoma of the breast); lobular carcinoma in situ; invasive lobular carcinoma; inflammatory breast cancer; and other forms of breast cancer. In some embodiments, methods for treating breast cancer include administering an immunoconjugate containing an antibody construct that is capable of binding HER2 (e.g., trastuzumab, pertuzumab, biosimilars thereof, and biobetters thereof).
  • Some embodiments of the invention provide methods for treating cancer as described above, wherein the cancer is gastric cancer. Gastric (stomach) cancer can originate from different cells in the stomach and several types of gastric cancer have been characterized including adenocarcinoma, carcinoid tumors, squamous cell carcinoma, small cell carcinoma, leiomyosarcoma, and gastrointestinal stromal tumors. In some embodiments, methods for treating gastric cancer include administering an immunoconjugate containing an antibody construct that is capable of binding HER2 (e.g., trastuzumab).
  • Some embodiments of the invention provide methods for treating cancer as described above, wherein the cancer is gastroesophageal junction carcinoma. This carcinoma occurs in the area where the esophagus meats the stomach. There are three types of gastroesophageal junction carcinoma. In Type 1, the cancer the cancer grows down from above and into the gastroesophageal junction. The normal lining of the lower end of the esophagus is replaced by mutations (also called Barrett's esophagus). In Type 2, the cancer grows at the gastroesophageal junction by itself. In Type 3, the cancer grows up into the gastroesophageal junction from the stomach upwards. In some embodiments, methods for treating gastroesophageal junction carcinoma include administering an immunoconjugate containing an antibody construct that is capable of binding HER2 (e.g., trastuzumab).
  • In some embodiments, the cancer is susceptible to a pro-inflammatory response induced by TLR7 and/or TLR8.
  • Examples of Non-Limiting Aspects of the Disclosure
  • Aspects, including embodiments, of the invention described herein may be beneficial alone or in combination, with one or more other aspects or embodiments. Without limiting the foregoing description, certain non-limiting aspects of the disclosure numbered 1-33 are provided below. As will be apparent to those of skill in the art upon reading this disclosure, each of the individually numbered aspects may be used or combined with any of the preceding or following individually numbered aspects. This is intended to provide support for all such combinations of aspects and is not limited to combinations of aspects explicitly provided below:
  • 1. An immunoconjugate of formula:
  • Figure US20220347311A1-20221103-C00016
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10, subscript n is an integer from about 2 to about 25, and “Ab” is an antibody construct that has an antigen binding domain that binds HER2.
  • 2. The immunoconjugate of aspect 1, wherein subscript r is an integer from 1 to 6.
  • 3. The immunoconjugate of aspect 2, wherein subscript r is an integer from 1 to 4.
  • 4. The immunoconjugate of aspect 3, wherein subscript r is 1.
  • 5. The immunoconjugate of aspect 3, wherein subscript r is 2.
  • 6. The immunoconjugate of aspect 3, wherein subscript r is 3.
  • 7. The immunoconjugate of aspect 3, wherein subscript r is 4.
  • 8. The immunoconjugate of any one of aspects 1-7, wherein subscript n is an integer from 6 to 12.
  • 9. The immunoconjugate of aspect 8, wherein subscript n is an integer from 8 to 12.
  • 10. The immunoconjugate of aspect 1, wherein the immunoconjugate is of formula:
  • Figure US20220347311A1-20221103-C00017
    Figure US20220347311A1-20221103-C00018
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is an antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof).
  • 11. The immunoconjugate of aspect 1, wherein the immunoconjugate is of formula:
  • Figure US20220347311A1-20221103-C00019
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is an antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof).
  • 12. The immunoconjugate of aspect 1, wherein the immunoconjugate is of formula:
  • Figure US20220347311A1-20221103-C00020
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is an antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof).
  • 13. The immunoconjugate of aspect 1, wherein the immunoconjugate is of formula:
  • Figure US20220347311A1-20221103-C00021
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is an antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof).
  • 14. The immunoconjugate of aspect 1, wherein the immunoconjugate is of formula:
  • Figure US20220347311A1-20221103-C00022
  • or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10 and “Ab” is an antibody construct that has an antigen binding domain that binds HER2 (e.g., trastuzumab (also known as HERCEPTIN™), a biosimilar thereof, or a biobetter thereof).
  • 15. The immunoconjugate of any one of aspects 1-14, wherein “Ab” is trastuzumab, a biosimilar thereof, or a biobetter thereof.
  • 16. The immunoconjugate of any one of aspects 1-14, wherein “Ab” is pertuzumab, a biosimilar thereof, or a biobetter thereof.
  • 17. The immunoconjugate of aspect 15, wherein “Ab” is trastuzumab.
  • 18. The immunoconjugate of aspect 15, wherein “Ab” is a biosimilar of trastuzumab.
  • 19. A composition comprising a plurality of immunoconjugates according to any one of aspects 1-18.
  • 20. The composition of aspect 19, wherein the average adjuvant to antibody construct ratio is from about 0.01 to about 10.
  • 21. The composition of aspect 20, wherein the average adjuvant to antibody construct ratio is from about 1 to about 10.
  • 22. The composition of aspect 21, wherein the average adjuvant to antibody construct ratio is from about 1 to about 6.
  • 23. The composition of aspect 22, wherein the average adjuvant to antibody construct ratio is from about 1 to about 4.
  • 24. The composition of aspect 23, wherein the average adjuvant to antibody construct ratio is from about 1 to about 3.
  • 25. A method for treating cancer comprising administering a therapeutically effective amount of an immunoconjugate according to any one of aspects 1-18 or a composition according to any one of aspects 19-24 to a subject in need thereof.
  • 26. The method of aspect 25, wherein the cancer is susceptible to a pro-inflammatory response induced by TLR7 and/or TLR8 agonism.
  • 27. The method of aspect 25 or 26, wherein the cancer is a HER2-expressing cancer.
  • 28. The method of any one of aspects 25-27, wherein the cancer is breast cancer.
  • 29. The method of aspect 28, wherein the breast cancer is HER2 overexpressing breast cancer.
  • 30. The method of any one of aspect 25-27, wherein the cancer is gastric cancer.
  • 31. The method of aspect 30, wherein the gastric cancer is HER2 overexpressing gastric cancer.
  • 32. The method of any one of aspect 25-27, 30, or 31, wherein the cancer is gastroesophageal junction adenocarcinoma.
  • 33. Use of an immunoconjugate according to any one of aspect 1-18 or a composition according to any one of aspects 19-24 for treating cancer.
  • EXAMPLES
  • The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
  • Example 1: Synthesis of Compound 2
  • Figure US20220347311A1-20221103-C00023
  • To a solution of 6-bromo-2,4-dichloro-3-nitroquinoline (5.6 g, 17.4 mmol, 1 eq.) and solid K2CO3 (3.6 g, 26 mmol, 1.5 eq.) in dimethylformamide (DMF, 100 mL) at room temperature was added neat 2,4-dimethoxybenzylamine (3.5 g, 20.1 mmol, 1.2 eq.). The mixture was stirred for 15 minutes, water (300 mL) was added, and then the mixture was stirred for 5 minutes. The resultant solid was filtered and then dissolved in ethyl acetate (100 mL). The solution was washed with water (100 mL), brine (100 mL), separated, dried (Na2SO4), then filtered and concentrated in vacuo. The brown solid was triturated with 1:1 hexanes/diethyl ether (150 mL) and filtered to obtain 6-bromo-2-chloro-4-(2,4-dimethoxybenzyl)amino-3-nitroquinoline (6.9 g, 15.3 mmol, 88%) as a yellow solid. The compound was used without further purification.
  • Example 2: Synthesis of Compound 3
  • Figure US20220347311A1-20221103-C00024
  • NiCl2.6H2O (0.36 g, 1.5 mmol, 0.1 eq.) was added to 6-bromo-2-chloro-4-(2,4-dimethoxybenzyl)amino-3-nitroquinoline (6.9 g, 15.3 mmol, 88%) in methanol (200 mL) at 0° C. Sodium borohydride (pellets, 1.42 g, 38 mmol, 2.5 eq.) was added and the reaction was stirred for 1 h at 0° C. then warmed to room temperature and stirred for another 15 minutes. Glacial acetic acid (5 mL) was added until a pH of ˜5 was obtained. The solvent was evaporated in vacuo and the crude solid was re-dissolved in ethyl acetate (150 mL) then filtered through a bed of diatomaceous earth to remove a black insoluble material. The ethyl acetate was removed in vacuo. The dark brown solid was triturated with ether (75 mL) then filtered to obtain 3-amino-6-bromo-2-chloro-4-(2,4-dimethoxybenzyl)aminoquinoline (5.81 g, 13.7 mmol, 90%) as a tan solid. The compound was used without further purification.
  • Example 3: Synthesis of Compound 4
  • Figure US20220347311A1-20221103-C00025
  • Neat valeroyl chloride (2.0 mL, 2.0 g, 16 mmol, 1.2 eq) was added to a solution of 3-amino-6-bromo-2-chloro-4-(2,4-dimethoxybenzyl)aminoquinoline (5.75 g, 13.6 mmol, 1 eq.) in dichloromethane (100 mL) containing triethylamine (2.1 g, 2.8 mL, 20 mmol, 1.5 eq.) while stirred at room temperature. The mixture was washed with water (150 mL), brine (150 mL), separated, then dried (Na2SO4), filtered, and concentrated. The solid was triturated with ether, filtered, and then dried under vacuum. N-(6-bromo-2-chloro-4-((2,4-dimethoxybenzyl)amino)quinolin-3-yl)pentanamide was obtained as a brown solid (5.8 g, 11.4 mmol, 84%). The compound was used without further purification.
  • Example 4: Synthesis of Compound
  • Figure US20220347311A1-20221103-C00026
  • In a 100 mL beaker a mixture of N-(6-bromo-2-chloro-4-((2,4-dimethoxybenzyl)amino)quinolin-3-yl)pentanamide (5.8 g, 11.4 mmol, 1 eq.) and 2-chlorobenzoic (0.90 g, 5.7 mmol. 0.5 eq.) was boiled in 50 mL toluene for 2 hours. Toluene was added to 50 mL each time the volume reached 25 mL. 2,4-dimethoxybenzylamine (9.5 g, 57 mmol, 5 eq.) was added and the reaction was maintained at 120° C. for 2 hours. The reaction was cooled to room temperature and water (80 mL) then acetic acid (3.5 mL) was added. The supernatant was decanted and the crude product was washed with water (80 mL). The wet solid was triturated with methanol (100 mL) to provide 8-bromo-2-butyl-N,1-bis(2,4-dimethoxybenzyl)-1H-imidazo[4,5-c]quinolin-4-amine (4.80 g, 7.7 mmol, 68%) as an off-white solid. The compound was used without further purification.
  • Example 5: Synthesis of Compound 6
  • Figure US20220347311A1-20221103-C00027
  • A mixture of 8-bromo-2-butyl-N,1-bis(2,4-dimethoxybenzyl)-1H-imidazo[4,5-c]quinolin-4-amine (0.31 g, 0.5 mmol, 1 eq.) and tert-butyl piperazine-1-carboxylate (0.19 g, 1 mmol, 2 eq.) were combined in toluene (2 mL) then degassed with argon. Pd2dba3 (45 mg, 0.05 mmol, 0.1 eq.), tri-tert-butylphosphine tetrafluoroborate (29 mg, 0.10 mmol, 0.2 eq) and sodium tert-butoxide (144 mg, 1.5 mmol, 3 eq) were added. The mixture was heated in a capped vial at 110° C. for 30 minutes. The mixture was cooled then partitioned between ethyl acetate (50 mL) and water (50 mL). The organic layer was washed with brine (50 mL), dried with sodium sulfate, filtered and concentrated in vacuo. The crude product was purified on silica gel (20 g) and then eluted with 50% ethyl acetate/hexanes to yield tert-butyl 4-(2-butyl-1-(2,4-dimethoxybenzyl)-4-((2,4-dimethoxybenzyl)amino)-1H-imidazo[4,5-c]quinolin-8-yl)piperazine-1-carboxylate (0.28 g, 0.39 mmol, 78%) as an off-white solid. LC/MS [M+H]725.40 (calculated); LC/MS [M+H] 725.67 (observed).
  • Example 6: Synthesis of Compound 7
  • Figure US20220347311A1-20221103-C00028
  • Tert-butyl 4-(2-butyl-1-(2,4-dimethoxybenzyl)-4-((2,4-dimethoxybenzyl)amino)-1H-imidazo[4,5-c]quinolin-8-yl)piperazine-1-carboxylate (0.28 g, 0.39 mmol, 1 eq.) was dissolved in TFA (3 mL) and heated to reflux for 5 min. The TFA was removed in vacuo and the crude product was dissolved in acetonitrile, filtered then concentrated to obtain the TFA salt of 2-butyl-8-(piperazin-1-yl)-1H-imidazo[4,5-c]quinolin-4-amine (0.16 g, 0.37 mmol, 95%) as an off-white solid. LC/MS [M+H] 325.21 (calculated); LC/MS [M+H] 325.51 (observed).
  • Example 7: Synthesis of Compound 8
  • Figure US20220347311A1-20221103-C00029
  • In a 40 mL vial flushed with nitrogen, oxalyl chloride (1.84 g, 1.24 mL, 14.5 mmol, 2.5 eq) was added then dichloromethane (10 mL). The solution was cooled to −78° C. A solution of DMSO (2.26 g, 2.05 mL, 29 mmol, 5 eq) in dichloromethane (9 mL) was added dropwise and the mixture was stirred for 15 minutes. A solution of tert-butyl 1-hydroxy-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oate (3.4 g, 5.8 mmol, 1 eq) in dichloromethane (9 mL) was added dropwise and the mixture was stirred for 30 minutes at −78° C. Triethylamine (4.4 g, 6.0 mL, 43.5 mmol, 7.5 eq) was added dropwise. This mixture was stirred for 30 min at −78° C. then warmed to room temperature over 30 minutes. To a 100 mL round bottom flask containing 2-butyl-8-(piperazin-1-yl)-1H-imidazo[4,5-c]quinolin-4-amine hydrochloride (2.1 g, 5.8 mmol, 1 eq) and sodium triacetoxyborohydride (5.5 g, 26 mmol, 4.5 eq) in DMF (30 mL) was slowly added tert-butyl 1-oxo-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oate (theoretical amount 5.8 mmol, 1 eq) and the reaction was stirred at room temperature for 1 hour. The dichloromethane was removed under reduced pressure, and then 20% Na2CO3 (20 mL) was added and the mixture was stirred vigorously for 15 minutes. All of the solvent was removed and the solid material was suspended and sonicated in 10% methanol/dichloromethane, then filtered through diatomaceous earth. The filter cake was washed with 10% methanol/dichloromethane and the combined filtrates were concentrated. Purification by flash chromatography (80 g REDISEP™ gold silica column) was performed using a 2-20% MeOH/dichloromethane+0.1% triethylamine (55 mL/min) gradient over 28 min. The pure fractions were combined and concentrated to obtain tert-butyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oate (3.9 g, 4.4 mmol, 75%) as a slightly golden syrup. The impure fractions containing were re-purified then combined to give a final mass (4.26 g, 4.8 mmol, 83%). LC/MS [M+H] 893.55 (calculated); LC/MS [M+H] 893.98 (observed).
  • Example 8: Synthesis of Compound 9
  • Figure US20220347311A1-20221103-C00030
  • Tert-butyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oate (4.26 g, 4.8 mmol) was dissolved in a 1:1 mixture of 3 M aq. HCl and dioxane (100 mL) and heated at 60° C. for 60 min. After hydrolysis was complete the solvent was removed under reduced pressure. The 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oic acid hydrochloride obtained was azeotroped 4 times with acetonitrile (75 mL) then suspended in acetonitrile (75 mL) and centrifuged at 4000 rpm for 4 minutes. This process was repeated. The solid was transferred to a 100 mL round bottom flask with acetonitrile and concentrated by under reduced pressure to obtain a yellow, hygroscopic solid (4.0 g, 4.6 mmol, 95%) that was used as is in the next reaction. LC/MS [M+H] 837.49 (calculated); LC/MS [M+H] 837.84 (observed).
  • Example 9: Synthesis of Compound 10
  • Figure US20220347311A1-20221103-C00031
  • To a 250 mL round bottom flask containing the 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oic acid hydrochloride (4.0 g, 4.6 mmol, 1 eq) was added a suspension of 2,3,5,6-tetrafluorophenol (1.64 g, 10 mmol, 2.4 eq) and EDC (2.0 g, 11 mmol, 2.3 eq.) in anhydrous DMF (50 mL) and the mixture was allowed to stir at room temperature for 30 minutes. The mixture was then heated at 50° C. for 30 minutes. Most of the DMF (˜90%) was removed by azeotroping with toluene (80 mL) under reduced pressure with the bath temperature set to 50° C. To this crude material was added diethyl ether (100 mL) and the pasty solid was stirred vigorously. The supernatant was discarded. This process was repeated. The crude material was dissolved in 40 mL ethyl acetate/acetone/acetic acid/water (6:2:1:1). The crude solution was divided into two equal portions and each was purified on a 40 g REDISEP™ gold silica column (Teledyne Isco, Lincoln, Nebr.) using isocratic eluent ethyl acetate/acetone/acetic acid/water (6:2:1:1) to obtain 2,3,5,6-tetrafluorophenyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30-decaoxatritriacontan-33-oate (3.34 g, 3.4 mmol, 74%) as an orange paste. LC/MS [M+H]985.49 (calculated); LC/MS [M+H] 985.71 (observed).
  • Example 10: Synthesis of Compound 11
  • Figure US20220347311A1-20221103-C00032
  • 2-butyl-8-(piperazin-1-yl)-1H-imidazo[4,5-c]quinolin-4-amine was converted into tert-butyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18-hexaoxahenicosan-21-oate according to the procedure described in Example 7. LC/MS [M+H] 717.45 (calculated); LC/MS [M+H] 717.75 (observed).
  • Example 11: Synthesis of Compound 12
  • Figure US20220347311A1-20221103-C00033
  • Tert-butyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18-hexaoxahenicosan-21-oate was converted into 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18-hexaoxahenicosan-21-oic acid according to the procedure described in Example 8. LC/MS [M+H] 661.39 (calculated); LC/MS [M+H] 661.60 (observed).
  • Example 12: Synthesis of Compound 13
  • Figure US20220347311A1-20221103-C00034
  • 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18-hexaoxahenicosan-21-oic acid was converted into 2,3,5,6-tetrafluorophenyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18-hexaoxahenicosan-21-oate according to the procedure described in Example 9. LC/MS [M+H] 809.39 (calculated); LC/MS [M+H] 809.62 (observed).
  • Example 13: Synthesis of Compound 14
  • Figure US20220347311A1-20221103-C00035
  • 2-butyl-8-(piperazin-1-yl)-1H-imidazo[4,5-c]quinolin-4-amine was converted into tert-butyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-oate according to the procedure described in Example 7. LC/MS [M+H] 981.61 (calculated); LC/MS [M+H]981.86 (observed).
  • Example 14: Synthesis of Compound 15
  • Figure US20220347311A1-20221103-C00036
  • Tert-butyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-oate was converted into 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-oic acid according to the procedure described in Example 8. Compound was used without further purification.
  • Example 15: Synthesis of Compound 16
  • Figure US20220347311A1-20221103-C00037
  • 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-oic acid was converted into 2,3,5,6-tetrafluorophenyl 1-(4-(4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-8-yl)piperazin-1-yl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-oate according to the procedure described in Example 9. LC/MS [M+H] 1073.54 (calculated); LC/MS [M+H]1073.81 (observed).
  • Example 16: Synthesis of Immunoconjugate A
  • Figure US20220347311A1-20221103-C00038
  • This example demonstrates the synthesis of Immunoconjugate A with trastuzumab as the antibody construct (Tras).
  • Trastuzumab was buffer exchanged into the conjugation buffer containing 100 mM boric acid, 50 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid at pH 83, using G-25 SEPHADEX™ desalting columns (Sigma-Aldrich, St. Louis, Mo.). The eluates were then each adjusted to 6 mg/ml using the buffer and sterile filtered. Trastuzumab at 6 mg/ml was pre-warmed to 30° C. and rapidly mixed with 7 molar equivalents of Compound 10. The reaction was allowed to proceed for 16 hours at 30° C. and Immunoconjugate A was separated from reactants by running over two successive G-25 desalting columns equilibrated in phosphate buffered saline at pH 7.2. Adjuvant-antibody ratios (DAR) was determined by liquid chromatography mass spectrometry analysis using a C4 reverse phase column on an ACQUITY™ UPLC H-class (Waters Corporation, Milford, Mass.) connected to a XEVO™ G2-XS TOF mass spectrometer (Waters Corporation). Immunoconjugate A had a DAR of 2.5.
  • Example 17: Synthesis of Immunoconjugate B
  • Figure US20220347311A1-20221103-C00039
  • This example demonstrates the synthesis of Immunoconjugate B with trastuzumab as the antibody construct (Tras).
  • Trastuzumab was buffer exchanged into the conjugation buffer containing 100 mM boric acid, 50 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid at pH 8.3, using C-25 SEPHADEX™ desalting columns (Sigma-Aldrich). The eluates were then each adjusted to 6 mg/ml using the buffer and sterile filtered. Trastuzumab at 6 mg/ml was pre-warmed to 30° C. and rapidly mixed with 8.5 molar equivalents of Compound 13. The reaction was allowed to proceed for 16 hours at 30° C. and Immunoconjugate B was separated from reactants by running over two successive G-25 SEPHADEX™ desalting columns (Sigma-Aldrich) equilibrated in phosphate buffered saline at pH 7.2. Adjuvant-antibody ratios (DAR) was determined by liquid chromatography mass spectrometry analysis using a C4 reverse phase column on an ACQUITY™ UPLC H-class (Waters Corporation, Milford, Mass.) connected to a XEVO™ G2-XS TOF mass spectrometer (Waters Corporation). Immunoconjugate B had a DAR of 2.37.
  • Example 18: Synthesis of Immunoconjugate C
  • Figure US20220347311A1-20221103-C00040
  • This example demonstrates the synthesis of Immunoconjugate C with trastuzumab as the antibody construct (Tras).
  • Trastuzumab was buffer exchanged into the conjugation buffer containing 100 mM boric acid, 50 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid at pH 8.3, using G-25 SEPHADEX™ desalting columns (Sigma-Aldrich). The eluates were then each adjusted to 6 mg/ml using the buffer and sterile filtered, Trastuzunab at 6 mg/mil was pre-warmed to 30° C. and rapidly mixed with 6 molar equivalents of Compound 16. The reaction was allowed to proceed for 16 hours at 30° C. and Immunoconjugate C was separated from reactants by running over two successive G-25 desalting columns equilibrated in phosphate buffered saline at pH 7.2. Adjuvant-antibody ratios (DAR) was determined by liquid chromatography mass spectrometry analysis using a C4 reverse phase column on an ACQUITY™ UPLC H-class (Waters Corporation, Milford, Mass.) connected to a XEVO™ G2-XS TOF mass spectrometer (Waters Corporation). Immunoconjugate C had a DAR of 2.15.
  • Example 19. Assessment of Immunoconjugate Activity In Vitro
  • This example shows that Immunoconjugate A, Immunoconjugate B, and Immunoconjugate C are effective at eliciting myeloid activation, and therefore are useful for the treatment of cancer.
  • Isolation of Human Antigen Presenting Cells. Human myeloid antigen presenting cells (APCs) were negatively selected from human peripheral blood obtained from healthy blood donors (Stanford Blood Center, Palo Alto, Calif.) by density gradient centrifugation using a ROSETTESEP™ Human Monocyte Enrichment Cocktail (Stem Cell Technologies, Vancouver, Canada) containing monoclonal antibodies against CD14, CD16, CD40, CD86, CD123, and HLA-DR. Immature APCs were subsequently purified to >97% purity via negative selection using an EASYSEP™ Human Monocyte Enrichment Kit (Stem Cell Technologies) without CD16 depletion containing monoclonal antibodies against CD14, CD16, CD40, CD86, CD123, and HLA-DR.
  • Preparation of Tumor Cells. Three tumor cell lines were used: HCC1954, JIMT-1, and COLO 205. HCC1954 (American Type Culture Collection (ATCC), Manassas, Va.) was derived from a primary stage IIA, grade 3 invasive ductal carcinoma with no lymph node metastases. HCC1954 is positive for the epithelial cell specific marker Epithelial Glycoprotein 2 and for cytokeratin 19, and is negative for expression of estrogen receptor (ER) and progesterone receptor (PR). HCC1954 overexpresses HER2 (as determined by enzyme-linked immunosorbent assay (ELISA)). JIMT-1 (DSMZ, Braunschweig, Germany) was derived from the pleural effusion of a woman with ductal breast cancer (grade 3 invasive, stage IIB) following postoperative radiation. JIMT-1 overexpresses HER2 at what is considered to be a “medium” level of overexpression, but is insensitive to HER2-inhibiting drugs (e.g. trastuzumab). COLO 205 (ATCC) was derived from the ascites fluid of man with carcinoma of the colon. COLO 205 expresses carcinoembryonic antigen (CEA), keratin, interleukin 10 (IL-10), and is considered to overexpress HER2 at relatively “low” level of overexpression.
  • Tumor cells from each cell line were separately re-suspended in PBS with 0.1% fetal bovine serum (FBS) at 1 to 10×106 cells/mL. Cells were subsequently incubated with 2 μM carboxyfluorescein succinimidyl ester (CFSE) to yield a final concentration of 1 μM. The reaction was quenched after 2 minutes via the addition of 10 mL complete medium with 10% FBS and washed twice with complete medium. Cells were either fixed in 2% paraformaldehyde and washed three times with PBS or left viable prior to use.
  • APC-Tumor Co-cultures. 2×105 APCs were incubated with (e.g., FIG. 1A-1I) or without (e.g., FIG. 2A-3D) CFSE-labeled tumor cells between a 5:1 and 10:1 effector to target (tumor) cell ratio in 96-well plates (Corning, Corning, N.Y.) containing iscove's modified dulbecco's medium (IMDM) (Thermo Fisher Scientific, Waltham, Mass.) supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, sodium pyruvate, non-essential amino acids, and, where indicated, various concentrations of unconjugated HER2 antibody, Immunoconjugate A, Immunoconjugate B, and Immunoconjugate C of the invention (as prepared according to the examples above). Cells and cell-free supernatants were analyzed after 18 hours via flow cytometry or ELISA.
  • The results of this assay are shown in the figures, for example, FIG. 1A (CD40) and FIG. 1B (CD86) for Immunoconjugate A on the HCC1954 cell line, FIG. 1D (CD40) and FIG. 1E (CD86) for Immunoconjugate A on the JIMT-1 cell line, and FIG. 1G (CD40) and FIG. 1H (CD86) for Immunoconjugate A on the COLO 205 cell line.
  • FIG. 2A shows that Immunoconjugate B elicits myeloid differentiation as indicated by CD14 downregulation. FIG. 2B shows that Immunoconjugate B elicits myeloid activation as indicated by CD40 upregulation. FIG. 2C shows that Immunoconjugate B elicits myeloid activation as indicated by CD86 upregulation. FIG. 3A shows that Immunoconjugate C elicits myeloid differentiation as indicated by CD14 downregulation. FIG. 3B shows that Immunoconjugate C elicits myeloid activation as indicated by CD40 upregulation. FIG. 3C shows that Immunoconjugate C elicits myeloid activation as indicated by CD86 upregulation.
  • While the expression of T cell stimulatory molecules such as CD40 and CD86 are necessary for effective T cell activation, APCs also influence the nature of the ensuing immune response through the secretion of proinflammatory cytokines. Therefore, the capacity of immunoconjugates to elicit cytokine secretion in human APCs following stimulation was investigated. The data indicate that the immunoconjugate-stimulated cells secreted high levels of TNFα. See FIG. 1C for Immunoconjugate A co-cultured with the HCC1954 cell line, FIG. 1F for Immunoconjugate A co-cultured with the JIMT-1 cell line, and FIG. 1I for Immunoconjugate A co-cultured with the COLO 205 cell line. FIG. 2D shows TNFα secretion from myeloid cells following an 18 hour incubation with Immunoconjugate B. FIG. 3D shows TNFα secretion from myeloid cells following an 18 hour incubation with Immunoconjugate C.
  • Example 20. Assessment of the Pharmacokinetics (PK) Properties of Immunoconjugate B and Immunoconjugate C
  • This example shows that Immunoconjugate B and Immunoconjugate C have favorable PK properties.
  • Cynomolgus primates (Macaca fascicularis) were dosed with 10 mg/kg of Immunoconjugate B, Immunoconjugate C, Immunoconjugate D, Immunoconjugate E, Immunoconjugate F, or Immunoconjugate G, as shown in Scheme 1, and the PK properties were assessed for 28 days following administration.
  • Figure US20220347311A1-20221103-C00041
  • A trastuzumab PK assay was configured to capture trastuzumab with HCA169 anti-idiotype mAb and to detect with peroxidase labeled HCA176 (HCA176P). An antibody drug conjugate assay was configured to capture trastuzumab with HCA169 anti-idiotype mAb and to detect with a rabbit mAb to A103 followed by detection with peroxidase labeled Goat anti-rabbit IgG. Immunoconjugate B and Immunoconjugate C demonstrated higher serum levels in both PK assays as compared to Immunoconjugate D, Immunoconjugate E, Immunoconjugate, F, and Immunoconjugate G.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
  • The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B”) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (44)

1. An immunoconjugate of formula:
Figure US20220347311A1-20221103-C00042
or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 10, and “Ab” is an antibody construct comprising a first variable region comprising:
SEQ ID NO: 2 as light chain complementary determining region-1 (CDRL1);
SEQ ID NO: 3 as light chain complementary determining region-2 (CDRL2); and
SEQ ID NO: 4 as light chain complementary determining region-3 (CDRL3),
and a second variable region comprising:
SEQ ID NO: 5 as heavy chain complementary determining region-1 (CDRH1);
SEQ ID NO: 6 as heavy chain complementary determining region-2 (CDRH2); and
SEQ ID NO: 7 as heavy chain complementary determining region-3 (CDRH3).
2. The immunoconjugate of claim 1, or pharmaceutically acceptable salt thereof, wherein subscript r is an integer from 1 to 6.
3. The immunoconjugate of claim 1, or pharmaceutically acceptable salt thereof, wherein subscript r is 1.
4. The immunoconjugate of claim 1, or pharmaceutically acceptable salt thereof, wherein subscript r is 2.
5. The immunoconjugate of claim 1, or pharmaceutically acceptable salt thereof, wherein subscript r is 3.
6. The immunoconjugate of claim 1, or pharmaceutically acceptable salt thereof, wherein subscript r is 4.
7. A composition comprising a plurality of immunoconjugates or pharmaceutically acceptable salts thereof according to claim 1 and a pharmaceutically acceptable carrier.
8. The composition of claim 7, wherein the composition further comprises one or more pharmaceutically acceptable excipients.
9. The composition of claim 7, wherein
Figure US20220347311A1-20221103-C00043
in the immunoconjugate is an adjuvant, and the composition has an average adjuvant to antibody ratio of from about 1 to about 10.
10. The composition of claim 9, wherein the composition has an average adjuvant to antibody ratio of from about 1 to about 6.
11. The composition of claim 9, wherein the composition has an average adjuvant to antibody ratio of from about 1 to about 4.
12. The composition of claim 9, wherein the composition has an average adjuvant to antibody ratio of from about 1 to about 3.
13. A method for treating cancer comprising administering a therapeutically effective amount of an immunoconjugate or pharmaceutically acceptable salt thereof according to claim 1 to a subject in need thereof.
14. The method of claim 13, wherein the cancer is a HER2-expressing cancer.
15. The method of claim 13, wherein the cancer is breast cancer.
16. The method of claim 13, wherein the breast cancer is HER2 overexpressing breast cancer.
17. The method of claim 13, wherein the cancer is gastric cancer.
18. The method of claim 13, wherein the gastric cancer is HER2 overexpressing gastric cancer.
19. The method of claim 13, wherein the cancer is gastroesophageal junction adenocarcinoma.
20. The method of claim 13, wherein the cancer is endometrial cancer.
21. The method of claim 13, wherein the cancer is ovarian cancer.
22. The method of claim 13, wherein the cancer is uterine cancer.
23. The method of claim 13, wherein the cancer is bladder cancer.
24. The method of claim 13, wherein the cancer is lung cancer.
25. The method of claim 13, wherein the cancer is head and neck cancer.
26. The method of claim 13, wherein the cancer is liver cancer.
27. The method of claim 13, wherein the cancer is colon cancer.
28. The method of claim 13, wherein the cancer is melanoma.
29. A method for treating cancer comprising administering a therapeutically effective amount of a composition according to claim 7 to a subject in need thereof.
30. The method of claim 29, wherein the cancer is a HER2-expressing cancer.
31. The method of claim 29, wherein the cancer is breast cancer.
32. The method of claim 29, wherein the breast cancer is HER2 overexpressing breast cancer.
33. The method of claim 29, wherein the cancer is gastric cancer.
34. The method of claim 29, wherein the gastric cancer is HER2 overexpressing gastric cancer.
35. The method of claim 29, wherein the cancer is gastroesophageal junction adenocarcinoma.
36. The method of claim 29, wherein the cancer is endometrial cancer.
37. The method of claim 29, wherein the cancer is ovarian cancer.
38. The method of claim 29, wherein the cancer is uterine cancer.
39. The method of claim 29, wherein the cancer is bladder cancer.
40. The method of claim 29, wherein the cancer is lung cancer.
41. The method of claim 29, wherein the cancer is head and neck cancer.
42. The method of claim 29, wherein the cancer is liver cancer.
43. The method of claim 29, wherein the cancer is colon cancer.
44. The method of claim 29, wherein the cancer is melanoma.
US17/854,239 2019-03-15 2022-06-30 Immunoconjugates Targeting HER2 Pending US20220347311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/854,239 US20220347311A1 (en) 2019-03-15 2022-06-30 Immunoconjugates Targeting HER2

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962819356P 2019-03-15 2019-03-15
PCT/US2020/022645 WO2020190725A1 (en) 2019-03-15 2020-03-13 Immunoconjugates targeting her2
US17/465,284 US11400164B2 (en) 2019-03-15 2021-09-02 Immunoconjugates targeting HER2
US17/854,239 US20220347311A1 (en) 2019-03-15 2022-06-30 Immunoconjugates Targeting HER2

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/465,284 Continuation US11400164B2 (en) 2019-03-15 2021-09-02 Immunoconjugates targeting HER2

Publications (1)

Publication Number Publication Date
US20220347311A1 true US20220347311A1 (en) 2022-11-03

Family

ID=70277474

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/465,284 Active US11400164B2 (en) 2019-03-15 2021-09-02 Immunoconjugates targeting HER2
US17/854,239 Pending US20220347311A1 (en) 2019-03-15 2022-06-30 Immunoconjugates Targeting HER2

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/465,284 Active US11400164B2 (en) 2019-03-15 2021-09-02 Immunoconjugates targeting HER2

Country Status (8)

Country Link
US (2) US11400164B2 (en)
EP (1) EP3937984A1 (en)
JP (1) JP2022525594A (en)
KR (1) KR20220004634A (en)
CN (1) CN113993549A (en)
AU (1) AU2020241686A1 (en)
CA (1) CA3130794A1 (en)
WO (1) WO2020190725A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009916A1 (en) 2016-07-07 2018-01-11 The Board Of Trustees Of The Leland Stanford Junior University Antibody adjuvant conjugates
WO2020190725A1 (en) 2019-03-15 2020-09-24 Bolt Biotherapeutics, Inc. Immunoconjugates targeting her2
EP4106819A1 (en) 2020-02-21 2022-12-28 Silverback Therapeutics, Inc. Nectin-4 antibody conjugates and uses thereof
WO2021173832A1 (en) * 2020-02-25 2021-09-02 Bolt Biotherapeutics, Inc. Cancer treatment methods
CN116209678A (en) 2020-07-01 2023-06-02 安尔士制药公司 anti-ASGR 1 antibody conjugates and uses thereof
WO2023057564A1 (en) * 2021-10-07 2023-04-13 Sanofi IMIDAZO[4,5-c]QUINOLINE-4-AMINE COMPOUNDS AND CONJUGATES THEREOF, THEIR PREPARATION, AND THEIR THERAPEUTIC APPLICATIONS
CA3234604A1 (en) 2021-10-29 2023-05-04 Shelley Erin ACKERMAN Tlr agonist immunoconjugates with cysteine-mutant antibodies, and uses thereof
WO2024130003A1 (en) 2022-12-15 2024-06-20 Bolt Biotherapeutics, Inc. Cancer combination treatment method

Family Cites Families (369)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH653021A5 (en) 1981-04-24 1985-12-13 Delalande Sa PIPERIDINO, PIPERAZINO AND HOMOPIPERAZINO DERIVATIVES, N-SUBSTITUTED BY AN AROMATIC HETEROCYCLIC GROUP, THEIR PREPARATION METHOD AND THERAPEUTIC COMPOSITION CONTAINING THEM.
IL73534A (en) 1983-11-18 1990-12-23 Riker Laboratories Inc 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds
JP3101690B2 (en) 1987-03-18 2000-10-23 エス・ビィ・2・インコーポレイテッド Modifications of or for denatured antibodies
WO1990014844A2 (en) 1989-06-06 1990-12-13 Neorx Corporation Sugars as cleavable linkers for the delivery and release of agents in native form
US5650150A (en) 1990-11-09 1997-07-22 Gillies; Stephen D. Recombinant antibody cytokine fusion proteins
EP0894797A4 (en) 1997-01-09 2001-08-16 Terumo Corp Novel amide derivatives and intermediates for the synthesis thereof
ZA9811162B (en) 1997-12-12 2000-06-07 Genentech Inc Treatment with anti-ERBB2 antibodies.
US20090208418A1 (en) 2005-04-29 2009-08-20 Innexus Biotechnology Internaltional Ltd. Superantibody synthesis and use in detection, prevention and treatment of disease
US20020155108A1 (en) 1998-05-04 2002-10-24 Biocrystal, Ltd. Method for ex vivo loading of antigen presenting cells with antigen, and a vaccine comprising the loaded cells
FI107193B (en) 1999-06-03 2001-06-15 Rouvari Oy R Measuring probe
US6541485B1 (en) 1999-06-10 2003-04-01 3M Innovative Properties Company Urea substituted imidazoquinolines
US6573273B1 (en) 1999-06-10 2003-06-03 3M Innovative Properties Company Urea substituted imidazoquinolines
US6331539B1 (en) 1999-06-10 2001-12-18 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
US6756382B2 (en) 1999-06-10 2004-06-29 3M Innovative Properties Company Amide substituted imidazoquinolines
US6451810B1 (en) 1999-06-10 2002-09-17 3M Innovative Properties Company Amide substituted imidazoquinolines
JP2003531149A (en) 2000-04-13 2003-10-21 ザ・ロツクフエラー・ユニバーシテイ Enhancement of antibody-derived immune response
CA2410371C (en) 2000-06-22 2015-11-17 University Of Iowa Research Foundation Methods for enhancing antibody-induced cell lysis and treating cancer
WO2002066044A2 (en) 2000-10-24 2002-08-29 Immunex Corporation Method for dendritic cells based immunotherapy of tumors using combination therapy
CA2430206A1 (en) 2000-12-08 2002-06-13 3M Innovative Properties Company Screening method for identifying compounds that selectively induce interferon alpha
US20060142202A1 (en) 2000-12-08 2006-06-29 3M Innovative Properties Company Compositions and methods for targeted delivery of immune response modifiers
ATE416771T1 (en) 2001-11-16 2008-12-15 3M Innovative Properties Co N-Ä4-(4-AMINO-2-ETHYL-1H-IMIDAZOÄ4,5-CUCHINOLINE 1-YL)BUTYLUMETHANESULFONAMIDE, PHARMACEUTICAL COMPOSITION CONTAINING SAME AND USE THEREOF
US6677349B1 (en) 2001-12-21 2004-01-13 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
JP4354280B2 (en) 2002-03-01 2009-10-28 イミューノメディクス、インコーポレイテッド RS7 antibody
US7427629B2 (en) 2002-08-15 2008-09-23 3M Innovative Properties Company Immunostimulatory compositions and methods of stimulating an immune response
US6924154B2 (en) 2002-08-20 2005-08-02 Quest Diagnostics Investments Incorporated Hydrophilic chemilumescent acridinium labeling reagents
WO2004028539A2 (en) 2002-09-26 2004-04-08 3M Innovative Properties Company 1h-imidazo dimers
AU2003287324A1 (en) 2002-12-11 2004-06-30 3M Innovative Properties Company Gene expression systems and recombinant cell lines
AU2003287316A1 (en) 2002-12-11 2004-06-30 3M Innovative Properties Company Assays relating to toll-like receptor activity
WO2004058759A1 (en) 2002-12-20 2004-07-15 3M Innovative Properties Company Aryl / hetaryl substituted imidazoquinolines
EP2572714A1 (en) 2002-12-30 2013-03-27 3M Innovative Properties Company Immunostimulatory Combinations
EP1592302A4 (en) 2003-02-13 2007-04-25 3M Innovative Properties Co Methods and compositions related to irm compounds and toll-like receptor 8
EP1599726A4 (en) 2003-02-27 2009-07-22 3M Innovative Properties Co Selective modulation of tlr-mediated biological activity
US20040191833A1 (en) 2003-03-25 2004-09-30 3M Innovative Properties Company Selective activation of cellular activities mediated through a common toll-like receptor
JP2007514644A (en) 2003-04-10 2007-06-07 スリーエム イノベイティブ プロパティズ カンパニー Methods and compositions for improving immune response
AU2004244962A1 (en) 2003-04-10 2004-12-16 3M Innovative Properties Company Delivery of immune response modifier compounds using metal-containing particulate support materials
US20040265351A1 (en) 2003-04-10 2004-12-30 Miller Richard L. Methods and compositions for enhancing immune response
US20040214851A1 (en) 2003-04-28 2004-10-28 3M Innovative Properties Company Compositions and methods for induction of opioid receptors
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
MY157827A (en) 2003-06-27 2016-07-29 3M Innovative Properties Co Sulfonamide substituted imidazoquinolines
JP2007501252A (en) 2003-08-05 2007-01-25 スリーエム イノベイティブ プロパティズ カンパニー Formulation containing immune response modifier
PL1653959T3 (en) 2003-08-14 2015-10-30 3M Innovative Properties Co Lipid-modified immune response modifiers
WO2005019429A2 (en) 2003-08-22 2005-03-03 Potentia Pharmaceuticals, Inc. Compositions and methods for enhancing phagocytosis or phagocyte activity
MXPA06002199A (en) 2003-08-27 2006-05-22 3M Innovative Properties Co Aryloxy and arylalkyleneoxy substituted imidazoquinolines.
US20150071948A1 (en) 2003-09-26 2015-03-12 Gregory Alan Lazar Novel immunoglobulin variants
US8277810B2 (en) 2003-11-04 2012-10-02 Novartis Vaccines & Diagnostics, Inc. Antagonist anti-CD40 antibodies
WO2005051324A2 (en) 2003-11-25 2005-06-09 3M Innovative Properties Company Hydroxylamine and oxime substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
US20050158325A1 (en) 2003-12-30 2005-07-21 3M Innovative Properties Company Immunomodulatory combinations
US20060018911A1 (en) 2004-01-12 2006-01-26 Dana Ault-Riche Design of therapeutics and therapeutics
US8697873B2 (en) 2004-03-24 2014-04-15 3M Innovative Properties Company Amide substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines
EP1735010A4 (en) 2004-04-09 2008-08-27 3M Innovative Properties Co Methods, compositions, and preparations for delivery of immune response modifiers
AU2005249396B2 (en) 2004-05-05 2011-10-20 Merrimack Pharmaceuticals, Inc. Bispecific binding agents for modulating biological activity
WO2005123080A2 (en) 2004-06-15 2005-12-29 3M Innovative Properties Company Nitrogen-containing heterocyclyl substituted imidazoquinolines and imidazonaphthyridines
JP5128940B2 (en) 2004-06-18 2013-01-23 スリーエム イノベイティブ プロパティズ カンパニー Substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
WO2006052900A2 (en) 2004-11-09 2006-05-18 University Of Southern California Targeted innate immunity
EP1814908A4 (en) 2004-11-22 2009-07-01 Biosight Ltd Activated labeling reagents and methods for preparing and using the same
JP5543068B2 (en) 2004-12-30 2014-07-09 スリーエム イノベイティブ プロパティズ カンパニー Chiral fused [1,2] imidazo [4,5-c] cyclic compound
WO2006073921A2 (en) 2004-12-30 2006-07-13 The Rockefeller University Compositions and methods for enhanced dendritic cell maturation and function
CA2597092A1 (en) 2005-02-04 2006-08-10 Coley Pharmaceutical Group, Inc. Aqueous gel formulations containing immune reponse modifiers
JP2008532933A (en) 2005-02-11 2008-08-21 コーリー ファーマシューティカル グループ,インコーポレイテッド Substituted imidazoquinolines and substituted imidazonaphthyridines
EP1909812A4 (en) 2005-07-27 2009-11-25 Univ Florida Small compounds that correct protein misfolding and uses thereof
EP1931352B1 (en) 2005-08-22 2016-04-13 The Regents of The University of California Tlr agonists
SI1945665T1 (en) 2005-10-21 2012-03-30 Genzyme Corp Antibody-based therapeutics with enhanced adcc activity
US20080286819A1 (en) 2005-11-07 2008-11-20 Ravetch Jeffrey V Reagents, Methods and Systems for Selecting a Cytotoxic Antibody or Variant Thereof
EP3085373A1 (en) 2006-02-22 2016-10-26 3M Innovative Properties Company Immune response modifier conjugates
WO2007103048A2 (en) 2006-03-01 2007-09-13 Regents Of The University Of Colorado Tlr agonist (flagellin)/cd40 agonist/antigen protein and dna conjugates and use thereof for inducing synergistic enhancement in immunity
EP2019857B1 (en) 2006-05-03 2016-09-28 The Regents of the University of Colorado, a body corporate Cd40 agonist antibody/type1 interferon synergistic adjuvant combination, conjugates containing and use thereof as a therapeutic to enhance cellular immunity
US20080031887A1 (en) 2006-06-30 2008-02-07 Joseph Lustgarten Conjugates for inducing targeted immune responses and methods of making and using same
US20080031900A1 (en) 2006-06-30 2008-02-07 Baylor Research Institute Dendritic Cells Generated Using GM-CSF and Interferon Alpha and Loaded with Heat-Treated and Killed Cancer Cells
GB0614098D0 (en) 2006-07-15 2006-08-23 Mnl Pharma Ltd Immune response variegation with imino sugars
GB0620894D0 (en) 2006-10-20 2006-11-29 Univ Southampton Human immune therapies using a CD27 agonist alone or in combination with other immune modulators
US20080241139A1 (en) 2006-10-31 2008-10-02 Regents Of The University Of Colorado Adjuvant combinations comprising a microbial tlr agonist, a cd40 or 4-1bb agonist, and optionally an antigen and the use thereof for inducing a synergistic enhancement in cellular immunity
US20080149123A1 (en) 2006-12-22 2008-06-26 Mckay William D Particulate material dispensing hairbrush with combination bristles
CN101668777A (en) 2007-02-23 2010-03-10 贝勒研究院 Activation of human antigen-presenting cells through clec-6
EP2129773B1 (en) 2007-02-23 2013-02-13 Baylor Research Institute Therapeutic applications of activation of human antigen-presenting cells through dectin-1
KR101676622B1 (en) 2007-03-01 2016-11-17 심포젠 에이/에스 Recombinant anti-epidermal growth factor receptor antibody compositions
EP2170931A4 (en) 2007-06-15 2010-06-30 Immurx Inc Use of tlr agonists and/or type 1 interferons to alleviate toxicity of tnf-r agonist therapeutic regimens
CA2695385A1 (en) 2007-07-31 2009-02-05 Atul Bedi Polypeptide-nucleic acid conjugate for immunoprophylaxis or immunotherapy for neoplastic or infectious disorders
US20090155289A1 (en) 2007-11-01 2009-06-18 Steve Roberts Furin-cleavable peptide linkers for drug-ligand conjugates
US20100098657A1 (en) 2007-12-27 2010-04-22 Schafer Peter H Method of Treating Cancer with Immunomodulatory Compounds and IgG
CA2713137C (en) 2008-01-25 2017-10-24 Hadasit Medical Research Services And Development Ltd. Targeting of innate immune response to tumor site
CN107325182A (en) 2008-04-02 2017-11-07 宏观基因有限公司 HER2/neu specific antibodies and its application method
KR20210005318A (en) 2008-04-30 2021-01-13 이뮤노젠 아이엔씨 Cross-linkers and their uses
US20090325315A1 (en) 2008-06-30 2009-12-31 Arkray, Inc. Detection method of target substance, detection reagent used for the same, and the uses thereof
CA2733223C (en) 2008-08-05 2018-02-27 Toray Industries, Inc. Pharmaceutical composition comprising anti-caprin-1 antibody for treatment and prevention of cancers
US20100129383A1 (en) 2008-10-03 2010-05-27 The Governors Of The University Of Alberta Bifunctional fusion molecules for the delivery of antigens to professional antigen-presenting cells
WO2010121093A2 (en) 2009-04-17 2010-10-21 Lpath, Inc. Humanized antibody compositions and methods for binding lysophosphatidic acid
WO2010132622A2 (en) 2009-05-14 2010-11-18 The Regents Of The University Of California Anticd20-cpg conjugates and methods of treating b cell malignancies
AU2010284241B2 (en) 2009-08-18 2016-11-10 Array Biopharma, Inc. Substituted benzoazepines as Toll-like receptor modulators
AU2010284240B2 (en) 2009-08-18 2016-11-10 Array Biopharma, Inc. Substituted benzoazepines as Toll-like receptor modulators
EP2475391B1 (en) 2009-09-09 2018-09-12 Centrose, LLC Extracellular targeted drug conjugates
CA2772945A1 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Screening methods
GB0917044D0 (en) 2009-09-29 2009-11-18 Cytoguide As Agents, uses and methods
GB0917054D0 (en) 2009-09-29 2009-11-11 Cytoguide As Agents, uses and methods
US8518405B2 (en) 2009-10-08 2013-08-27 The University Of North Carolina At Charlotte Tumor specific antibodies and uses therefor
DK2532680T3 (en) 2010-02-04 2015-07-20 Toray Industries Medical composition for the treatment and / or prevention of cancer
DK2532366T3 (en) 2010-02-04 2017-01-02 Toray Industries PHARMACEUTICAL COMPOSITION FOR TREATMENT AND / OR CANCER PREVENTION
HUE030102T2 (en) 2010-02-04 2017-04-28 Toray Industries Pharmaceutical composition comprising anti caprin-1 antibodies for treating and/or preventing cancer
JP5742714B2 (en) 2010-02-04 2015-07-01 東レ株式会社 Pharmaceutical composition for treatment and / or prevention of cancer
JP5906739B2 (en) 2010-02-04 2016-04-20 東レ株式会社 Pharmaceutical composition for treatment and / or prevention of cancer
US9203872B2 (en) 2010-02-19 2015-12-01 Microsoft Technology Licensing, Llc Distributed connectivity policy enforcement with ICE
GB201003293D0 (en) 2010-02-26 2010-04-14 Adjuvantix Ltd Cancer vaccine
IL300733A (en) 2010-03-05 2023-04-01 Univ Johns Hopkins Compositions and methods for targeted immunomodulatory antibodies and fusion proteins
KR101958753B1 (en) 2010-04-13 2019-03-15 셀덱스 쎄라퓨틱스, 인크. Antibodies that bind human cd27 and uses thereof
US20120213771A1 (en) 2010-04-13 2012-08-23 Celldex Therapeutics Inc. Antibodies that bind human cd27 and uses thereof
KR20130036246A (en) 2010-05-07 2013-04-11 베일러 리서치 인스티튜트 Dendritic cell immunoreceptors (dcir)-mediated crosspriming of human cd8+ t cells
KR101848225B1 (en) 2010-05-14 2018-04-12 애브비 인코포레이티드 Il-1 binding proteins
WO2011155579A1 (en) 2010-06-10 2011-12-15 北海道公立大学法人札幌医科大学 ANTI-Trop-2 ANTIBODY
CA2804280A1 (en) 2010-07-09 2012-01-12 Biogen Idec Hemophilia Inc. Chimeric clotting factors
BR112013000951A2 (en) 2010-07-12 2016-05-17 Covx Technologies Ireland Ltd multifunctional antibody conjugates
TWI506035B (en) 2010-08-13 2015-11-01 Baylor Res Inst Novel vaccine adjuvants based on targeting adjuvants to antibodies directly to antigen-presenting cells
SG189071A1 (en) 2010-10-01 2013-05-31 Ventirx Pharmaceuticals Inc Therapeutic use of a tlr agonist and combination therapy
US20120328605A1 (en) 2010-10-27 2012-12-27 Daniel Larocque Compositions and uses
EP2638066A4 (en) 2010-11-09 2015-06-03 Medimmune Llc Antibody scaffold for homogenous conjugation
WO2012092552A1 (en) 2010-12-30 2012-07-05 Selecta Biosciences, Inc. Synthetic nanocarriers with reactive groups that release biologically active agents
US20120231023A1 (en) 2011-03-08 2012-09-13 Baylor Research Institute Novel Vaccine Adjuvants Based on Targeting Adjuvants to Antibodies Directly to Antigen-Presenting Cells
WO2012135132A1 (en) 2011-03-25 2012-10-04 Baylor Research Institute Compositions and methods to immunize against hepatitis c virus
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
US8728486B2 (en) 2011-05-18 2014-05-20 University Of Kansas Toll-like receptor-7 and -8 modulatory 1H imidazoquinoline derived compounds
WO2012166555A1 (en) 2011-05-27 2012-12-06 Nektar Therapeutics Water - soluble polymer - linked binding moiety and drug compounds
JP6415979B2 (en) 2011-06-03 2018-10-31 スリーエム イノベイティブ プロパティズ カンパニー Hydrazino 1H-imidazoquinolin-4-amine and complexes prepared therefrom
MX347240B (en) 2011-06-03 2017-04-20 3M Innovative Properties Co Heterobifunctional linkers with polyethylene glycol segments and immune response modifier conjugates made therefrom.
EP2718457A4 (en) 2011-06-06 2014-12-24 Immungene Inc Engineered antibody-tnfsf member ligand fusion molecules
US9409993B2 (en) 2011-08-04 2016-08-09 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prevention of pancreatic cancer
HUE033183T2 (en) 2011-08-04 2017-11-28 Toray Industries Cancer treatment and/or prevention drug composition
US9175074B2 (en) 2011-08-04 2015-11-03 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prophylaxis of cancer
AU2012290952B2 (en) 2011-08-04 2016-05-05 Toray Industries, Inc. Cancer treatment and/or prevention drug composition
JP6070191B2 (en) 2011-08-04 2017-02-01 東レ株式会社 Pharmaceutical composition for treatment and / or prevention of cancer
BR112014002616B1 (en) 2011-08-04 2022-01-18 Toray Industries, Inc METHOD TO DETECT PANCREATIC CANCER
CA2844038C (en) 2011-08-04 2019-05-07 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prophylaxis of cancer
GB201113570D0 (en) 2011-08-05 2011-09-21 Glaxosmithkline Biolog Sa Vaccine
AU2012296613B2 (en) 2011-08-15 2016-05-12 Amplimmune, Inc. Anti-B7-H4 antibodies and their uses
MX2014002363A (en) 2011-09-01 2014-04-14 Novartis Ag Adjuvanted formulations of staphylococcus aureus antigens.
JP2014527983A (en) 2011-09-19 2014-10-23 ザ ジョンズ ホプキンス ユニバーシティー Cancer immunotherapy
NL2007536C2 (en) 2011-10-05 2013-04-08 Academisch Ziekenhuis Leiden Lumc Adjuvant compound.
WO2013067597A1 (en) 2011-11-09 2013-05-16 Ascend Biopharmaceuticals Pty Ltd Immunomodulatory conjugates
RU2014116406A (en) 2011-11-11 2015-12-20 Ринат Ньюросайенс Корп. ANTIBODIES SPECIFIC TO TROP-2 AND THEIR APPLICATIONS
ES2721882T3 (en) 2011-12-23 2019-08-06 Pfizer Constant regions of genetically engineered antibody for site-specific conjugation and procedures and uses thereof
CA2863216C (en) 2012-01-09 2020-06-02 Covx Technologies Ireland Limited Mutant antibodies and conjugation thereof
PT2802606T (en) 2012-01-10 2018-07-13 Biogen Ma Inc Enhancement of transport of therapeutic molecules across the blood brain barrier
CN104185681A (en) 2012-02-01 2014-12-03 卡姆普根有限公司 C10RF32 antibodies, and uses thereof for treatment of cancer
JP6187255B2 (en) 2012-02-21 2017-08-30 東レ株式会社 Pharmaceutical composition for treatment and / or prevention of cancer
DK2818481T3 (en) 2012-02-21 2019-10-14 Toray Industries Pharmaceutical composition for the treatment and / or prevention of cancer
MX357505B (en) 2012-02-21 2018-07-12 Toray Industries Medicinal composition for treating and/or preventing cancer.
WO2013125640A1 (en) 2012-02-21 2013-08-29 東レ株式会社 Pharmaceutical composition for treatment and/or prevention of cancer
CN107496932A (en) 2012-02-27 2017-12-22 阿穆尼克斯运营公司 XTEN conjugate compositions and its method of manufacture
JP6107654B2 (en) 2012-03-30 2017-04-05 東レ株式会社 Pharmaceutical composition for treatment and / or prevention of liver cancer
KR102052400B1 (en) 2012-03-30 2019-12-06 도레이 카부시키가이샤 Pharmaceutical composition for treatment and/or prevention of gall bladder cancer
AU2013245645A1 (en) 2012-04-13 2014-11-13 Whitehead Institute For Biomedical Research Sortase- modified VHH domains and uses thereof
US9556167B2 (en) 2012-05-02 2017-01-31 Yale University TLR-agonist-conjugated antibody recruiting molecules (TLR-ARMs)
US9599622B2 (en) 2012-05-30 2017-03-21 Life Technologies Corporation Fluorogenic pH-sensitive dyes and their methods of use (II)
EP2674170B1 (en) 2012-06-15 2014-11-19 Invivogen Novel compositions of TLR7 and/or TLR8 agonists conjugated to lipids
UA114108C2 (en) 2012-07-10 2017-04-25 Борд Оф Ріджентс, Дзе Юніверсіті Оф Техас Сістем Monoclonal antibodies for use in diagnosis and therapy of cancers and autoimmune disease
CN112587671A (en) 2012-07-18 2021-04-02 博笛生物科技有限公司 Targeted immunotherapy for cancer
US9382329B2 (en) 2012-08-14 2016-07-05 Ibc Pharmaceuticals, Inc. Disease therapy by inducing immune response to Trop-2 expressing cells
US20140065096A1 (en) 2012-09-05 2014-03-06 Regen BioPharma, Inc. Cancer therapy by ex vivo activated autologous immune cells
PT2953976T (en) 2013-02-08 2021-06-23 Novartis Ag Specific sites for modifying antibodies to make immunoconjugates
EP2787005A1 (en) 2013-04-02 2014-10-08 Activartis Biotech GmbH Targeted cancer immune therapy
AR095882A1 (en) 2013-04-22 2015-11-18 Hoffmann La Roche ANTIBODY COMBINATION THERAPY AGAINST HUMAN CSF-1R WITH A TLR9 AGONIST
JP2016520574A (en) 2013-04-28 2016-07-14 秦剛 Novel linker, its production method and its application
WO2015014376A1 (en) 2013-07-31 2015-02-05 Biontech Ag Diagnosis and therapy of cancer involving cancer stem cells
TR201819812T4 (en) 2013-08-09 2019-01-21 Toray Industries Pharmaceutical Composition for Cancer Treatment and / or Prevention Purpose
CA2934030A1 (en) 2013-10-15 2015-04-23 Sorrento Therapeutics Inc. Drug-conjugates with a targeting molecule and two different drugs
GB201321242D0 (en) 2013-12-02 2014-01-15 Immune Targeting Systems Its Ltd Immunogenic compound
AU2014364606A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Combination therapy comprising OX40 binding agonists and PD-1 axis binding antagonists
EP3083692B1 (en) 2013-12-17 2020-02-19 F.Hoffmann-La Roche Ag Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
NZ721213A (en) 2013-12-25 2022-12-23 Daiichi Sankyo Co Ltd Anti-trop2 antibody-drug conjugate
EP3092255A4 (en) 2014-01-10 2017-09-20 Birdie Biopharmaceuticals Inc. Compounds and compositions for treating egfr expressing tumors
EP3096787A4 (en) 2014-01-22 2018-02-07 The Board of Trustees of the Leland Stanford Junior University Methods and compositions for antibody and antibody-loaded dendritic cell mediated therapy
JP6744227B2 (en) 2014-02-21 2020-08-19 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ(ウペエフエル)Ecole Polytechnique Federale de Lausanne (EPFL) Sugar-targeted therapeutic agent
JP2017509337A (en) 2014-03-12 2017-04-06 ノバルティス アーゲー Specific sites for modifying antibodies that make immunoconjugates
ES2940903T3 (en) 2014-03-19 2023-05-12 Genzyme Corp Site-specific glycomanipulation of targeting residues
CN106459205B (en) 2014-04-11 2021-04-09 免疫医疗有限责任公司 Conjugated compounds comprising cysteine engineered antibodies
BR112016017261B1 (en) 2014-04-22 2022-04-19 F. Hoffmann-La Roche Ag Compound, pharmaceutical composition, use of a compound and process for making a compound
AU2015252518B2 (en) 2014-04-29 2019-11-14 Genequantum Healthcare (Suzhou) Co., Ltd. New stable antibody-drug conjugate, preparation method therefor, and use thereof
US20170073415A1 (en) 2014-05-12 2017-03-16 Numab Ag Novel multispecific molecules and novel treatment methods based on such multispecific molecules
WO2015179734A1 (en) 2014-05-23 2015-11-26 Novartis Ag Methods for making conjugates from disulfide-containing proteins
US20170095573A1 (en) 2014-06-02 2017-04-06 Baylor Research Institute Methods and compositions for treating allergy and inflammatory diseases
EP3610924B1 (en) 2014-06-06 2021-11-03 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
CN112546230A (en) 2014-07-09 2021-03-26 博笛生物科技有限公司 Combination therapeutic compositions and combination therapeutic methods for treating cancer
JP6760919B2 (en) 2014-07-09 2020-09-23 バーディー バイオファーマシューティカルズ インコーポレイテッド Anti-PD-L1 combination for treating tumors
US20160015803A1 (en) 2014-07-18 2016-01-21 Ross Kedl Immunostimulatory combinations and use thereof
CN107108738A (en) 2014-07-25 2017-08-29 西托姆克斯治疗公司 Anti-cd 3 antibodies, it anti-cd 3 antibodies, polyspecific anti-cd 3 antibodies, polyspecific can be activated can activate anti-cd 3 antibodies and its application method
EP3182963A1 (en) 2014-08-20 2017-06-28 TU Eindhoven Ureidopyrimidone supramolecular complexes for compound delivery into cells
WO2016032009A1 (en) 2014-08-27 2016-03-03 Kyushu University, National University Corporation Adjuvant
CN112587672A (en) 2014-09-01 2021-04-02 博笛生物科技有限公司 anti-PD-L1 conjugates for the treatment of tumors
US9884866B2 (en) 2014-09-08 2018-02-06 Regents Of The University Of Minnesota Immunomodulators and immunomodulator conjugates
ES2774448T3 (en) 2014-10-03 2020-07-21 Novartis Ag Combination therapies
MA41044A (en) 2014-10-08 2017-08-15 Novartis Ag COMPOSITIONS AND METHODS OF USE FOR INCREASED IMMUNE RESPONSE AND CANCER TREATMENT
WO2016057618A1 (en) 2014-10-09 2016-04-14 Wake Forest University Health Sciences Vaccine compositions and methods of use to treat neonatal subjects
GB201418004D0 (en) 2014-10-10 2014-11-26 Isis Innovation Polymer adjuvant
CR20170143A (en) 2014-10-14 2017-06-19 Dana Farber Cancer Inst Inc ANTIBODY MOLECULES THAT JOIN PD-L1 AND USES OF THE SAME
US20190209704A1 (en) 2014-10-20 2019-07-11 Igenica Biotherapeutics, Inc. Novel antibody-drug conjugates and related compounds, compositions and methods of use
WO2016064899A1 (en) 2014-10-21 2016-04-28 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for antibody and antibody-loaded dendritic cell mediated therapy
EA035766B1 (en) 2014-11-21 2020-08-07 Бристол-Майерс Сквибб Компани Antibodies against cd73 and uses thereof
EP3223860A4 (en) 2014-11-25 2018-08-01 Endocyte, Inc. Methods of treating cancer by targeting tumor-associated macrophages
WO2016100882A1 (en) 2014-12-19 2016-06-23 Novartis Ag Combination therapies
US10682365B2 (en) 2014-12-31 2020-06-16 Checkmate Pharmaceuticals, Inc. Combination tumor immunotherapy
JP6676058B2 (en) 2015-01-14 2020-04-08 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Heteroarylene-bridged benzodiazepine dimers, conjugates thereof, and methods of making and using
CA2968141C (en) 2015-01-16 2020-08-04 Hsing-Mao CHU Molecular constructs with targeting and effector elements
AU2016209268B2 (en) 2015-01-21 2021-04-29 The Board Of Trustees Of The Leland Stanford Junior University Macrophages eat cancer cells using their own calreticulin as a guide
EP3268037B1 (en) 2015-03-09 2022-08-31 Celldex Therapeutics, Inc. Cd27 agonists
CN105968101B (en) 2015-03-12 2019-03-01 广东东阳光药业有限公司 Application as the compound of hepatitis c inhibitor and its in drug
SG11201707383PA (en) 2015-03-13 2017-10-30 Cytomx Therapeutics Inc Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof
SG11201707800QA (en) 2015-03-23 2017-10-30 Bayer Pharma AG Anti-ceacam6 antibodies and uses thereof
WO2016161372A1 (en) 2015-04-01 2016-10-06 President And Fellows Of Harvard College Immunoconjugates for programming or reprogramming of cells
JP6746845B2 (en) 2015-04-22 2020-08-26 イミューノメディクス、インコーポレイテッドImmunomedics, Inc. Isolation, detection, diagnosis and/or characterization of circulating TROP-2 positive cancer cells
SI3292149T1 (en) 2015-05-04 2022-04-29 Cytomx Therapeutics, Inc. Activatable anti-cd71 antibodies, and methods of use thereof
JP2018520092A (en) 2015-05-04 2018-07-26 サイトメックス セラピューティクス インコーポレイテッド Anti-ITGa3 antibody, activatable anti-ITGa3 antibody, and method of use thereof
JP7028648B2 (en) 2015-05-04 2022-03-02 サイトメックス セラピューティクス インコーポレイテッド Anti-CD166 antibody, activating anti-CD166 antibody, and how to use them
US20160324981A1 (en) 2015-05-08 2016-11-10 The California Institute For Biomedical Research Liver x receptor agonists and uses thereof
US10314854B2 (en) 2015-05-15 2019-06-11 University Of Iowa Foundation Methods for treating tumors in situ including intratumor injection of cytotoxic particles and immune checkpoint blockade therapy
CA2986486C (en) 2015-05-20 2023-03-07 Immunwork Inc. Molecular constructs with targeting and effector elements and their applications
CN107849614A (en) 2015-05-22 2018-03-27 拉筹伯大学 The method of Diagnosis of Breast cancer
MX2017014736A (en) 2015-05-29 2018-03-23 Genentech Inc Therapeutic and diagnostic methods for cancer.
HRP20230060T1 (en) 2015-05-29 2023-03-17 Bristol-Myers Squibb Company Antibodies against ox40 and uses thereof
US20180267024A1 (en) 2015-06-08 2018-09-20 Lophius Biosciences Gmbh Composition for determination of cell-mediated immune responsiveness
WO2015151078A2 (en) 2015-06-15 2015-10-08 Suzhou M-Conj Biotech Co., Ltd Hydrophilic linkers for conjugation
US10766962B2 (en) 2015-06-16 2020-09-08 The Regents Of The University Of California FZD7 specific antibodies and vaccines to treat cancer and control stem cell function
US10975112B2 (en) 2015-06-16 2021-04-13 Hangzhou Dac Biotech Co., Ltd. Linkers for conjugation of cell-binding molecules
WO2016205566A1 (en) 2015-06-16 2016-12-22 The Regents Of The University Of California Fzd7 specific antibodies and vaccines to treat cancer and control stem cell function
US20180296663A1 (en) 2015-06-17 2018-10-18 Curevac Ag Vaccine composition
GB201511546D0 (en) 2015-07-01 2015-08-12 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
EP3317246A4 (en) 2015-07-04 2019-02-27 Suzhou M-conj Biotech Co., Ltd. Specific conjugation of a cell-binding molecule
EP3319936A4 (en) 2015-07-12 2019-02-06 Suzhou M-conj Biotech Co., Ltd. Bridge linkers for conjugation of cell-binding molecules
CN108368170B (en) 2015-07-13 2022-04-15 西托姆克斯治疗公司 anti-PD-1 antibodies, activatable anti-PD-1 antibodies, and methods of use thereof
US9839687B2 (en) 2015-07-15 2017-12-12 Suzhou M-Conj Biotech Co., Ltd. Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule
EP4378957A2 (en) 2015-07-29 2024-06-05 Novartis AG Combination therapies comprising antibody molecules to pd-1
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
DK3317301T3 (en) 2015-07-29 2021-06-28 Immutep Sas COMBINATION THERAPIES INCLUDING ANTIBODY MOLECULES AGAINST LAYER-3
AU2016303497A1 (en) 2015-07-31 2018-03-01 Tarveda Therapeutics, Inc. Compositions and methods for immuno-oncology therapies
TW201716084A (en) 2015-08-06 2017-05-16 葛蘭素史克智慧財產發展有限公司 Combinations and uses and treatments thereof
EP3331612A4 (en) 2015-08-06 2019-07-03 Memorial Sloan Kettering Cancer Center Methods and compositions for tumor therapy
WO2015155753A2 (en) 2015-08-10 2015-10-15 Suzhou M-Conj Biotech Co., Ltd Novel linkers and their uses in specific conjugation of drugs to a biological molecule
CN108026092B (en) 2015-08-31 2021-01-26 3M创新有限公司 Guanidine-substituted imidazo [4,5-c ] ring compounds
CN107922416B (en) 2015-08-31 2021-07-02 3M创新有限公司 Imidazo [4,5-c ] ring compounds containing substituted guanidine groups
US9623118B2 (en) 2015-09-01 2017-04-18 Immunwork Inc. Multi-arm linker constructs for treating pathological blood clots
EP3347047A1 (en) 2015-09-09 2018-07-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Expression vector delivery system and use thereof for inducing an immune response
WO2017046675A1 (en) 2015-09-14 2017-03-23 Pfizer Inc. Novel imidazo [4,5-c] quinoline and imidazo [4,5-c][1,5] naphthyridine derivatives as lrrk2 inhibitors
US20180273948A1 (en) 2015-09-25 2018-09-27 Tarveda Therapeutics, Inc. RNAi CONJUGATES, PARTICLES AND FORMULATIONS THEREOF
CN108770357B (en) 2015-09-29 2022-10-28 芝加哥大学 Polymer conjugate vaccines
MA44334A (en) 2015-10-29 2018-09-05 Novartis Ag ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST
MX2018005544A (en) 2015-11-02 2019-07-18 Ventirx Pharmaceuticals Inc Use of tlr8 agonists to treat cancer.
US10988543B2 (en) 2015-11-11 2021-04-27 Opi Vi—Ip Holdco Llc Humanized anti-tumor necrosis factor alpha receptor 2 (anti-TNFR2) antibodies and methods of use thereof to elicit an immune response against a tumor
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
CA2949033A1 (en) 2015-11-30 2017-05-30 Pfizer Inc. Antibodies and antibody fragments for site-specific conjugation
US20170158772A1 (en) 2015-12-07 2017-06-08 Opi Vi - Ip Holdco Llc Compositions of antibody construct - agonist conjugates and methods of use thereof
WO2017100305A2 (en) 2015-12-07 2017-06-15 Opi Vi - Ip Holdco Llc Composition of antibody construct-agonist conjugates and methods of use thereof
CN108495651A (en) 2015-12-17 2018-09-04 诺华股份有限公司 The antibody molecule and application thereof of anti-PD-1
WO2017117269A1 (en) 2015-12-29 2017-07-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for dectin-2 stimulation and cancer immunotherapy
CN106943596A (en) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 Anti-CD 20 for treating tumour is combined
CN106943597A (en) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 Anti-EGFR for treating tumour is combined
CN106943598A (en) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 Anti- HER2 for treating tumour is combined
SG11201806594QA (en) 2016-02-04 2018-09-27 Suzhou M Conj Biotech Co Ltd Specific conjugation linkers, specific immunoconjugates thereof, methods of making and uses such conjugates thereof
AU2017238172B2 (en) 2016-03-21 2024-06-27 Marengo Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof
WO2017180834A1 (en) 2016-04-13 2017-10-19 Tarveda Therapeutics, Inc. Neurotensin receptor binding conjugates and formulations thereof
CA3021328A1 (en) 2016-04-18 2017-10-26 Celldex Therapeutics, Inc. Agonistic antibodies that bind human cd40 and uses thereof
JP7104633B6 (en) 2016-04-19 2023-12-22 イネイト・テューマー・イミュニティ・インコーポレイテッド NLRP3 modifier
WO2017184735A1 (en) 2016-04-19 2017-10-26 Ifm Therapeutics, Inc Nlrp3 modulators
HUE055972T2 (en) 2016-05-09 2022-01-28 Igm Biosciences Inc Anti-pd-l1 antibodies
US20200009262A1 (en) 2016-05-13 2020-01-09 Tarveda Therapeutics, Inc. Targeted constructs and formulations thereof
WO2017210246A2 (en) 2016-05-31 2017-12-07 Tarveda Therapeutics, Inc. Penicillamine conjugates and particles and formulations thereof
CA3028721A1 (en) 2016-06-20 2017-12-28 The Regents Of The University Of Michigan Compositions and methods for delivery of biomacromolecule agents
US10858483B2 (en) 2016-07-06 2020-12-08 University Of Maryland, College Park Polyphosphazene polyelectrolytes and uses thereof
WO2018009916A1 (en) 2016-07-07 2018-01-11 The Board Of Trustees Of The Leland Stanford Junior University Antibody adjuvant conjugates
EP3922279A1 (en) 2016-08-30 2021-12-15 Dana Farber Cancer Institute, Inc. Drug delivery compositions and uses thereof
WO2018045150A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. 4,6-diamino-pyrido[3,2-d]pyrimidine derivaties as toll like receptor modulators
EP3510036B1 (en) 2016-09-07 2021-07-21 GlaxoSmithKline Biologicals SA Imidazoquinoline derivatives and their use in therapy
RS62913B1 (en) 2016-09-09 2022-03-31 Novartis Ag Compounds and compositions as inhibitors of endosomal toll-like receptors
JP7265989B2 (en) 2016-10-25 2023-04-27 ウロゲン ファーマ リミテッド Immunomodulatory treatment of body cavities
US20200054762A1 (en) 2016-10-28 2020-02-20 Toray Industries, Inc. Pharmaceutical composition for cancer treatment and/or prevention
KR20220147720A (en) 2016-11-14 2022-11-03 항저우 디에이씨 바이오테크 씨오, 엘티디 Conjugation linkers, cell binding molecule-drug conjugates containing the likers, methods of making and uses such conjugates with the linkers
EP3554550A1 (en) 2016-12-13 2019-10-23 Bolt Biotherapeutics, Inc. Antibody adjuvant conjugates
JP7122758B2 (en) 2016-12-23 2022-08-22 アールイーエムディー バイオセラピューティクス,インコーポレイテッド Immunotherapy using antibodies that bind programmed death-1 (PD-1)
CN110337448B (en) 2016-12-23 2023-08-08 瑞美德生物医药科技有限公司 Immunotherapy using antibodies that bind to programmed death ligand 1 (PD-L1)
JP7250679B2 (en) 2017-01-10 2023-04-03 ネクター セラピューティクス Multi-arm polymer conjugates of TLR agonist compounds and related methods of immunotherapeutic treatment
EP3574018A4 (en) 2017-01-27 2020-10-07 Silverback Therapeutics, Inc. Tumor targeting conjugates and methods of use thereof
EP3576782A4 (en) 2017-02-02 2020-12-30 Silverback Therapeutics, Inc. Construct-peptide compositions and methods of use thereof
TWI674261B (en) 2017-02-17 2019-10-11 美商英能腫瘤免疫股份有限公司 Nlrp3 modulators
WO2018156617A2 (en) 2017-02-22 2018-08-30 The Regents Of The University Of Michigan Compositions and methods for delivery of polymer / biomacromolecule conjugates
BR112019018401A2 (en) 2017-03-06 2020-04-07 Merck Patent Gmbh aqueous formulation of anti-pd-l1 antibody
EP3595668B1 (en) 2017-03-15 2021-07-21 Silverback Therapeutics, Inc. Benzazepine compounds, conjugates, and uses thereof
SG11201908456VA (en) 2017-03-16 2019-10-30 Immunwork Inc Linker units and molecular constructs comprising same
US11464854B2 (en) 2017-03-23 2022-10-11 Children's Medical Center Corporation Methods and compositions relating to adjuvants
RU2019134273A (en) 2017-03-31 2021-04-30 Займворкс Инк. TUMOR ANTIGEN PRESENTATION INDUCTOR CONSTRUCTIONS AND THEIR USE
BR112019020853A2 (en) 2017-04-04 2020-05-12 Avidea Technologies, Inc. PEPTIDE BASED VACCINES, MANUFACTURING METHODS AND USES OF THE SAME TO INDUCT AN IMMUNE RESPONSE
KR20230074284A (en) 2017-04-06 2023-05-26 항저우 디에이씨 바이오테크 씨오, 엘티디 Conjugation of a cytotoxic drug with bis-linkage
US20180296685A1 (en) 2017-04-13 2018-10-18 Tarveda Therapeutics, Inc. Targeted constructs and formulations thereof
EP4218824A3 (en) * 2017-04-14 2023-08-09 Bolt Biotherapeutics, Inc. Immunoconjugate synthesis method
CN110709422B (en) 2017-04-19 2023-12-26 马伦戈治疗公司 Multispecific molecules and uses thereof
CN108794467A (en) 2017-04-27 2018-11-13 博笛生物科技有限公司 2- amino-quinoline derivatives
AR111651A1 (en) 2017-04-28 2019-08-07 Novartis Ag CONJUGATES OF ANTIBODIES THAT INCLUDE TOLL TYPE RECEIVER AGONISTS AND COMBINATION THERAPIES
AR111760A1 (en) 2017-05-19 2019-08-14 Novartis Ag COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF SOLID TUMORS THROUGH INTRATUMORAL ADMINISTRATION
JP2020521759A (en) 2017-05-26 2020-07-27 ザ・ジョンズ・ホプキンス・ユニバーシティ Multifunctional antibody-ligand trap for modulating immune tolerance
AU2018279105A1 (en) 2017-06-07 2019-12-19 Silverback Therapeutics, Inc. Antibody conjugates of immune-modulatory compounds and uses thereof
EP3634401A1 (en) 2017-06-07 2020-04-15 Silverback Therapeutics, Inc. Antibody construct conjugates
WO2018232725A1 (en) 2017-06-23 2018-12-27 Birdie Biopharmaceuticals, Inc. Pharmaceutical compositions
JP2020526482A (en) 2017-06-28 2020-08-31 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Methods and Compositions for Dectin-2 Stimulation and Cancer Immunotherapy
WO2019023622A1 (en) 2017-07-27 2019-01-31 The Board Of Trustees Of The Leland Stanford Junior University Polymeric nanoparticles for enhanced cancer immunotherapy
US10487084B2 (en) 2017-08-16 2019-11-26 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a heterobiaryl moiety, conjugates thereof, and methods and uses therefor
US10457681B2 (en) 2017-08-16 2019-10-29 Bristol_Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US10508115B2 (en) 2017-08-16 2019-12-17 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having heteroatom-linked aromatic moieties, conjugates thereof, and methods and uses therefor
US10472361B2 (en) 2017-08-16 2019-11-12 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a benzotriazole moiety, conjugates thereof, and methods and uses therefor
US10494370B2 (en) 2017-08-16 2019-12-03 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a pyridine or pyrazine moiety, conjugates thereof, and methods and uses therefor
JP7395471B2 (en) 2017-10-13 2023-12-11 オーセ イミュノセラピューティクス Modified anti-SIRPa antibody and its use
WO2019084060A1 (en) 2017-10-24 2019-05-02 Silverback Therapeutics, Inc. Conjugates and methods of use thereof for selective delivery of immune-modulatory agents
US10722591B2 (en) 2017-11-14 2020-07-28 Dynavax Technologies Corporation Cleavable conjugates of TLR7/8 agonist compounds, methods for preparation, and uses thereof
AU2018385693A1 (en) 2017-12-15 2020-06-18 Silverback Therapeutics, Inc. Antibody construct-drug conjugate for the treatment of hepatitis
US11866466B2 (en) 2017-12-19 2024-01-09 Blaze Bioscience, Inc. Tumor homing and cell penetrating peptide-immuno-oncology agent complexes and methods of use thereof
WO2019175218A1 (en) 2018-03-13 2019-09-19 Ose Immunotherapeutics Use of anti-human sirpa v1 antibodies and method for producing anti-sirpa v1 antibodies
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
EP3774798A1 (en) 2018-04-02 2021-02-17 Silverback Therapeutics, Inc. Alk5 inhibitors, conjugates, and uses thereof
CN108379591B (en) 2018-04-03 2022-03-29 深圳大学 Synthesis of immune agonist targeting compound and application thereof
WO2019209811A1 (en) 2018-04-24 2019-10-31 Bristol-Myers Squibb Company Macrocyclic toll-like receptor 7 (tlr7) agonists
US20210154316A1 (en) 2018-05-17 2021-05-27 Bolt Biotherapeutics, Inc. Immunoconjugates
CA3101640A1 (en) 2018-06-04 2019-12-12 Trustees Of Tufts College Tumor microenvironment-activated drug-binder conjugates, and uses related thereto
CN112771161A (en) 2018-07-09 2021-05-07 启德医药科技(苏州)有限公司 Antibodies specific for trophoblast cell surface antigen 2(TROP2)
US20210213010A1 (en) 2018-07-24 2021-07-15 Torque Therapeutics, Inc. Tlr7/8 agonists and liposome compositions
US11554120B2 (en) 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor
US20210187115A1 (en) 2018-08-29 2021-06-24 Bolt Biotherapeutics, Inc. Immunoconjugates Targeting EGFR
AU2019335366A1 (en) 2018-09-07 2021-03-25 Birdie Biopharmaceuticals, Inc. Imidazoquinoline compounds and uses thereof
WO2020056198A2 (en) 2018-09-12 2020-03-19 Silverback Therapeutics, Inc. Substituted benzazepine compounds, conjugates, and uses thereof
WO2020056194A1 (en) 2018-09-12 2020-03-19 Silverback Therapeutics, Inc. Benzazepine compounds, conjugates, and uses thereof
EP3849665A1 (en) 2018-09-12 2021-07-21 Silverback Therapeutics, Inc. Antibody conjugates of toll-like receptor agonists
EP3849615A1 (en) 2018-09-12 2021-07-21 Silverback Therapeutics, Inc. Compositions for the treatment of disease with immune stimulatory conjugates
EP3873532A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody drug conjugates
JP2022509929A (en) 2018-10-31 2022-01-25 ノバルティス アーゲー DC-SIGN antibody conjugate containing STING agonist
KR20210098488A (en) 2018-11-30 2021-08-10 브리스톨-마이어스 스큅 컴퍼니 Antibodies comprising a glutamine-containing light chain C-terminal extension, conjugates thereof, and methods and uses
US20220031860A1 (en) 2018-12-12 2022-02-03 Bristol-Myers Squibb Company Antibodies modified for transglutaminase conjugation, conjugates thereof, and methods and uses
JP2022516093A (en) 2018-12-26 2022-02-24 バーディー バイオファーマシューティカルズ インコーポレイテッド Combinations and methods of immunomodulators for the treatment of cancer
CN113543808A (en) 2019-01-04 2021-10-22 特瑞奥制药公司 Multispecific protein molecules and uses thereof
TW202042844A (en) 2019-01-04 2020-12-01 丹麥商阿仙帝斯製藥公司 Conjugates of pattern recognition receptor agonists
KR20210136014A (en) 2019-02-12 2021-11-16 암브룩스, 인코포레이티드 Compositions, methods and uses thereof containing antibody-TLR agonist conjugates
US20220226491A1 (en) 2019-03-15 2022-07-21 Bolt Biotherapeutics, Inc. Immunoconjugates Targeting PD-L1
US20220143012A1 (en) 2019-03-15 2022-05-12 Bolt Biotherapeutics, Inc. Macromolecule-Supported TLR Agonists
US20220152215A1 (en) 2019-03-15 2022-05-19 Bolt Biotherapeutics, Inc. Immunoconjugates Targeting CEA
US20220175762A1 (en) 2019-03-15 2022-06-09 Birdie Biopharmaceuticals, Inc. Immune modulatory compositions and methods for treating cancers
WO2020190725A1 (en) 2019-03-15 2020-09-24 Bolt Biotherapeutics, Inc. Immunoconjugates targeting her2
WO2020190731A1 (en) 2019-03-15 2020-09-24 Bolt Biotherapeutics, Inc. Immunoconjugates targeting her2
MX2021012035A (en) 2019-04-05 2022-03-11 Dren Bio Inc Methods of depleting disease causing agents via antibody targeted phagocytosis.
US11744876B2 (en) 2019-06-10 2023-09-05 Sutro Biopharma, Inc. Immunomodulator antibody drug conjugates and uses thereof
CA3142887A1 (en) 2019-06-13 2020-12-17 Bolt Biotherapeutics, Inc. Aminobenzazepine compounds, immunoconjugates, and uses thereof
EP3983080A1 (en) 2019-06-13 2022-04-20 Bolt Biotherapeutics, Inc. Macromolecule-supported aminobenzazepine compounds
JP2022536800A (en) 2019-06-17 2022-08-18 ストロ バイオファーマ インコーポレーテッド 1-(4-(aminomethyl)benzyl)-2-butyl-2H-pyrazolo[3,4-C]quinolin-4-amine derivatives and related compounds as TOLL-like receptor (TLR) 7/8 agonists, and antibody drug conjugates thereof for use in cancer therapy and diagnosis
US20220249685A1 (en) 2019-06-19 2022-08-11 Silverback Therapeutics, Inc. Anti-mesothelin antibodies and immunoconjugates thereof
US20210139477A1 (en) 2019-07-16 2021-05-13 Silverback Therapeutics, Inc. Alk5 inhibitors, conjugates, and uses thereof
US11339159B2 (en) 2019-07-17 2022-05-24 Pfizer Inc. Toll-like receptor agonists
JP2022543086A (en) 2019-08-02 2022-10-07 メルサナ セラピューティクス インコーポレイテッド Bis-[N-((5-carbamoyl)-1H-benzo[d]imidazol-2-yl)-pyrazole-5-carboxamide] derivatives as STING (interferon gene stimulator) agonists for the treatment of cancer and related Compound
CN114667134A (en) 2019-08-15 2022-06-24 希沃尔拜克治疗公司 Formulations of benzazepine conjugates and uses thereof
CA3148694A1 (en) 2019-09-03 2021-03-11 Romas Kudirka Aminoquinoline compounds, immunoconjugates, and uses thereof
WO2021046347A1 (en) 2019-09-04 2021-03-11 Bolt Biotherapeutics, Inc. Immunoconjugate synthesis method
WO2021061867A1 (en) 2019-09-23 2021-04-01 Cytomx Therapeutics, Inc. Anti-cd47 antibodies, activatable anti-cd47 antibodies, and methods of use thereof
AU2020357806A1 (en) 2019-09-30 2022-05-26 The Board Of Trustees Of The Leland Stanford Junior University Knottin-immunostimulant conjugates and related compositions and methods
WO2021067242A1 (en) 2019-09-30 2021-04-08 Bolt Biotherapeutics, Inc. Amide-linked, aminobenzazepine immunoconjugates, and uses thereof
AU2020358726A1 (en) 2019-10-01 2022-04-07 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
US20210130473A1 (en) 2019-10-09 2021-05-06 Silverback Therapeutics, Inc. TGFßR1 INHIBITOR-ASGR ANTIBODY CONJUGATES AND USES THEREOF
MX2022004875A (en) 2019-10-25 2022-06-17 Bolt Biotherapeutics Inc Thienoazepine immunoconjugates, and uses thereof.
JP2022554094A (en) 2019-10-25 2022-12-28 ボルト バイオセラピューティクス、インコーポレーテッド Polymer-supported thienoazepine compounds and uses thereof
EP4069683A1 (en) 2019-12-06 2022-10-12 Mersana Therapeutics, Inc. Dimeric compounds as sting agonists
IL293926A (en) 2019-12-17 2022-08-01 Pfizer Antibodies specific for cd47, pd-l1, and uses thereof
US20230256108A1 (en) 2019-12-31 2023-08-17 Genequantum Healthcare (Suzhou) Co., Ltd. A drug conjugate and applications thereof
CN114901694A (en) 2019-12-31 2022-08-12 启德医药科技(苏州)有限公司 anti-TROP 2 antibodies, antibody-drug conjugates, and uses thereof
CA3165347A1 (en) 2020-01-21 2021-07-29 Michael N. ALONSO Anti-pd-l1 antibodies
BR112022014358A2 (en) 2020-01-21 2022-09-13 Bolt Biotherapeutics Inc ANTI-PD-L1 ANTIBODIES
EP4106819A1 (en) 2020-02-21 2022-12-28 Silverback Therapeutics, Inc. Nectin-4 antibody conjugates and uses thereof
WO2021173832A1 (en) 2020-02-25 2021-09-02 Bolt Biotherapeutics, Inc. Cancer treatment methods
WO2021202921A1 (en) 2020-04-01 2021-10-07 Altimmune Uk Limited Imidazoquinoline-type compounds and uses thereof
KR20230008723A (en) 2020-04-10 2023-01-16 씨젠 인크. charge variant linker
CR20220582A (en) 2020-05-01 2023-01-09 Bolt Biotherapeutics Inc Anti-dectin-2 antibodies
CN115996756A (en) 2020-05-08 2023-04-21 博尔特生物治疗药物有限公司 Elastase substrate peptide linker immunoconjugates and uses thereof

Also Published As

Publication number Publication date
AU2020241686A1 (en) 2021-11-04
US11400164B2 (en) 2022-08-02
WO2020190725A1 (en) 2020-09-24
US20220001022A1 (en) 2022-01-06
CA3130794A1 (en) 2020-09-24
JP2022525594A (en) 2022-05-18
KR20220004634A (en) 2022-01-11
CN113993549A (en) 2022-01-28
EP3937984A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
US20220347311A1 (en) Immunoconjugates Targeting HER2
US20210187115A1 (en) Immunoconjugates Targeting EGFR
US20220226491A1 (en) Immunoconjugates Targeting PD-L1
US20220226492A1 (en) Immunoconjugates Targeting HER2
US20230293716A1 (en) Elastase-substrate, peptide linker immunoconjugates, and uses thereof
US20220152215A1 (en) Immunoconjugates Targeting CEA
US20230165968A1 (en) Cancer treatment methods
US20220313835A1 (en) Aminoquinoline compounds, immunoconjugates, and uses thereof
US20240033370A1 (en) Anti-pd-l1 immunoconjugates, and uses thereof
EP4313162A1 (en) 2-amino-4-carboxamide-benzazepine immunoconjugates, and uses thereof
US20240042050A1 (en) Anti-her2 immunoconjugates, and uses thereof
EP4259210A2 (en) Anti-cea immunoconjugates, and uses thereof
WO2024130003A1 (en) Cancer combination treatment method
US20240197899A1 (en) 2-amino-4-carboxamide-benzazepine immunoconjugates, and uses thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED