US20220267731A1 - Anti-robo1 car-t cell, and preparation and application thereof - Google Patents

Anti-robo1 car-t cell, and preparation and application thereof Download PDF

Info

Publication number
US20220267731A1
US20220267731A1 US17/732,581 US202217732581A US2022267731A1 US 20220267731 A1 US20220267731 A1 US 20220267731A1 US 202217732581 A US202217732581 A US 202217732581A US 2022267731 A1 US2022267731 A1 US 2022267731A1
Authority
US
United States
Prior art keywords
robo1
cell
scfv
fusion protein
car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/732,581
Inventor
Huashun LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asclepius Suzhou Technology Company Group Co Ltd
Original Assignee
Asclepius Suzhou Technology Company Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asclepius Suzhou Technology Company Group Co Ltd filed Critical Asclepius Suzhou Technology Company Group Co Ltd
Priority to US17/732,581 priority Critical patent/US20220267731A1/en
Assigned to ASCLEPIUS (SUZHOU) TECHNOLOGY COMPANY GROUP CO., LTD. reassignment ASCLEPIUS (SUZHOU) TECHNOLOGY COMPANY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, Huashun
Publication of US20220267731A1 publication Critical patent/US20220267731A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention is related to the field of cellular drug for tumor therapy, particularly to an Anti-ROBO1 CAR-T cell, and preparation and application thereof.
  • T lymphocytes recognize target cells through T cell receptors on their surfaces, this recognition is specific, that is, a T lymphocyte recognizes only target cells with specific antigens, and these specific antigens are presented to T lymphocytes through the action of special molecules after being processed in cells. These antigen-presenting molecules are either present on the surfaces of antigen presenting-cells or on the surfaces of target cells. There are at least two factors that cause T lymphocytes in vivo to be unable to recognize cancer cells very well: (1) cancer cells down-regulate the expression of antigen-presenting molecules, and (2) the binding affinities between the presented antigens and T cell receptors are weak. Although there are T lymphocytes highly specific to cancer cells in cancer patients, the number of T lymphocytes is too small to treat cancer.
  • the Chimeric Antigen Receptor is mainly composed of two parts, one end of which is located outside the cell that can specifically recognize an antigen on the surface of cancer cells, the other end of which is located in the cell that contains a signal activation element (such as a T cell receptor, Zeta chain), which acts to transmit signals to activate T cells. Therefore, the T-lymphocytes (CAR-T cells) expressing CAR can avoid the restrictions in recognition of the target cells by T cell, and therefore kill the target cancer cells.
  • CD19 CAR-T cells used in different clinical trials have been somewhat different, and clinical designs of CD19 CAR-T cells used in different clinical trials are also different. However, they were all reported to have significant effects.
  • the response rates for the treatment of relapsed or refractory lymphocytic leukemia can reach 60-90%, with some patients achieving sustained remission, the longest of which was up to 2 years. Now it is not yet known that how long the sustained remission of the CD19 CAR-T treatment can achieve, but it is certain that this kind of immunotherapy has brought effects which were unattainable previously to some patients.
  • Robo1 was over expressed in various types of cancers, such as hepatocellular carcinoma, breast cancer, colon cancer, pancreatic cancer, prostate cancer, glioma, and the like. Studies by Ito et al. showed that Robo1 was abundantly expressed in hepatocellular carcinoma but only expressed in a small amount in normal tissues, and 84.7% of liver cancer tissue samples showed positive expression. Therefore, Robo1 can be used as a new hepatocyte tumor-associated antigen, which is a potential therapeutic and diagnostic target. Test results of GRONE et al.
  • the extracellular domain of ROBO1 is composed of IG1-IG5 and FN3 domains, with the FN3 domain being proximal to the cell membrane. Therefore, the FN3 region is a preferred choice as an antigen when ROBO1 molecule is used as a target, so that when the CAR-T cells constructed by this method are in contact with tumor cells expressing ROBO1 molecule, the cells would be pulled together the closest to each other, and the killing effect would be better.
  • the specific structure is shown in FIG. 1 .
  • the main technical problem to be solved by the present invention is to provide an Anti-ROBO1 CAR-T cell, and preparation and application thereof, which is method for modifying and transforming T cells, so that the transformed T cells can specifically recognize and kill tumors, and the T cells prepared by the method have more efficient tumor killing activity.
  • one technical solution adopted by the present invention is to provide a CAR-T cell targeting the ROBO1 FN3 domain, wherein an SCFV-CD8TM-4-1BB-CD3 ⁇ fusion protein is expressed in the T cells.
  • the CAR-T cell is manufactured by:
  • step (1) (2) using a lentiviral envelop plasmid and the lentiviral expression vector of step (1) to infect a 293 T cell, packaging and preparing the virus;
  • the SCFV sequence molecule is expressed on a surface of the T lymphocyte, and the 4-1BB-CD3 ⁇ molecule transmits the activating signal inside the T cell.
  • amino acid sequence of SCFV in the SCFV-CD8TM-4-1BB-CD3 ⁇ fusion protein is SEQ ID NO:5; and the amino acid sequence of CD8 11 in the SCFV-CD8TM-4-1BB-CD3 ⁇ fusion protein is SEQ ID NO:1.
  • the amino acid sequence of 4-1BB in the SCFV-CD8TM-4-1BB-CD3 ⁇ fusion protein is SEQ ID NO:2; wherein the 4-1BB in the SCFV-CD8TM-4-1BB-CD3 ⁇ fusion protein can be replaced by CD28 that has the amino acid sequence of SEQ ID NO:3.
  • the amino acid sequence of CD3 ⁇ in the SCFV-CD8-4-1BB-CD3 ⁇ fusion protein is SEQ ID NO:4; and the T cell is derived from human periphery blood T lymphocytes.
  • amino acid sequence of the SCFV-CD8TM-4-1BB-CD3 ⁇ fusion protein is SEQ ID NO:6.
  • the CAR-T cell is used in the preparation anti-tumor drugs.
  • the CAR-T cell is used in preparation of the therapeutic drugs that target tumors with high expression of ROBO1.
  • the beneficial effects of the present invention are: in the Anti ROBO1 CAR-T cells of the present invention, and in the preparation and application thereof, ROBO1 antibody is used for the construction of CART cells, and the ROBO1 molecule is proposed as target antigen, and the Anti ROBO1 CART cells are used to kill tumor cells.
  • the Anti ROBO1 CART cells are used as a cellular drug for the treatment of tumor diseases, which can be used for the treatment of tumors with high expression levels of ROBO1 molecules.
  • FIG. 1 illustrates a schematic diagram of the structure of the ROBO1 molecule of the present invention
  • FIG. 2 illustrates a map of the PRRLSIN-SCFV (anti ROBO1-FN3) lentiviral plasmid vector of the present invention
  • FIG. 3 illustrates a flow cytometry result of the MCF7/ROBO1 engineering cell line with high expression of ROBO1 of the present invention.
  • FIG. 4 illustrates a result of the CAR-T killing experiment in vitro of the present invention
  • FIG. 5 illustrates a result of the killing effect of CAR-T cells in vitro under different effect-target ratio conditions of the present invention.
  • Solution A 6.25 ml of 2 ⁇ HEPES buffer (using 5 large dishes which are packed together could achieve the best effects).
  • Solution B adding the following plasmids respectively, and mixing: 112.5 ug of pRRLSIN-EF-ROBO1 (target plasmid); 39.5 ug of pMD2.G (VSV-G envelop); 73 ug of pCMVR8.74 (gag, pol, tat, rev); 625 ⁇ l of 2M calcium ion solution. Total volume of solution A: 6.25 ml.
  • the solution B was mixed completely, and the solution A was added dropwise when the solution A was gently rocked, then let the solution sit for 5-15 minutes.
  • the above mixed solution of A and B was gently rocked and added to the petri dish containing 293T cells dropwise, then the culture dish was gently shaken back and forth to distribute the mixture of DNA and calcium ions evenly.
  • the culture dish was placed in an incubator to incubate for 16-18 hours (do not rotate the culture dish).
  • the supernatant was centrifuged at 500 g for 10 minutes at 10° C., followed by being filtered with PES membrane (0.45 ⁇ m).
  • Beckman Coulter Ultra-clear SW28 centrifuge tubes were sterilized with 70% ethanol, and sterilized under UV light for 30 minutes. The filtered supernatant containing lentivirus was transferred to a centrifuge tube.
  • the centrifuge tube was carefully taken out and poured off the supernatant, followed by being inverted to remove residual liquid.
  • 100 ⁇ l of PBS was added in the centrifuge tube and sealed, then placed at 4° C. for 2 hours, gently rocked once per 20 minutes during the time, followed by being centrifuged for 1 minute (25° C.:) at 500 g, and the virus supernatant was collected. After being cooled on ice, the virus supernatant was stored at ⁇ 80° C.
  • heparin bottle heparin anticoagulation
  • HIV-1/2 HIV-1/2
  • Treponema pallidum and parasites 50 ml of blood was collected with heparin bottle (heparin anticoagulation) under sterile conditions, and immediately (4° C., within 24 hours) sent to the cell preparation laboratory to ensure that this process was free of pathogenic microbial contamination.
  • the surface of the heparin bottle was wiped with an alcohol cotton ball for disinfection in the GMP preparation room, then the heparin bottle was placed in a biological safety cabinet.
  • Two 50 ml centrifuge tubes were opened in advance, and the blood was transferred into the two 50 ml centrifuge tubes and tightened up.
  • the above 50 ml centrifuge tubes filled with blood were placed in a centrifuge and centrifuged at 400 g (2000 rpm) for 10 min at room temperature, then the supernatant plasma was collected and the precipitate layer was removed after centrifugation.
  • the collected autologous plasma was inactivated at 56° C. for 30 minutes. After being stood for 15 minutes at 4′C, the collected autologous plasma was centrifuged at 900 g for 30 min at 4° C. to take the supernatant for use.
  • the enriched blood cells above were diluted to 30 ml/tube with physiological saline, and two new 50 ml centrifuge tubes were opened, then 15 ml of human lymphocyte separation liquid was added to each centrifuge tube.
  • the diluted blood cell solution was slowly added to the centrifuge tube which contains the human lymphatic separation solution with a pipette, and tightened up. It was noted that the blood should be added to the upper layer of the lymphatic separation solution, and the interface of the human lymphatic separation solution should not be broken.
  • the added blood cell solution was placed in a centrifuge which was adjusted to a minimum rate of rise and fall, then the added blood cell solution was centrifuged at 400 g (2000 rpm) for 20 min at room temperature.
  • the middle white blood cell layer of two tubes was collected in a 15 ml sterile centrifuge tube, and 5 ml of physiological saline was added, and then washed twice (Centrifuging the collected middle white blood cell layer at 400 g for 10 minutes) to obtain peripheral blood mononuclear cells (PBMC).
  • PBMC peripheral blood mononuclear cells
  • the beads were suck from the EP tube for 1 min with magnet and washing solution was discarded, which was repeated twice, Then the beads were re-suspended to the original volume using the medium, and the cells and beads were mixed, followed by being added in a suitable culture bottle in 2 ⁇ 10 6 PBMC/ML.
  • the density of the cell was adjusted to 3-5 ⁇ 10 6 /ml, and the virus vector was added in the proportion of virus vector:cell of 1:5, meanwhile, 4 ug/ml and 40 ng/ml IL ⁇ 2 polybrene were added. After 4 hours, fresh complete medium was added, and the density of the cell was adjusted to 1 ⁇ 10 6 /ml to continuous culture.
  • LDH release assay was used to detect the killing effect of Anti ROBO1-FN3-CART cells on engineered cell line MCF-1/ROBO1 and hepatoma cell line SMCC7721 with high Robo1-expressing.
  • ELISA was used to detect LDH release.
  • CD8TM SEQ ID NO: 1 is: IYIWAPLAGTCGVLLLSLVITLYC
  • 4-1BB SEQ ID NO: 2 is: KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
  • CD28 SEQ ID NO: 3 is: RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS
  • CD3 ⁇ SEQ ID NO: 4 is: RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK DTYDALHMQALPPR
  • SCFV (Anti ROBO1-FN3) SEQ ID NO: 5 is: IQMTQTTSSLSASLGDRVTISCRASQDISNFLNWYQQKPDGTVKLLIYYY

Abstract

Provided is a method for modifying a chimeric antigen receptor-modified T cell (CAR-T cell). The method comprises expressing an ScFv-CD8-4-1 BB-CD3ζ molecule in a T cell. The CAR-T cell prepared using the method can specifically recognize and bind to a tumor cell with elevated expression of a ROBO1 protein, and can be used to prevent and treat a corresponding tumor-related disease

Description

    FIELD OF THE INVENTION
  • The present invention is related to the field of cellular drug for tumor therapy, particularly to an Anti-ROBO1 CAR-T cell, and preparation and application thereof.
  • BACKGROUND OF THE INVENTION
  • Human T lymphocytes recognize target cells through T cell receptors on their surfaces, this recognition is specific, that is, a T lymphocyte recognizes only target cells with specific antigens, and these specific antigens are presented to T lymphocytes through the action of special molecules after being processed in cells. These antigen-presenting molecules are either present on the surfaces of antigen presenting-cells or on the surfaces of target cells. There are at least two factors that cause T lymphocytes in vivo to be unable to recognize cancer cells very well: (1) cancer cells down-regulate the expression of antigen-presenting molecules, and (2) the binding affinities between the presented antigens and T cell receptors are weak. Although there are T lymphocytes highly specific to cancer cells in cancer patients, the number of T lymphocytes is too small to treat cancer. Based on this situation, scientists have proposed the concept of constructing a chimeric T cell receptor (now commonly referred to as a Chimeric antigen receptor). The Chimeric Antigen Receptor (CAR) is mainly composed of two parts, one end of which is located outside the cell that can specifically recognize an antigen on the surface of cancer cells, the other end of which is located in the cell that contains a signal activation element (such as a T cell receptor, Zeta chain), which acts to transmit signals to activate T cells. Therefore, the T-lymphocytes (CAR-T cells) expressing CAR can avoid the restrictions in recognition of the target cells by T cell, and therefore kill the target cancer cells.
  • Currently, clinical trials of CAR-T therapy are growing rapidly, most of which are evaluations of the treatment of B-cell malignancy. Most malignant B cell and normal B cells express the CD19 antigen, but other types of cells do not have CD19, so CD19 is a good therapeutic target. The compositions of CD19 CAR-T cells used in different clinical trials have been somewhat different, and clinical designs of CD19 CAR-T cells used in different clinical trials are also different. However, they were all reported to have significant effects. The response rates for the treatment of relapsed or refractory lymphocytic leukemia can reach 60-90%, with some patients achieving sustained remission, the longest of which was up to 2 years. Now it is not yet known that how long the sustained remission of the CD19 CAR-T treatment can achieve, but it is certain that this kind of immunotherapy has brought effects which were unattainable previously to some patients.
  • In addition to focusing on hematologic tumors, researchers also have been trying to extend CAR-T treatment to solid tumors. The results of the clinical trials have shown that GD2-specific CAR-T had certain effects on neuroblastoma, whereas there are no therapeutic effects of the aFR-specific CAR-T cells on ovarian cancer, CAIX-specific CAR-T cells on renal cell carcinoma, and PSMA-specific CAR-T cells on prostatic cancer. Carl H June et al. from the Pennsylvania University reported the treatment results of refractory and metastatic pancreatic ductal adenocarcinoma with mesothelin-specific CAR-T cells at the American Society of Clinical Oncology's annual meeting in 2015. The results showed that the patients had good tolerance for CAR-T cells and no cytokine syndrome occurred, CAR-T cells could be detected in the peripheral blood for a short period of time, and the conditions of 2 patients were stabilized. Therefore, the use of CAR-T for the treatment of solid tumors is still in an early stage, and there are still many problems to be solved.
  • Histopathological examination revealed that Robo1 was over expressed in various types of cancers, such as hepatocellular carcinoma, breast cancer, colon cancer, pancreatic cancer, prostate cancer, glioma, and the like. Studies by Ito et al. showed that Robo1 was abundantly expressed in hepatocellular carcinoma but only expressed in a small amount in normal tissues, and 84.7% of liver cancer tissue samples showed positive expression. Therefore, Robo1 can be used as a new hepatocyte tumor-associated antigen, which is a potential therapeutic and diagnostic target. Test results of GRONE et al. showed that the cancerous tissues of 80% of colon cancer patients had high expression level of Robo1 mRNA, in 45% of the patients, the expression levels were 4 times over those in normal tissues, and in 15% of the patients, the expression levels were 12 times over those in normal tissues. Therefore, Robo1 can provide a new potential target for the treatment of colon cancer. Compared with pancreatic ductal carcinoma to its surrounding benign tissue, He et al. found that Robo1 was up-regulated in cancer tissues, and this kind of up-regulation may be associated with lymphatic metastasis of pancreatic cancer cells. Studies by Huang et al also showed that Robo1 was related to the migration of colon cancer.
  • The extracellular domain of ROBO1 is composed of IG1-IG5 and FN3 domains, with the FN3 domain being proximal to the cell membrane. Therefore, the FN3 region is a preferred choice as an antigen when ROBO1 molecule is used as a target, so that when the CAR-T cells constructed by this method are in contact with tumor cells expressing ROBO1 molecule, the cells would be pulled together the closest to each other, and the killing effect would be better. The specific structure is shown in FIG. 1.
  • SUMMARY OF THE INVENTION
  • The main technical problem to be solved by the present invention is to provide an Anti-ROBO1 CAR-T cell, and preparation and application thereof, which is method for modifying and transforming T cells, so that the transformed T cells can specifically recognize and kill tumors, and the T cells prepared by the method have more efficient tumor killing activity.
  • In order to solve the above technical problem, one technical solution adopted by the present invention is to provide a CAR-T cell targeting the ROBO1 FN3 domain, wherein an SCFV-CD8™-4-1BB-CD3ζ fusion protein is expressed in the T cells.
  • In a preferred embodiment of the present invention, the CAR-T cell is manufactured by:
  • (1) synthesizing and amplifying the gene encoding the SCFV-CD8™-4-1BB-CD3ζ and cloning the gene encoding the SCFV-CD8™-4-1BB-CD3ζ fusion protein into a lentiviral expression vector;
  • (2) using a lentiviral envelop plasmid and the lentiviral expression vector of step (1) to infect a 293 T cell, packaging and preparing the virus;
      • (3) isolating and expanding human peripheral blood T lymphocytes and infecting the T lymphocytes with the lentivirus of step (2) to obtain the CAR-T cells expressing the ScFv-CD8™-4-1BB-CD3ζ fusion protein.
  • In a preferred embodiment of the present invention, the SCFV sequence molecule is expressed on a surface of the T lymphocyte, and the 4-1BB-CD3ζ molecule transmits the activating signal inside the T cell.
  • In a preferred embodiment of the present invention, the amino acid sequence of SCFV in the SCFV-CD8™-4-1BB-CD3ζ fusion protein is SEQ ID NO:5; and the amino acid sequence of CD811 in the SCFV-CD8™-4-1BB-CD3ζ fusion protein is SEQ ID NO:1.
  • In a preferred embodiment of the present invention, the amino acid sequence of 4-1BB in the SCFV-CD8™-4-1BB-CD3ζ fusion protein is SEQ ID NO:2; wherein the 4-1BB in the SCFV-CD8™-4-1BB-CD3ζ fusion protein can be replaced by CD28 that has the amino acid sequence of SEQ ID NO:3.
  • In a preferred embodiment of the invention, the amino acid sequence of CD3ζ in the SCFV-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:4; and the T cell is derived from human periphery blood T lymphocytes.
  • In a preferred embodiment of the invention, the amino acid sequence of the SCFV-CD8™-4-1BB-CD3ζ fusion protein is SEQ ID NO:6.
  • In a preferred embodiment of the invention, the CAR-T cell is used in the preparation anti-tumor drugs.
  • In a preferred embodiment of the invention, the CAR-T cell is used in preparation of the therapeutic drugs that target tumors with high expression of ROBO1.
  • The beneficial effects of the present invention are: in the Anti ROBO1 CAR-T cells of the present invention, and in the preparation and application thereof, ROBO1 antibody is used for the construction of CART cells, and the ROBO1 molecule is proposed as target antigen, and the Anti ROBO1 CART cells are used to kill tumor cells. In addition, the Anti ROBO1 CART cells are used as a cellular drug for the treatment of tumor diseases, which can be used for the treatment of tumors with high expression levels of ROBO1 molecules.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the figures used in the description of the embodiments will be briefly described below. It is obvious that the figures in the following description are only some embodiments of the present invention. For a person of ordinary skills in the art, other figures can be obtained based on these figures without any creative work. The figures include:
  • FIG. 1 illustrates a schematic diagram of the structure of the ROBO1 molecule of the present invention;
  • FIG. 2 illustrates a map of the PRRLSIN-SCFV (anti ROBO1-FN3) lentiviral plasmid vector of the present invention;
  • FIG. 3 illustrates a flow cytometry result of the MCF7/ROBO1 engineering cell line with high expression of ROBO1 of the present invention.
  • FIG. 4 illustrates a result of the CAR-T killing experiment in vitro of the present invention;
  • FIG. 5 illustrates a result of the killing effect of CAR-T cells in vitro under different effect-target ratio conditions of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The technical solutions in the embodiments of the present invention are clearly and completely described below. It is obvious that the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments are obtained by a person skilled in the art without any creative work is within the scope of the protection of the present invention.
  • Example 1: Preparation of a Lentiviral Expression Vector
  • Synthesizing the gene encoding the SCFV (Anti ROBO1-FN3)-CD8-4-1BB-CD3ζ, wherein the gene sequence is SEQ ID NO:7, then the gene was ligated into the PRRSLIN vector by restriction enzyme and transformation, and the upstream of the gene is EP-1α, promote. The vector was transformed into Stbl3 Escherichia coli strain and screened by ampicillin to obtain positive clones, then the plasmids were extracted and identified by restriction enzyme digestion, and PRRLSIN-SCFV (anti ROBO1-FN3) lentiviral transfection vector was obtain, the structure of which is as shown in FIG. 2.
  • Embodiment 2: Preparation of Lentivirus
  • (1) Twenty-four hours before transfection, seeding 293T cells into 15 cm culture dishes at a cell density of approximately 8×106 cell per dish, which could ensure that the cells were at about 80% of confluence and evenly distributed in the culture dish during transfection.
  • (2) Prepare solution A and solution B
  • Solution A: 6.25 ml of 2×HEPES buffer (using 5 large dishes which are packed together could achieve the best effects).
  • Solution B: adding the following plasmids respectively, and mixing: 112.5 ug of pRRLSIN-EF-ROBO1 (target plasmid); 39.5 ug of pMD2.G (VSV-G envelop); 73 ug of pCMVR8.74 (gag, pol, tat, rev); 625 μl of 2M calcium ion solution. Total volume of solution A: 6.25 ml.
  • The solution B was mixed completely, and the solution A was added dropwise when the solution A was gently rocked, then let the solution sit for 5-15 minutes. The above mixed solution of A and B was gently rocked and added to the petri dish containing 293T cells dropwise, then the culture dish was gently shaken back and forth to distribute the mixture of DNA and calcium ions evenly. The culture dish was placed in an incubator to incubate for 16-18 hours (do not rotate the culture dish).
  • Fresh medium was replaced and continued incubating, then the supernatant containing virus was collected after 48 hours and 72 hours, respectively. The supernatant containing virus was observed by fluorescence microscopy, more than 95% of the cells should show green fluorescence. The supernatant was centrifuged at 500 g for 10 minutes at 10° C., followed by being filtered with PES membrane (0.45 μm). Beckman Coulter Ultra-clear SW28 centrifuge tubes were sterilized with 70% ethanol, and sterilized under UV light for 30 minutes. The filtered supernatant containing lentivirus was transferred to a centrifuge tube. A layer of 20% sucrose was carefully spread on the bottom of the centrifuge tube (1 ml of sucrose was added per 8 ml of supernatant). The centrifuge tube was equilibrated with PBS, and centrifuged the supernatant at 25,000 rpm (82,700 g) for 2 hours at 4° C.
  • The centrifuge tube was carefully taken out and poured off the supernatant, followed by being inverted to remove residual liquid. 100 μl of PBS was added in the centrifuge tube and sealed, then placed at 4° C. for 2 hours, gently rocked once per 20 minutes during the time, followed by being centrifuged for 1 minute (25° C.:) at 500 g, and the virus supernatant was collected. After being cooled on ice, the virus supernatant was stored at −80° C.
  • Embodiment 3
  • Preparation of Anti ROBO1-FN3-CART Cells:
  • 0.5 ml of blood was taken, and tested for pathogenic microorganisms rapidly to exclude microbial infections such as HBV, HCV, HDV and HEV, HIV-1/2, Treponema pallidum and parasites; 50 ml of blood was collected with heparin bottle (heparin anticoagulation) under sterile conditions, and immediately (4° C., within 24 hours) sent to the cell preparation laboratory to ensure that this process was free of pathogenic microbial contamination. After obtaining the patient's blood, the surface of the heparin bottle was wiped with an alcohol cotton ball for disinfection in the GMP preparation room, then the heparin bottle was placed in a biological safety cabinet. Two 50 ml centrifuge tubes were opened in advance, and the blood was transferred into the two 50 ml centrifuge tubes and tightened up. The above 50 ml centrifuge tubes filled with blood were placed in a centrifuge and centrifuged at 400 g (2000 rpm) for 10 min at room temperature, then the supernatant plasma was collected and the precipitate layer was removed after centrifugation. The collected autologous plasma was inactivated at 56° C. for 30 minutes. After being stood for 15 minutes at 4′C, the collected autologous plasma was centrifuged at 900 g for 30 min at 4° C. to take the supernatant for use. The enriched blood cells above were diluted to 30 ml/tube with physiological saline, and two new 50 ml centrifuge tubes were opened, then 15 ml of human lymphocyte separation liquid was added to each centrifuge tube. The diluted blood cell solution was slowly added to the centrifuge tube which contains the human lymphatic separation solution with a pipette, and tightened up. It was noted that the blood should be added to the upper layer of the lymphatic separation solution, and the interface of the human lymphatic separation solution should not be broken. The added blood cell solution was placed in a centrifuge which was adjusted to a minimum rate of rise and fall, then the added blood cell solution was centrifuged at 400 g (2000 rpm) for 20 min at room temperature. The middle white blood cell layer of two tubes was collected in a 15 ml sterile centrifuge tube, and 5 ml of physiological saline was added, and then washed twice (Centrifuging the collected middle white blood cell layer at 400 g for 10 minutes) to obtain peripheral blood mononuclear cells (PBMC). Complete growth medium was made, the concentration of V-VIVO15 added autologous AB (FBS) was 5%, the concentration of IL-2 was 40 ng/ml, and the isolated PBMC was diluted to 2×106/ml with medium, then 50 ul was taken, and the T cells purity of PBMC was detected by flow cytometer on 0 day, Buffer1 was made that, 1% FBS was added to PBS and the beads were rocked for 30 s or manually shaken up and down for 5 min. CD3/CD28 beads were taken out according to the ratio of beads to T cells of 3-1, and the beads were put in 1.5 ml EP tube, followed by adding 1 ml buffer1 to clean the beads. After that, The beads were suck from the EP tube for 1 min with magnet and washing solution was discarded, which was repeated twice, Then the beads were re-suspended to the original volume using the medium, and the cells and beads were mixed, followed by being added in a suitable culture bottle in 2×106 PBMC/ML. On the second day, the density of the cell was adjusted to 3-5×106/ml, and the virus vector was added in the proportion of virus vector:cell of 1:5, meanwhile, 4 ug/ml and 40 ng/ml IL−2 polybrene were added. After 4 hours, fresh complete medium was added, and the density of the cell was adjusted to 1×106/ml to continuous culture. All the cells were centrifuged, and fresh medium was added to continuous culture. Half a volume change replaced per 2-3 days to maintain the density of the cell in 0.5-1×106/ml. When the number of cells reached 10′ in the period of 10-12 days, the cells were centrifuged at 400 g for 5 min to get inunue cells, followed by being washed twice with pre-cooled PBS (400 g, 5 min). The cells were count by a hemocytometer, and the cell group and the proportion of CART cells were detected by flow cytometer. The color change, cell density, and cell morphology of the medium were observed daily and recorded accordingly. The interleukin 2 which is required by total volume was added in the process of gradually expanding cultivation.
  • Embodiment 4
  • Construction and Detection of Engineering Cell Lines:
  • (1) Preparation of engineering cell line lentivirus with high expression Robo1 FN3 (the specific preparing method is also the method in the second embodiment);
  • (2) Infection of MCF cells: 500,000 MCF7 cells were inoculated in 6-well plates the day before infection. When the cells grow to 80% on the next day, 500 μl of packaged ROBO1 virus was added in a 6-well plate, meanwhile control cell (no virus added) was set, culture medium was changed after 12-16 hours, and then the positive cells of Robo1 were sorted by flow cytometer 3 days after infection;
  • (3) Detection of engineered cell lines: 20,000 cells were taken from the sorted positive cells of Robo1, followed by being centrifuged at 400 g for 5 min, then washed twice with pre-cooled PBS, and 2.5 μl of Robo1 antibody (Biolegend) was added and incubated in the dark for 20 min, after that, centrifuged and washed once with pre-cooled PBS, then the cells was re-suspended in 100 μl PBS, and the expression of Robo1 was detected by flow cytometer (see FIG. 3). The experimental results confirmed that the engineered cell lines were successfully constructed, which can be used as a target cell for subsequent killing experiments.
  • Embodiment 5
  • Activity Assay of Anti ROBO1-FN3-CART Cells In Vitro:
  • LDH release assay was used to detect the killing effect of Anti ROBO1-FN3-CART cells on engineered cell line MCF-1/ROBO1 and hepatoma cell line SMCC7721 with high Robo1-expressing. ELISA was used to detect LDH release.
  • (1) Adjusting the target cells to 5×104/ml with RPMI-1640 medium containing 5% calf serum.
  • (2) Adding target cells to 96-well cell culture plates, and adding 100 μl to each well. Three effector cells naturally released control wells were only added 100 μl of culture solution without adding target cells.
  • (3) Adding 100 μl of effector cells to each well, and the ratio of effector cells to target cells was 50:1; 25:1; 10:1; 5:1; or 1:1. Natural release wells were only added 100 μl of culture medium without effector cells, and incubating the effector cells with the target cells for 6 hours, meanwhile, setting up three replicate wells for each experiment.
  • (4) Adding 10 μl Lysis Solution (10×) to the largest release well (positive control), and incubating for 45 min-60 min. Meanwhile, placing three replicate wells each experiment.
  • (5) Taking out 50 ul of the test sample and the control sample in the above 3 and 4 steps, respectively, and adding in the fresh 96-well microtiter plate, then adding the assay buffer and the substance mix, followed by being protected from light for 30 minutes.
  • (6) Adding 50 μl stop solution.
  • (7) Absorbance values were measured at 490 nm or 492 nm in an hour.
  • (8) Killing rate=experimental group LDH (OD)/Max LDH release group (OD).
  • (9) Calculation formula: Killing efficiency=(experimental-effector spontaneous−target spontaneous)/(target maximum-target spontaneous)×100%.
  • The results showed that the prepared Anti ROBO1-FN3-CART cells could significantly kill the target cell lines MCF-7/ROBO1 and SMCC7721 with high expression of ROBO1, and the different proportions of ROBO1 CAR-T and target cells were incubated for 4 hours, followed by being detected by ELISA experiment, which shown that the cell killing efficiency also increased (see FIG. 5), and microscopic imaging showed significant death of tumor cells (FIG. 4) with the increasing of the E:T ratio.
  • The above is only the embodiment of the present invention, and thus does not limit the scope of the patent of the present invention. Any equivalent structure or equivalent process transformation made by using the content of the description of the present invention, or other related technical fields were directly or indirectly applied, all the same was included in the scope of patent protection of the present invention.
  • SEQUENCE LISTING
    The amino acid sequence of CD8™ SEQ ID NO: 1 is:
    IYIWAPLAGTCGVLLLSLVITLYC
    The sequence of 4-1BB SEQ ID NO: 2 is:
    KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
    The sequence of CD28 SEQ ID NO: 3 is:
    RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS
    The molecular sequence of CD3ζ SEQ ID NO: 4 is:
    RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP
    RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK
    DTYDALHMQALPPR
    The sequence of SCFV (Anti ROBO1-FN3) SEQ ID 
    NO: 5 is:
    IQMTQTTSSLSASLGDRVTISCRASQDISNFLNWYQQKPDGTVKLLIYY
    TSRLHSGVPSRFSGSGSGTDFSLTISKLEQEDIATYFCQQGNTLPLTFG
    AGTKLELKGGGGSGGGGSGGGGSLQQSGPELVKPGASVKISCKASGYTF
    TDYYMNWVKLSHGKSLEWIGDIVPNNGDTTYNQNFRGKATLTVDKSSST
    AYMELRSLTSEDSAVYYCARFSNYVYPFDYWGQGTTITVS
    The sequence of SCFV (Anti ROBO1-FN3)-CD8™-
    4-1BB-CD3ζ fusion protein SEQ ID NO: 6 is:
    MALPVTALLLPLALLLHAARPIQMTQTTSSLSASLGDRVTISCRASQDI
    SNFLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGSGTDFSLTISKL
    EQEDIATYFCQQGNTLPLTFGAGTKLELKGGGGSGGGGSGGGGSLQQSG
    PELVKPGASVKISCKASGYTFTDYYMNWVKLSHGKSLEWIGDIVPNNGD
    TTYNQNFRGKATLTVDKSSSTAYMELRSLTSEDSAVYYCARFSNYVYPF
    DYWGQGTTITVSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT
    RGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMR
    PVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNEL
    NLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE
    IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
    The nucleotide sequence SCFV (Anti ROBO1-FN3)-
    CD8™-4-1BB-CD3ζ fusion protein SEQ ID NO: 7 is:
    ATGGCCCTGCCTGTGACAGCCCTGCTGCTGCCTCTGGCTCTGCTGCTGC
    ATGCCGCTAGACCCATCCAGATGACACAGACTACATCCTCCCTGTCTGC
    CTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATT
    AGCAATTTTTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTAAAC
    TCCTGATCTACTACACATCAAGATTACATTCTGGAGTCCCATCAAGGTT
    CAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAAACTG
    GAGCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAATACGCTTC
    CACTTACGTTCGGCGCTGGGACAAAGTTGGAACTTAAAGGTGGTGGTGG
    TTCTGGCGGCGGCGGCTCCGGAGGAGGAGGATCGCTGCAACAGTCTGGA
    CCTGAGTTGGTGAAGCCTGGGGCTTCAGTGAAGATTTCCTGCAAGGCTT
    CTGGATACACATTCACTGACTACTACATGAATTGGGTGAAGCTTAGCCA
    TGGAAAGAGCCTTGAGTGGATTGGAGATATTGTTCCTAACAATGGTGAT
    ACTACTTACAACCAGAATTTCAGAGGCAAGGCCACATTGACTGTAGACA
    AGTCCTCCAGCACAGCCTACATGGAGCTCCGCAGCCTGACATCTGAGGA
    CTCTGCAGTCTATTACTGTGCAAGATTCAGTAATTACGTTTACCCTTTT
    GACTACTGGGGCCAAGGCACCACTATCACAGTCTCCACCACGACGCCAG
    CGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTC
    CCTGCGCCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACG
    AGGGGGCTGGACTTCGCCTGTGATATCTACATCTGGGCGCCCTTGGCCG
    GGACTTGTGGGGTCCTTCTCCTGTCACTGGTTATCACCCTTTACTGCAA
    ACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCATTTATGAGA
    CCAGTACAAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATTTCCAG
    AAGAAGAAGAAGGAGGATGTGAACTGAGAGTGAAGTTCAGCAGGAGCGC
    AGACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTC
    AATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCC
    GGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGG
    CCTGTACAATGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAG
    ATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGATGGCCTTT
    ACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACAT
    GCAGGCCCTGCCCCCTCG

Claims (13)

1-9. (canceled)
10: A method of making an anti-ROBO1 CAR-T cell, comprising:
(1) cloning a gene encoding an anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein into a lentiviral expression vector;
(2) packaging and preparing a lentivirus by expressing a lentiviral envelop plasmid and the lentiviral expression vector of step (1) in a 293 T cell;
(3) isolating and expanding human peripheral blood T lymphocytes and infecting the T lymphocytes with the lentivirus of step (2) to express the ScFv-CD8-4-1 BB-CD3ζ fusion protein in the T lymphocytes; wherein the ScFv portion of the fusion protein is expressed on a surface of the CAR-T cell and the 4-1 BB-CD3ζ portion of the fusion protein is expressed inside the CAR-T cell.
11: The anti-ROBO1 CAR-T cell of claim 10, wherein the amino acid sequence of ScFv in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:5; and the amino acid sequence of CD8 in the anti-ROBO1-ScFv-CD8-4-1 BB-CD3ζ fusion protein is SEQ ID NO:1.
12: The anti-ROBO1 CAR-T cell of claim 10, wherein the amino acid sequence of 4-1BB in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:2; wherein the 4-1 BB in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein can be replaced by CD28 that has the amino acid sequence of SEQ ID NO:3.
13: The anti-ROBO1-ScFv CAR-T cell of claim 10, wherein the amino acid sequence of CD3ζ in the anti-ROBO1-ScFv-CD8-4-1 BB-CD3ζ fusion protein is SEQ ID NO:4.
14: The anti-ROBO1 CAR-T cell of claim 10, wherein the amino acid sequence of the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:6.
15: The anti-ROBO1-ScFv CAR-T cell of claim 10, wherein the T cell is derived from human periphery blood T lymphocytes.
16: A method of treating tumor by administering an anti-ROBO1 CAR-T cell expressing an anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein; wherein the anti-ROBO1 portion of the fusion protein is expressed on a surface of the CAR-T cell and the 4-1 BB-CD3ζ portion of the fusion protein is expressed inside the CAR-T cell.
17: The method of claim 16, wherein the amino acid sequence of ScFv in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:5; and the amino acid sequence of CD8 in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:1.
18: The method of claim 16, wherein the amino acid sequence of 4-1BB in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:2; wherein the 4-1 BB in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein can be replaced by CD28 that has the amino acid sequence of SEQ ID NO:3.
19: The method of claim 16, wherein the amino acid sequence of CD34 in the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:4.
20: The method of claim 16, wherein the amino acid sequence of the anti-ROBO1-ScFv-CD8-4-1BB-CD3ζ fusion protein is SEQ ID NO:6.
21: The method of claim 16, wherein the tumor is characterized by high expression level of ROBO1.
US17/732,581 2016-04-18 2022-04-29 Anti-robo1 car-t cell, and preparation and application thereof Pending US20220267731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/732,581 US20220267731A1 (en) 2016-04-18 2022-04-29 Anti-robo1 car-t cell, and preparation and application thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201610237593.2A CN105907719B (en) 2016-04-18 2016-04-18 Anti ROBO1 CAR-T cell and its preparation and application
CN201610237593.2 2016-04-18
PCT/CN2016/092577 WO2017181552A1 (en) 2016-04-18 2016-07-31 Anti-robo1 car-t cell, and preparation and application thereof
US201816094247A 2018-10-17 2018-10-17
US17/732,581 US20220267731A1 (en) 2016-04-18 2022-04-29 Anti-robo1 car-t cell, and preparation and application thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/092577 Division WO2017181552A1 (en) 2016-04-18 2016-07-31 Anti-robo1 car-t cell, and preparation and application thereof
US16/094,247 Division US11345893B2 (en) 2016-04-18 2016-07-31 Anti-ROBO1 CAR-T cell, and preparation and application thereof

Publications (1)

Publication Number Publication Date
US20220267731A1 true US20220267731A1 (en) 2022-08-25

Family

ID=56747251

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/094,247 Active 2038-07-28 US11345893B2 (en) 2016-04-18 2016-07-31 Anti-ROBO1 CAR-T cell, and preparation and application thereof
US17/732,581 Pending US20220267731A1 (en) 2016-04-18 2022-04-29 Anti-robo1 car-t cell, and preparation and application thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/094,247 Active 2038-07-28 US11345893B2 (en) 2016-04-18 2016-07-31 Anti-ROBO1 CAR-T cell, and preparation and application thereof

Country Status (3)

Country Link
US (2) US11345893B2 (en)
CN (1) CN105907719B (en)
WO (1) WO2017181552A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988164B (en) 2016-10-26 2020-07-07 阿思科力(苏州)生物科技有限公司 PD-1CAR NK-92 cell and preparation method and application thereof
EP3554561B1 (en) 2016-12-14 2023-06-28 Janssen Biotech, Inc. Cd137 binding fibronectin type iii domains
EP3932432A1 (en) * 2016-12-14 2022-01-05 Janssen Biotech, Inc. Cd8a-binding fibronectin type iii domains
EP3554535A4 (en) 2016-12-14 2020-10-21 Janssen Biotech, Inc. Pd-l1 binding fibronectin type iii domains
CN107227299B (en) * 2017-06-01 2020-11-24 刘未斌 Anti MUC1CAR-T cell and preparation method and application thereof
CN108977453A (en) * 2017-06-02 2018-12-11 阿思科力(苏州)生物科技有限公司 It is a kind of using ROBO1 as the Chimeric antigen receptor cell of target spot and its preparation and application
CN109810995B (en) * 2017-12-06 2020-10-02 阿思科力(苏州)生物科技有限公司 Nucleotide sequence for coding CAR, ROBO1CAR-NK cell for expressing CAR and preparation and application thereof
CN107987169B (en) * 2018-01-05 2021-10-08 阿思科力(苏州)生物科技有限公司 Bispecific antibody scFv with ROBO1 as target spot and preparation and application thereof
CN111269925B (en) * 2019-03-15 2024-01-30 阿思科力(苏州)生物科技有限公司 ROBO1 CAR-NK cell carrying suicide gene and preparation method and application thereof
CN110592023B (en) * 2019-09-11 2020-09-04 浙江蓝盾药业有限公司 Anti CD70CAR-T cell and preparation method and application thereof
CN110746509B (en) * 2019-10-10 2023-05-02 中国人民解放军第四军医大学 Anti-human CD147CAR-T cell, preparation method and application
WO2021076574A2 (en) 2019-10-14 2021-04-22 Aro Biotherapeutics Company Fn3 domain-sirna conjugates and uses thereof
EP4045061A4 (en) 2019-10-14 2024-04-17 Aro Biotherapeutics Company Cd71 binding fibronectin type iii domains
CN110885790B (en) * 2019-10-30 2021-07-20 武汉大学 Targeting MMSA-1 chimeric antigen receptor modified T lymphocyte and preparation method and application thereof
CN110734931A (en) * 2019-11-18 2020-01-31 山东省齐鲁细胞治疗工程技术有限公司 humanized scFv chimeric antigen receptor T cells targeting CD19, and preparation method and application thereof
CN113373523B (en) * 2021-08-02 2022-06-28 中南大学湘雅医院 Myasthenia gravis peripheral blood single cell transcriptome library, and preparation method and application thereof
CN115873133B (en) * 2023-01-18 2023-09-29 汕头普罗凯融生物医药科技有限公司 Chimeric antigen receptor of specific recognition antigen ROBO1 for treating colon cancer
CN117384290B (en) * 2023-12-11 2024-04-09 苏州因特药物研发有限公司 Human ROBO1 binding molecules and uses thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2649086T3 (en) * 2010-12-09 2017-09-18 Univ Pennsylvania USING CHEMICAL ANTIGEN RECEPTOR-MODIFIED T-CELLS TO TREAT CANCER
MX2016007927A (en) * 2013-12-20 2016-09-13 Hutchinson Fred Cancer Res Tagged chimeric effector molecules and receptors thereof.
CN106163547A (en) * 2014-03-15 2016-11-23 诺华股份有限公司 Use Chimeric antigen receptor treatment cancer
JP6661544B2 (en) * 2014-04-24 2020-03-11 ミルテニイ バイオテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Automatic generation of genetically modified T cells
CN104788573B (en) * 2015-05-08 2018-10-16 中国医学科学院血液病医院(血液学研究所) Chimeric antigen receptor hCD19scFv-CD8 α-CD28-CD3 ζ and application thereof
CN105331586B (en) * 2015-11-20 2020-09-15 上海细胞治疗研究院 Tumor precision T cell containing efficient killing and initiating mechanism and application thereof

Also Published As

Publication number Publication date
WO2017181552A1 (en) 2017-10-26
CN105907719B (en) 2019-10-18
US20190127696A1 (en) 2019-05-02
CN105907719A (en) 2016-08-31
US11345893B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
US20220267731A1 (en) Anti-robo1 car-t cell, and preparation and application thereof
US20190117691A1 (en) Pd-1 car-t cell, preparation method therefor, and application thereof
CN107868791B (en) Preparation method and application of reinforced Slit2CAR-T and CAR-NK cells
CN104788573B (en) Chimeric antigen receptor hCD19scFv-CD8 α-CD28-CD3 ζ and application thereof
JP2020012000A (en) Engineering and delivery of therapeutic compositions of freshly isolated cells
US11246888B2 (en) Slit2D2-chimeric antigen receptor and application thereof
WO2018058431A1 (en) Chimeric antigen receptor molecule and use thereof
ES2895901T3 (en) CXCR6-transduced T cells for targeted tumor therapy
CN110317822B (en) TROP2 chimeric antigen receptor, T cell thereof, and preparation method and application thereof
CN110055269B (en) Human mesothelin chimeric antigen receptor, T cell thereof, preparation method and application thereof
CN113416260B (en) Claudin18.2-targeted specific chimeric antigen receptor cell and preparation method and application thereof
CN106574241A (en) Cancer immunotherapy compositions and methods
CN112625142A (en) CXCL9 modified CAR-T structure and application thereof
WO2020019983A1 (en) Genetically engineered cell used for treating tumour
CN108699163B (en) Polygene recombinant chimeric antigen receptor molecule and application thereof
WO2021184449A1 (en) Preparation method for and application of genetically engineered antitumor microparticle
CN111349601A (en) Method for efficient in-vitro amplification culture of natural killer cells with strong killing power
CN110699371A (en) Fc gamma RIIa-based chimeric gene and application thereof
CN111286512A (en) Chimeric antigen receptor targeting humanized tyrosine kinase orphan receptor 1 and uses thereof
CN113248619A (en) Double-targeting chimeric antigen receptor, coding gene and recombinant expression vector
CN116640229B (en) Construction and application of low-pH targeted CAR-T cells
CN116983319B (en) Application of long-chain non-coding RNA in PD-L1 monoclonal antibody treatment
EP4052716A1 (en) Cancer therapy involving car-engineered t-cells and parvovirus h-1
WO2022180586A1 (en) Car t-cell product and method of preparation thereof
CN117427148A (en) Application of molecules taking PLLP gene as target spot in preparation of tumor disease treatment medicine

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASCLEPIUS (SUZHOU) TECHNOLOGY COMPANY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, HUASHUN;REEL/FRAME:059769/0536

Effective date: 20181016

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION