US20220210932A1 - Damper, electronic controller, and method for coupling damper - Google Patents

Damper, electronic controller, and method for coupling damper Download PDF

Info

Publication number
US20220210932A1
US20220210932A1 US17/524,795 US202117524795A US2022210932A1 US 20220210932 A1 US20220210932 A1 US 20220210932A1 US 202117524795 A US202117524795 A US 202117524795A US 2022210932 A1 US2022210932 A1 US 2022210932A1
Authority
US
United States
Prior art keywords
damper
tubular body
base
hole
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/524,795
Inventor
Shingo Tada
Minoru Hozuka
Takahiro Kurioka
Kazunori Yoshida
Ryoichi Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TADA, SHINGO, KURIOKA, TAKAHIRO, SHINODA, RYOICHI, HOZUKA, MINORU, YOSHIDA, KAZUNORI
Publication of US20220210932A1 publication Critical patent/US20220210932A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/362Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of steel wool, compressed hair, woven or non-woven textile, or like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/028Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape cylindrical, with radial openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3732Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having an annular or the like shape, e.g. grommet-type resilient mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0258Shape-memory metals, e.g. Ni-Ti alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • F16F2226/042Gluing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/08Functional characteristics, e.g. variability, frequency-dependence pre-stressed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0005Attachment, e.g. to facilitate mounting onto confer adjustability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • F16F2230/0058Physically guiding or influencing using inserts or exterior elements, e.g. to affect stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • F16F2230/007Physically guiding or influencing with, or used as an end stop or buffer; Limiting excessive axial separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/02Surface features, e.g. notches or protuberances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/36Holes, slots or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/02Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/04Compression

Definitions

  • the present disclosure relates to a damper, an electronic controller, and a method for coupling the damper.
  • An anti-vibration bush as an example of a damper, absorbs stress transmitted to an electronic device from an attached member.
  • a damper is disposed in a holding hole that passes through, in a passing-through direction, a supported member that is supported by a supporting member.
  • the dumper includes a tubular body defining a through hole therein extending in the passing-through direction.
  • the tubular body is elastically deformable between a first form and a second form.
  • the tubular body in the first form has an outer shape that is smaller than the holding hole.
  • the tubular body in the second form has an outer shape that is equal to or greater than the holding hole.
  • An electronic controller in this disclosure includes a supporting member, a damper, a supported member, and a holding member.
  • the damper has a tubular body that is elastically deformable and defines a through hole.
  • the through hole passes through the tubular body between a first end and a second end of the tubular body.
  • the supported member defines a holding hole in which the damper is disposed and is supported by the supporting member through the damper.
  • the holding hole extends along the through hole of the tubular body.
  • the holding member presses the damper toward the supporting member to hold the damper in the supported member.
  • the damper includes an end corner surface.
  • At least one of the supporting member or the holding member includes a tilted surface that is in contact with the end corner surface of the damper, so that the at least one of the supporting member or the holding member is fit to the damper.
  • the damper is in contact with an inner circumferential surface of the holding hole with pressure to hold the supported member.
  • a method for coupling the damper in this disclosure includes an inserting step of inserting the tubular body in the first form into the holding hole and a deforming step of melting the adhesive with heat to deform the tubular body from the first form to the second form. Thereby, the tubular body is pressed against an inner surface of the holding hole by restoring force
  • FIG. 1 is a perspective exploded view illustrating a schematic configuration of an electronic controller of a first embodiment
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the electronic controller of the first embodiment
  • FIG. 3A is a diagram illustrating a schematic configuration of a damper in a first form of the first embodiment.
  • FIG. 3B is a cross-sectional view taken along a line IIIB-IIIB in FIG. 3A .
  • FIG. 3C is a diagram illustrating a schematic configuration of the damper in a second form of the first embodiment.
  • FIG. 3D is a cross-sectional view taken along a line IIID-IIID in FIG. 3C .
  • FIG. 4 is an explanatory diagram illustrating a method for manufacturing the electronic controller of the first embodiment.
  • FIG. 5 is a plan view from a direction of an arrow V in FIG. 4 .
  • FIG. 6 is a plan view from a direction of an arrow VI in FIG. 4 .
  • FIG. 7 is a plan view illustrating a state where the damper is hold in an insulating substrate of a first modification.
  • FIG. 8 is a cross-sectional view illustrating a state where the damper is hold in an insulating substrate of a second modification.
  • FIG. 9A is a diagram illustrating a schematic configuration of a damper of a second embodiment.
  • FIG. 9B is a cross-sectional view taken along a line IXB-IXB in FIG. 9A .
  • FIG. 10 is an explanatory diagram illustrating a method for manufacturing an electronic controller of the second embodiment.
  • FIG. 11A is a diagram illustrating a schematic configuration of a damper in a first form of a third modification.
  • FIG. 11B is a cross-sectional view taken along a line XIB-XIB in FIG. 11A .
  • FIG. 11C is a diagram illustrating a schematic configuration of the damper in a second form of the third modification.
  • FIG. 11D is a cross-sectional view taken along a line XID-XID in FIG. 11C .
  • FIG. 12 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a fourth modification.
  • FIG. 13 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a fifth modification.
  • FIG. 14 is an explanatory diagram illustrating a method for manufacturing an electronic controller of a third embodiment.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of the electronic controller of the third embodiment.
  • FIG. 16 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a sixth modification.
  • FIG. 17 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a forth embodiment.
  • FIG. 18 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a seventh modification.
  • FIG. 19A is a diagram illustrating a schematic configuration of a damper of an eighth modification.
  • FIG. 19B is a cross-sectional view taken along a line XIXB-XIXB in FIG. 19A .
  • the anti-vibration bush absorbs stress transmitted to an electronic device from an attached member.
  • the electronic device has a bracket defining a hole and the anti-vibration bush is arranged in the hole.
  • the anti-vibration bush is designed to be easily inserted into the hole, a holding force between the anti-vibration bush and the bracket may not be secured.
  • a damper in this disclosure is disposed in a holding hole that passes through, in a passing-through direction, a supported member that is supported by a supporting member.
  • the dumper includes a tubular body defining a through hole therein extending in the passing-through direction.
  • the tubular body is elastically deformable between a first form and a second form.
  • the tubular body in the first form has an outer shape that is smaller than the holding hole.
  • the tubular body in the second form has an outer shape that is equal to or greater than the holding hole.
  • the tubular body can be in the first form that has the outer shape smaller than the holding hole, the damper can be easily inserted into the holding hole. Further, since the tubular body can be deformed to the second form that has the outer shape equal to or greater than the holding hole, the holding force for the supported member can be secured.
  • An electronic controller in this disclosure includes the damper, the supporting member, and the supported member.
  • the tubular body in the second form is disposed in the holding hole and presses an inner surface of the holding hole.
  • the supported member is supported by the supporting member through the damper.
  • the electronic controller includes the damper.
  • the electronic controller can relax not only stress applied to the supported member in a direction along the through hole but also stress applied to the supported member in an intersecting direction. Therefore, the electronic controller can protect the supported member from stress.
  • An electronic controller in this disclosure includes a supporting member, a damper, a supported member, and a holding member.
  • the damper has a tubular body that is elastically deformable and defines a through hole.
  • the through hole passes through the tubular body between a first end and a second end of the tubular body.
  • the supported member defines a holding hole in which the damper is disposed and is supported by the supporting member through the damper.
  • the holding hole extends along the through hole of the tubular body.
  • the holding member presses the damper toward the supporting member to hold the damper in the supported member.
  • the damper includes an end corner surface.
  • At least one of the supporting member or the holding member includes a tilted surface that is in contact with the end corner surface of the damper, so that the at least one of the supporting member or the holding member is fit to the damper.
  • the damper is in contact with an inner circumferential surface of the holding hole with pressure to hold the supported member.
  • the electronic controller can restrict the damper from being displaced from the at least one of the supporting member and the holding member. Therefore, in the electronic controller, the damper can be appropriately pressed against the inner circumferential surface of the holding hole as compared with the case where the damper is displaced. Thus, the supported member can be protected from stress.
  • a method for coupling the damper in this disclosure includes an inserting step of inserting the tubular body in the first form into the holding hole and a deforming step of melting the adhesive with heat to deform the tubular body from the first form to the second form. Thereby, the tubular body is pressed against an inner surface of the holding hole by restoring force
  • the electronic controller 100 includes a circuit board 1 , a cover 2 a , a base 3 a , dampers 6 a , and the like.
  • the electronic controller 100 is configured to be installed in a vehicle, for example.
  • the electronic controller 100 can be applied to a controller that controls an in-vehicle device.
  • FIGS. 1 and 2 an illustration of the dampers 6 a is simplified.
  • the circuit board 1 corresponds to a supported member.
  • the circuit board 1 includes an insulating substrate 4 a , circuit elements 51 and 52 , a connector 53 , and the like.
  • the insulating substrate 4 a is made of a material such as resin or ceramic and has an electrical insulation property.
  • the insulating substrate 4 a defines second insertion holes 41 a that pass through the insulating substrate 4 a in a thickness direction.
  • the thickness direction of the insulating substrate 4 a is simply referred to as a thickness direction.
  • the thickness direction is the same as a passing-through direction in which a through hole H 1 of the damper 6 a , which will be described later, passes through the damper 6 a .
  • a direction intersecting the thickness direction corresponds to an intersecting direction.
  • the intersecting direction is a plane direction parallel to a mounting surface of the insulating substrate 4 a on which the circuit element 51 and the like is mounted.
  • the insulating substrate 4 a is provided with a wiring pattern 42 that is a part of a conductive wiring.
  • the wiring pattern 42 is provided on a surface or inside of the insulating substrate 4 a .
  • the circuit board 1 may be a multi-layer board in which the wiring patterns 42 and the insulating substrates 4 a are stacked with each other, a single-layer board in which the single-layer wiring pattern 42 is provided on the insulating substrate 4 a , or the like.
  • Each of the second insertion holes 41 a corresponds to a holding hole.
  • the second insertion holes 41 a are defined, for example, at four corners of the insulating substrate 4 a .
  • Each of the second insertion holes 41 a is a hole into which a second screw 202 and the damper 6 a are inserted.
  • the damper 6 a is arranged in the second insertion hole 41 a to be in contact with the second insertion hole 41 a with pressure. The damper 6 a will be described in detail later.
  • the second insertion hole 41 a is a through hole surrounded by an annular insertion hole surface S 11 .
  • the second insertion hole 41 a is a hole having an inner diameter R 21 .
  • the insertion hole surface S 11 corresponds to an inner surface of the holding hole.
  • the circuit elements 51 and 52 and the connector 53 correspond to electronic components.
  • the circuit elements 51 and 52 and the connector 53 are mounted on the insulating substrate 4 a.
  • Each of the circuit elements 51 and 52 is, for example, a semiconductor switching element, a resistance element, a capacitor, or the like.
  • the circuit element 51 is mounted on a first surface of the insulating substrate 4 a .
  • the circuit element 52 is mounted on a second surface of the insulating substrate 4 a that is opposite to the first surface. More specifically, the circuit elements 51 and 52 are mounted on the insulating substrate 4 a with solder 51 a . Further, the circuit elements 51 and 52 are electrically connected to the wiring pattern 42 through the solder 51 a.
  • the number of the circuit elements 51 and 52 is not limited to that shown in FIG. 1 .
  • the solder is adopted as an example of a conductive connecting member.
  • the conductive connecting member is not limited to solder, and other members such as silver paste can also be adopted.
  • the solder 51 a and the wiring pattern 42 can be regarded as a connecting portion between the electronic components and the insulating substrate 4 a.
  • the connector 53 includes terminals 531 and a connector case that holds the terminals 531 .
  • the connector 53 is mounted on the insulating substrate 4 a while the terminals 531 and the wiring are electrically connected to each other with solder.
  • the connector 53 is provided for electrical connection between the electronic controller 100 and an external device provided outside the electronic controller 100 .
  • the external device is another electronic controller, a device to be controlled, or the like.
  • the connector 53 may be, for example, an interface for connecting to a communication line of an in-vehicle network. That is, in this embodiment, the connector 53 is adopted as an example of the interface.
  • the circuit board 1 provided with the connector 53 is adopted.
  • the circuit board 1 may not have the connector 53 in the present disclosure.
  • the circuit board 1 is supported by the base 3 a with the second screws 202 . More specifically, the circuit board 1 is supported by the base 3 a with the second screws 202 via the dampers 6 a . Further, the circuit board 1 is supported by the base 3 a with the multiple second screws 202 . In this embodiment, as an example, the circuit board 1 is supported by the base 3 a with the four second screws 202 . Thus, each of the second screws 202 is also referred to as a supporting element.
  • the second screw 202 may contain a metal as a main component.
  • the second screw 202 has a columnar portion 202 a with a male thread and a screw head 202 b located at an end of the columnar portion 202 a .
  • the columnar portion 202 a is inserted into the second insertion hole 41 a and the through hole H 1 of the damper 6 a , and a portion of the columnar portion 202 a is screwed with the second screw hole 32 (i.e., female thread) defined in the base 3 a.
  • the screw head 202 b has a screw pressing surface S 31 that is in contact with an end surface (here, a second surface S 2 ) of the damper 6 a and that presses the second surface S 2 .
  • the screw pressing surface S 31 presses the second surface S 2 of the damper 6 a while the second screw 202 is screwed into the second screw hole 32 .
  • the second screw 202 presses the damper 6 a toward the base 3 a while the screw pressing surface S 31 is in contact with the second surface S 2 .
  • the male threads of the second screws 202 are engaged with the female threads of the second screw holes 32 , thereby the circuit board 1 is supported by the base 3 a .
  • the circuit board 1 is screwed to the base 3 a with the second screws 202 .
  • the housing accommodates the circuit board 1 .
  • the housing includes the cover 2 a and the base 3 a .
  • the cover 2 a and the base 3 a are assembled to each other to define a housing space for housing the circuit board 1 .
  • the cover 2 a and the base 3 a are mainly composed of a metal such as aluminum.
  • the cover 2 a and the base 3 a have conductivity.
  • the housing is not limited to this.
  • the cover 2 a and the base 3 a may be composed mainly of a resin or the like. Further, only either one of the cover 2 a and the base 3 a may be composed of a metal as a main component.
  • the cover 2 a is, for example, a plate-shaped member.
  • the cover 2 a defines first insertion holes 21 passing through the cover 2 a in the thickness direction.
  • the first insertion holes 21 are defined at the four corners of the cover 2 a , for example.
  • the first insertion holes 21 are holes into which first screws 201 are inserted.
  • the base 3 a corresponds to a supporting member.
  • the base 3 a is, for example, a box-shaped member having a recess.
  • the base 3 a defines first screw holes 31 , the second screw holes 32 , and a connector hole 33 .
  • the first screw holes 31 has female threads like the second screw holes 32 .
  • the first screw holes 31 are defined at four corners of the base 3 a , for example. Further, the first screw holes 31 are defined, for example, in a flange of the base 3 a . Further, the first screw holes 31 are defined in positions to face the first insertion holes 21 when the cover 2 a and the base 3 a are arranged to face each other.
  • the second screw holes 32 are defined in positions of the base 3 a at which the circuit board 1 is disposed.
  • the second screw holes 32 are defined to face the four corners of the circuit board 1 .
  • the second screw holes 32 are defined in a pedestal 34 a of the base 3 a .
  • the pedestal 34 a is a protruding portion that is protrude more than a peripheral portion of the pedestal 34 a .
  • the second screw holes 32 are defined in positions to face the second insertion holes 41 a when the circuit board 1 is disposed on the pedestal 34 a .
  • the surface of the pedestal 34 a is a base pressing surface S 21 that is pressed by the damper 6 a .
  • the present disclosure is not limited to this.
  • the connector hole 33 is a through hole defined in a bottom of the base 3 a .
  • the connector hole 33 has an opening shape corresponding to an outer shape of the connector 53 .
  • the connector 53 is inserted into the connector hole 33 with the circuit board 1 arranged on the pedestal 34 a .
  • the connector hole 33 is not necessarily defined in the base 3 a.
  • the first screw 201 has the same configuration as the second screw 202 .
  • the columnar portion of the first screw 201 is inserted into the first insertion hole 21 , and a portion of the columnar portion is screwed with the first screw hole 31 defined in the base 3 a .
  • the cover 2 a is fixed to the base 3 a by engaging the male threads of the first screws 201 and the female threads of the first screw holes 31 . Further, in other words, the cover 2 a is screwed to the base 3 a with the first screws 201 .
  • the cover 2 a and the base 3 a are coupled to each other while the circuit board 1 is supported by the base 3 a . Further, the cover 2 a is fixed to the base 3 a such that the columnar portions of the first screws 20 a are inserted into the first insertion holes 21 and the columnar portions of the first screws 20 a are engaged with the first screw holes 31 .
  • the damper 6 a is a member for relieving stress (external force) to the circuit board 1 .
  • the damper 6 a absorbs impact applied to the circuit board 1 .
  • the damper 6 a protects the circuit board 1 from stresses such as assembly strain, thermal shock, and vibration.
  • the damper 6 a is also referred to as a member that relaxes stress to the insulating substrate 4 a.
  • the damper 6 a includes a damper tubular body 61 a . There is a gap G 1 in the damper tubular body 61 a .
  • the damper tubular body 61 a corresponds to a tubular body.
  • the damper tubular body 61 a is configured to be in two forms.
  • FIGS. 3A to 3D illustrate the two forms of the damper tubular body 61 a .
  • FIG. 3A is a side view of the damper tubular body 61 a in a first form.
  • FIG. 3B is a cross-sectional view taken along a line IIIB-IIIB in FIG. 3A .
  • FIG. 3C is a side view of the damper tubular body 61 a in a second form.
  • FIG. 3D is a cross-sectional view taken along a line IIID-IIID in FIG. 3C .
  • the two forms will be described in detail later.
  • the damper tubular body 61 a includes a first surface S 1 , the second surface S 2 that is opposite to the first surface S 1 , an outer circumferential surface S 3 and an inner circumferential surface S 4 that are connected to both the first surface S 1 and the second surface S 2 .
  • the distance between the first surface S 1 and the second surface S 2 is the height of the damper tubular body 61 a .
  • the distance between the outer circumferential surface S 3 and the inner circumferential surface S 4 is the thickness of the damper tubular body 61 a.
  • the first surface S 1 and the second surface S 2 are parallel to each other. Further, in the present embodiment, as an example, the damper tubular body 61 a has a cylindrical shape. However, the present disclosure is not limited to this.
  • the first surface S 1 corresponds to a first end.
  • the second surface S 2 corresponds to a second end.
  • the damper tubular body 61 a defines a through hole H 1 extending between the first surface S 1 and the second surface S 2 .
  • the through hole H 1 is surrounded by the inner circumferential surface S 4 .
  • the damper tubular body 61 a defines the through hole H 1 along the second insertion hole 41 a when the damper 6 a is held by the circuit board 1 (the insulating substrate 4 a ).
  • the gap G 1 extends between the first surface S 1 and the second surface S 2 of the damper tubular body 61 a .
  • the damper tubular body 61 a includes a first end surface S 5 that is one end in the circumferential direction and a second end surface S 6 that is the other end in the circumferential direction.
  • the gap G 1 is an area between the first end surface S 5 and the second end surface S 6 .
  • the gap G 1 can be rephrased as a slit, a clearance, or the like.
  • the damper tubular body 61 a can be in the first form that has an outer shape smaller than the second insertion hole 41 a and in the second form that has an outer shape equal to or larger than the second insertion hole 41 a .
  • the outer shape of the damper tubular body 61 a in the first form is smaller than an opening area of the second insertion hole 41 a .
  • the outer shape of the damper tubular body 61 a in the second form is larger than the opening area of the second insertion hole 41 a .
  • the outer shape of the damper tubular body 61 a is an area surrounded by an annular curve that is defined by the outer circumferential surface S 3 .
  • the damper tubular body 61 a can be deformed between the first form having the small gap G 1 and the second form having the wide gap G 1 . That is, the gap G 1 in the second form is wider than the gap G 1 in the first form. In other words, the gap G 1 in the first form is narrower than the gap G 1 in the second form.
  • the gap G 1 in the first form has a first distance R 11 between the first end surface S 5 and the second end surface S 6 .
  • the gap G 1 in the second form has a second distance R 12 between the first end surface S 5 and the second end surface S 6 .
  • the first distance R 11 is shorter than the second distance R 12 .
  • the gap G 1 has a different size between the first form and the second form.
  • the first end surface S 5 and the second end surface S 6 of the damper tubular body 61 a in the first form are located closer to each other than in the second form and connected with an adhesive 7 . That is, the damper tubular body 61 a in the first form is connected with the adhesive 7 while pressed in directions of the white arrows in FIG. 3B .
  • the damper tubular body 61 a is deformed to the second form from the first form with restoring force.
  • the damper tubular body 61 a has an elliptical shape in the first form and has a shape closer to a true circle than to the elliptical shape in the second form.
  • the reference numeral R 1 in FIG. 3B is given to a first outer diameter of the damper tubular body 61 a in the first form.
  • the first outer diameter R 1 is shorter than an inner diameter R 21 of the second insertion hole 41 a.
  • Reference numeral R 2 a in FIG. 3D is given to a second outer diameter of the damper tubular body 61 a in the second form. More specifically, the outer diameter in the second form differs between a state where the damper tubular body 61 a is inserted into the second insertion hole 41 a and a state where the damper tubular body 61 a is not inserted into the second insertion hole 41 a .
  • the second outer diameter R 2 a is the outer diameter in the second form when the damper tubular body 61 a is not inserted into the second insertion hole 41 a .
  • the second outer diameter R 2 a is equal to the diameter of the damper tubular body 61 a when no external force is applied to the damper tubular body 61 a.
  • a third outer diameter R 2 b is defined as the outer diameter of the damper tubular body 61 a in the second form in a state where the damper tubular body 61 a is inserted into the second insertion hole 41 a .
  • the third outer diameter R 2 b is equal to the inner diameter R 21 of the second insertion hole 41 a .
  • the second outer diameter R 2 a is longer than the third outer diameter R 2 b.
  • the damper tubular body 61 a is inserted into the second insertion hole 41 a and presses the insertion hole surface S 11 , thereby the damper tubular body 61 a is held in the insulating substrate 4 a .
  • the damper tubular body 61 a is formed such that the second outer diameter R 2 a is longer than the third outer diameter R 2 b .
  • the second distance R 12 differs between the state where the damper tubular body 61 a is inserted into the second insertion hole 41 a and the state where the damper tubular body 61 a is not inserted into the second insertion hole 41 a.
  • Each of the outer diameters R 1 , R 2 a , and R 2 b is a distance of the outer circumferential surface S 3 of the damper tubular body 61 a on a virtual straight line perpendicular to a center axis of the damper tubular body 61 a that extends along the through hole H 1 . Further, each of the outer diameters R 1 , R 2 a , and R 2 b is a distance of portions of the damper tubular body 61 a that face the insertion hole surface S 11 when the damper tubular body 61 a is inserted into the second insertion hole 41 a.
  • the first end surface S 5 and the second end surface S 6 are connected with the adhesive 7 . That is, the gap G 1 is filled with the adhesive 7 .
  • the adhesive 7 one that is melted with heat is adopted.
  • the damper 6 a may have a configuration in which a part of the damper tubular body 61 a in the passing-through direction can be deformed between the first form and the second form. That is, when the damper 6 a is coupled to the circuit board 1 , only the portion of the damper 6 a that is to be arranged in the second insertion hole 41 a and the portion of the damper 6 a to pass through the second insertion hole 41 a may be deformed between the first form and the second form.
  • the damper tubular body 61 a is configured to be elastically deformable.
  • a wire mesh is adopted as an example of the damper tubular body 61 a .
  • the wire mesh is formed by weaving metal wires such that spaces are defined in the damper tubular body 61 a .
  • the wire mesh is not limited to the one in which the metal wires are woven regularly.
  • the wire mesh may be formed by intricately weaving metal wires such that the metal wires are entangled with each other.
  • the damper tubular body 61 a is also referred to as a shock-absorbing member or a stress cushioning member.
  • the wire mesh is also referred to as a continuous porous body in which metal wires are entangled with each other. Further, in other words, the wire mesh is formed by compressing the metal wires that are entangled with each other.
  • the wire mesh is also referred to as a metal cushioning member.
  • the metal wire for example, stainless steel or the like can be adopted. However, the metal wire is not limited to stainless steel. Aluminum, iron, or the like can also be used as the metal wire.
  • the adhesive 7 may be an organic material such as a resin or a solder used for metal bonding as long as the adhesive 7 is melted with heat.
  • the damper tubular body 61 a may be composed mainly of a shape memory alloy. This is preferable because the damper tubular body 61 a be easily deformed to the second form from the first form. Further, the damper tubular body 61 a may be made of rubber or the like. However, when rubber is used, it is preferable that the adhesive 7 be an organic material such as a resin.
  • the damper tubular body 61 a may include a protecting member that is composed mainly of an organic substance having viscoelasticity.
  • a protecting member for example, a silicone member or the like can be adopted.
  • the protecting member mainly protects the damper tubular body 61 a not to deteriorate its functions. That is, the protecting member restricts foreign matters from adhering to the damper tubular body 61 a not to deteriorate the functions. Further, the protecting member also has a function of restricting scrap metal and the like from falling out from the damper tubular body 61 a to the periphery of the damper tubular body 61 a .
  • the protecting member soaks into the damper tubular body 61 a , thereby the protecting member is disposed in the spaces in the wire mesh of the damper tubular body 61 a .
  • Foreign matters that adhere to or enter into the damper tubular body 61 a are substances containing water, salt, oil, and the like.
  • the viscosity of the protecting member changes through UV curing or the like. Further, the viscosity of the protecting member is adjusted by ultraviolet rays or the like while the protecting member is provided in the spaces. At this time, the viscosity is adjusted so that the characteristics of the damper 6 a has desired values. In other words, the compressibility of the damper tubular body 61 a is adjusted to a desired value by adjusting the viscosity of the protecting member.
  • the damper 6 a is held in the second insertion hole 41 a of the insulating substrate 4 a .
  • the damper 6 a is held in a state where the damper tubular body 61 a is press-fit into the second insertion hole 41 a .
  • the damper 6 a is held in the second insertion hole 41 a by the restoring force of the damper tubular body 61 a .
  • the damper 6 a is held in a state where at least two points on the outer circumferential surface S 3 are in contact with the insertion hole surface S 11 of the second insertion hole 41 a with pressure.
  • the damper tubular body 61 a in the second from is arranged in the second insertion hole 41 a and presses the insertion hole surface S 11 of the second insertion hole 41 a .
  • the damper 6 a is fixed to the second insertion hole 41 a with the restoring force of the damper tubular body 61 a.
  • the damper 6 a is pressed against the base 3 a with the second screw 202 while being held in the second insertion hole 41 a .
  • the damper 6 a is held between the screw head 202 b and the pedestal 34 a while the second screw 202 is screwed into the second screw hole 32 .
  • the first surface S 1 of the damper 6 a is in contact with the base pressing surface S 21 and the second surface S 2 of the damper 6 a is in contact with the screw pressing surface S 31 .
  • the circuit board 1 is supported by the base 3 a via the damper 6 a .
  • the damper 6 a defines the gap G 1 .
  • the present disclosure is not limited to this, and as shown in an eighth modification, the gap G 1 may not be defined in the damper 6 a.
  • the method includes (a) a preparing step, (b) an inserting step, (c) a deforming step, (d) a mounting step, and (e) a covering step. Further, the inserting step and the deforming step correspond to a method for coupling the damper 6 a to the circuit board 1 .
  • a first structure that the circuit element 51 is arranged on the insulating substrate 4 a is prepared.
  • the inserting step in FIG. 4 the damper tubular body 61 a in the first form is inserted into the second insertion hole 41 a .
  • the damper tubular body 61 a has the first outer diameter R 1 .
  • the inserting step it is preferable to use a supporter or the like that supports the damper 6 a so that the damper 6 a does not come off from the second insertion hole 41 a .
  • the circuit element 51 may be arranged on the insulating substrate 4 a after the inserting step.
  • the present disclosure is not limited to this. In the present disclosure, it is only required that at least two points of the outer circumferential surface S 3 press the insertion hole surface S 11 .
  • the producing method includes a reflow step of mounting the circuit elements 51 and 52 on the insulating substrate 4 a .
  • a reflow step of terminals of the circuit elements 51 and 52 and the wiring pattern 42 are connected with solder 51 a by reflow soldering.
  • the first structure is heated in a reflow furnace to melt the solder 51 a . Therefore, the deformation step can be performed together with the reflow step. As described above, in the assembly method of the present embodiment, it is not necessary to perform the deforming step separately from the reflow step.
  • a second structure is a structure that the circuit elements 51 and 52 are mounted on the insulating substrate 4 a and the damper 6 a is held in the insulating substrate 4 a . That is, the second structure is one that the damper 6 a is attached to the circuit board 1 .
  • the adhesive 7 is melted with heat to deform the damper tubular body 61 a . Therefore, the damper tubular body 61 a is preferably formed by weaving metal wires. However, the damper tubular body 61 a may be made of rubber or the like that can withstand the temperature at which the adhesive 7 is melted.
  • the second structure is arranged on the base 3 a .
  • the second structure is arranged at a position where the through hole H 1 faces the second screw hole 32 .
  • the second structure is arranged at a position where the first surface S 1 of the damper 6 a is in contact with the base pressing surface S 21 .
  • the second screw 202 is screwed into the second screw hole 32 .
  • the damper 6 a is pressed by the screw pressing surface S 31 .
  • the base pressing surface S 21 is pressed by the damper 6 a .
  • the damper 6 a is pressed (compressed) between the screw head 202 b and the pedestal 34 a while the damper 6 a is in contact with both the base pressing surface S 21 and the screw pressing surface S 31 .
  • the circuit board 1 is supported by the base 3 a through the damper 6 a.
  • the damper tubular body 61 a may have a configuration in which a gap is defined between the inner circumferential surface S 4 and the columnar portion 202 a , or may have a configuration in which no gap is defined therebetween.
  • the damper tubular body 61 a preferably has the configuration in which the gap is defined because the damper tubular body 61 a can be elastically deformed more easily in the plane direction than the configuration in which the gap is not defined.
  • the cover 2 a is attached to the base 3 a to house the second structure.
  • the cover 2 a is arranged on the base 3 a on which the second structure is mounted.
  • the cover 2 a is arranged at a position where the first insertion holes 21 face the first screw holes 31 .
  • the first screws 201 are screwed into the first screw holes 31 .
  • the circuit board 1 is supported by the base 3 a through the damper 6 a fixed to the insulating substrate 4 a . Further, the damper 6 a is pressed between the screw head 202 b and the pedestal 34 a . Thus, stress applied to the insulating substrate 4 a in the thickness direction elastically deforms the damper 6 a in the thickness direction between the screw head 202 b and the pedestal 34 a .
  • the damper 6 a has an area facing the insertion hole surface S 11 . An upper portion and a lower portion of the area of the damper 6 a are mainly elastically deformed. Thus, the damper 6 a can protect the circuit board 1 when stress is applied to the insulating substrate 4 a in the thickness direction.
  • the damper 6 a defines the gap G 1 .
  • the damper 6 a is easily elastically deformed in the intersecting direction.
  • the damper 6 a can relax not only the stress to the circuit board 1 in the thickness direction but also stress to the circuit board 1 in the intersecting direction. Therefore, the damper 6 a can appropriately relax the stress to the circuit board 1 .
  • the damper 6 a is configured to form the first form and the second form.
  • the damper 6 a can be easily inserted into the second insertion hole 41 a and can be easily fixed to the insulating substrate 4 a . That is, since the damper 6 a can form the first form in which the outer shape of the damper tubular body 61 a is smaller than the second insertion hole 41 a , the damper 6 a can be easily inserted into the second insertion hole 41 a .
  • the damper tubular body 61 a is configured to form the second form in which the outer shape of the damper tubular body 61 a is equal to or larger than the second insertion hole 41 a , the damper 6 a can secure holding force for the circuit board 1 . As described above, the damper 6 a can be easily inserted into the second insertion hole 41 a while the damper 6 a secures the holding force for the circuit board 1 .
  • the electronic controller 100 includes the damper 6 a .
  • the damper 6 a has the above-mentioned effects.
  • the electronic controller 100 can restrict the solder 51 a , the wiring pattern 42 , and the like from being cracked or restricts malfunctions of the circuit elements 51 and 52 due to the stress applied to the insulating substrate 4 a .
  • the electronic controller 100 can suppress bad effects on electrical characteristics of the circuit board 1 .
  • the circuit board 1 is supported by the base 3 a with the second screws 202 .
  • the circuit board 1 is supported by the base 3 a through the damper 6 a .
  • the damper 6 a is elastically deformed. Therefore, in the circuit board 1 , it is possible to restrict the solder 51 a , the wiring pattern 42 , and the like from being cracked and to restrict malfunctions of the circuit elements 51 and 52 due to the stress applied to the insulating substrate 4 a.
  • an influence caused by assembly distortion may be reduced by adjusting mounting positions of the circuit elements 51 and 52 . That is, in the electronic controller 100 , the circuit elements 51 and 52 may be mounted at positions away from screwing positions so as not to be affected by the assembly distortion. In this case, in the electronic controller 100 , the distances between the screwing positions and the circuit elements 51 and 52 may be a factor that obstructs high-density mounting. However, in the present embodiment, the influence of the assembly distortion is mitigated by the damper 6 a . Therefore, in the electronic controller 100 , the circuit elements 51 and 52 can be mounted at high density.
  • a wire mesh is adopted as an example of the damper tubular body 61 a .
  • deterioration of the damper 6 a over time can be restricted as compared with the case where rubber is used as the damper tubular body 61 a.
  • the second screw 202 is adopted as an example of the supporting element.
  • a member using elastic deformation such as a snap fit can be adopted as the supporting element.
  • the circuit board 1 is adopted as an example of the supported member.
  • the base 3 a may be the supported member.
  • the supporting member may be a vehicle frame or the like.
  • the cover 2 a may be the supported member.
  • the base 3 a may be the supporting member.
  • the first screw 201 can be adopted as a supporting element.
  • the circuit board 1 may be supported by the base 3 a with the first screws 201 instead of the second screws 202 .
  • the first screw 201 corresponds to the supporting element.
  • the electronic controller 100 of a first modification will be described.
  • the configuration of the insulating substrate 4 b is different from that of the above embodiment.
  • the same reference numerals as those in the above embodiment are donated for convenience.
  • the reference numeral 100 is adopted for the electronic controller 100 in other modifications and other embodiments.
  • the shape of the second insertion hole 41 b of the insulating substrate 4 b is different from that of the insulating substrate 4 a .
  • the second insertion hole 41 b is a through hole surrounded by an insertion hole surface S 11 .
  • the insertion hole surface S 11 has an annular shape, a part of which is cut off.
  • the second insertion hole 41 b is a recess recessed from the side wall of the insulating substrate 4 b .
  • the damper 6 a can be inserted into the second insertion hole 41 b in the thickness direction. Further, the damper 6 a can be inserted into the second insertion hole 41 b in a direction perpendicular to the thickness direction.
  • the electronic controller 100 of the first modification can achieve similar effects to those of the above embodiment.
  • the first modification can be applied to other embodiments and other modifications.
  • the electronic controller 100 of a second modification will be described.
  • the electronic controller 100 of the second modification is different from the above embodiment in a configuration of the insulating substrate 4 c.
  • the shape of the second insertion hole 41 c of the insulating substrate 4 c is different from that of the insulating substrate 4 a .
  • the second insertion hole 41 c is surrounded by the annular insertion hole surface S 11 , and an opening diameter of the second insertion hole 41 c differs in the thickness direction.
  • the second insertion hole 41 c is divided into a portion into which the damper 6 a and the columnar portion 202 a of the second screw 202 are inserted and a portion into which the damper 6 a is not inserted.
  • a portion of the columnar portion 202 a of the second screw 202 is inserted in the portion where the damper 6 a is not inserted.
  • the portion where the damper 6 a and the columnar portion 202 a of the second screw 202 are inserted has a substrate pressing surface S 41 as a bottom surface.
  • the damper 6 a is inserted into the second insertion hole 41 c , and the second surface S 2 of the damper 6 a is in contact with the substrate pressing surface S 41 . Further, the damper 6 a is pressed between the substrate pressing surface S 41 and the base pressing surface S 21 .
  • the electronic controller 100 of the second modification can achieve similar effects to those of the above embodiment.
  • the second modification can be appropriately applied to other embodiments and other modifications.
  • a damper 6 b of a second embodiment will be described.
  • portions different from those in the first embodiment will be mainly described.
  • This embodiment is different from the first embodiment in configurations of the damper 6 b , a cover 2 b , and a base 3 b .
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the damper 6 b is different from the damper 6 a in that the damper 6 b includes a damper protrusion 62 b .
  • the damper 6 b includes a damper tubular body 61 b and the damper protrusion 62 b .
  • the damper tubular body 61 b is the same as the damper tubular body 61 a.
  • the damper protrusion 62 b corresponds to a protrusion.
  • the damper protrusion 62 b protrudes from the outer circumferential surface S 3 of the damper tubular body 61 b .
  • the damper protrusion 62 b is provided to prevent the damper 6 b in the first form from coming off from the second insertion hole 41 a.
  • the damper protrusion 62 b is provided within a predetermined range from the second surface S 2 in the height direction of the damper tubular body 61 b . That is, the damper protrusion 62 b is not provided in the entire area of the damper tubular body 61 b in the height direction, but it is provided only in a portion of the damper tubular body 61 b in the height direction.
  • the damper protrusion 62 b is provided only on a portion of the outer circumferential surface S 3 in the circumferential direction.
  • the present disclosure is not limited to this, and it is only required that the damper protrusion 62 b be provided at least a part of the damper tubular body 61 b in the circumferential direction.
  • the damper protrusion 62 b may be multiple damper protrusions arranged in the circumferential direction.
  • the two, three, four, or more damper protrusions 62 b may be arranged in the circumferential direction at equal intervals.
  • the damper protrusion 62 b may be provided in the entire area in the circumferential direction.
  • the damper protrusion 62 b may be made of the same material as the damper tubular body 61 b , or may be made of a different material. Further, the damper protrusion 62 b may be integrally formed with the damper tubular body 61 b , or formed by connecting different members.
  • the damper 6 b includes the damper protrusion 62 b .
  • the damper protrusion 62 b of the damper 6 b is arranged in the vicinity of the second insertion hole 41 a of the insulating substrate 4 a . Therefore, in the inserting step, it is possible to prevent the damper 6 b from coming off from the second insertion hole 41 a.
  • the second structure is arranged on the base 3 b as in the first embodiment.
  • the base 3 b will be described.
  • the base 3 b is different from the base 3 a in that the base 3 b includes a base positioning portion 35 b and a distance adjusting portion 36 b .
  • the pedestal 34 b is the same as the pedestal 34 a.
  • the base positioning portion 35 b positions the damper 6 b with respect to the base 3 b .
  • the base positioning portion 35 b protrudes from the pedestal 34 b in the thickness direction.
  • the base positioning portion 35 b is inserted into the through hole H 1 of the damper 6 b.
  • the distance adjusting portion 36 b restricts the inner circumferential surface S 4 of the damper tubular body 61 b from becoming too closer than necessary.
  • the distance adjusting portion 36 b protrudes from a tip end of the base positioning portion 35 b in the thickness direction.
  • the thickness direction is the same as the direction perpendicular to the base pressing surface S 21 .
  • the base 3 b may not include the distance adjusting portion 36 b.
  • the second structure is arranged on the base 3 b so that the base positioning portion 35 b and the distance adjusting portion 36 b are inserted into the through hole H 1 . Further, in the mounting step, the second structure is arranged at a position where the first surface S 1 is in contact with the base pressing surface S 21 . Thus, in the mounting step, the damper 6 b can be arranged at an appropriate position on the base 3 b . Thus, in the mounting step, the second structure can be arranged at an appropriate position.
  • the second screws 202 are not used. Therefore, at the stage of the mounting step, the second structure is only arranged on the base 3 b.
  • the cover 2 b is attached to the base 3 b to house the second structure as in the first embodiment.
  • the cover 2 b will be described.
  • the cover 2 b is different from the cover 2 a in that the cover 2 b includes a cover protrusion 22 b and a cover positioning portion 23 b.
  • the cover protrusion 22 b is provided on the side of the cover 2 b facing the housing space.
  • the cover protrusion 22 b is a portion that presses the damper 6 b against the pedestal 34 b .
  • the cover protrusion 22 b protrudes more in the thickness direction than the periphery of the cover protrusion 22 b .
  • the tip end of the cover protrusion 22 b has a cover pressing surface S 51 that presses the damper 6 b.
  • the cover positioning portion 23 b positions the damper 6 b with respect to the cover 2 b .
  • the cover positioning portion 23 b protrudes from the tip end of the cover protrusion 22 b in the thickness direction. That is, the cover pressing surface S 51 is a portion of the tip end of the cover protrusion 22 b where the cover positioning portion 23 b is not provided.
  • the cover 2 b is arranged on the base 3 b on which the second structure is mounted. At this time, the cover positioning portion 23 b is inserted into the through hole H 1 to arrange the cover 2 b . In the covering step, the first screws 201 are screwed into the first screw holes 31 .
  • the cover pressing surface S 51 presses the damper 6 b .
  • the base pressing surface S 21 is pressed by the damper 6 b . Therefore, the damper 6 a is pressed between the cover protrusion 22 b and the pedestal 34 b while the damper 6 b is in contact with both the base pressing surface S 21 and the cover pressing surface S 51 .
  • the circuit board 1 is supported by the base 3 b through the damper 6 b .
  • the electronic controller 100 in which the second structure is housed in the housing space defined by the base 3 a and the cover 2 a can be manufactured.
  • the damper 6 b can exert similar effects to those of the damper 6 a .
  • the damper 6 b has an area facing the insertion hole surface S 11 .
  • An upper portion and a lower portion of the area of the damper 6 b are elastically deformed due to stress applied to the insulating substrate 4 a in the thickness direction.
  • the damper protrusion 62 b is elastically deformed between the insulating substrate 4 a and the cover protrusion 22 b .
  • the damper 6 b can protect the circuit board 1 .
  • the damper 6 b includes the damper protrusion 62 b .
  • the damper 6 b in the first form can be retained in the second insertion hole 41 a . That is, the damper 6 b can be retained in the second insertion hole 41 a without using a jig such as a supporting base.
  • the damper 6 b since the damper 6 b includes the damper protrusion 62 b , it is possible to restrict the damper 6 b from coming off from the second insertion hole 41 a during the inserting step. Thus, it is not necessary to use a supporting base or the like in the method of the present embodiment.
  • the damper 6 b can be applied to the first embodiment and its modifications.
  • the cover 2 b and the base 3 b can be applied to the first embodiment and its modifications.
  • the electronic controller 100 of the present embodiment can adopt the cover 2 a and the base 3 a . In this case, the second screw 202 is used.
  • FIGS. 11A to 11D a damper 6 c of a third modification will be described. In this modification, portions different from the second embodiment will be mainly described.
  • the damper 6 c of the third modification is different from the second embodiment mainly in that the damper 6 c includes damper protrusions 62 c and tabs 63 c .
  • FIGS. 11A to 11D illustrate the two forms of the damper tubular body 61 c and the insulating substrate 4 a .
  • FIG. 11A is a plan view of the first form.
  • FIG. 11B is a cross-sectional view taken along a line XIB-XIB in FIG. 11A .
  • FIG. 11C is a plan view of the second form.
  • FIG. 11D is a cross-sectional view taken along a line XID-XID in FIG. 11C .
  • the damper 6 c includes the damper tubular body 61 c , the damper protrusions 62 c , the tabs 63 c , and recesses 64 c .
  • the damper tubular body 61 c is the same as the damper tubular body 61 b .
  • Each of the damper protrusions 62 c is the same as the damper protrusion 62 b . Only the number of the damper protrusions are different.
  • Each of the damper protrusions 62 c corresponds to a second protrusion.
  • Each of the tab 63 c corresponds to a first protrusion.
  • the tab 63 c protrudes from the outer circumferential surface S 3 of the damper tubular body 61 c .
  • the tab 63 c is provided to hold the insulating substrate 4 a with the damper protrusion 62 c.
  • the tab 63 c is provided within a predetermined range from the first surface 51 in the height direction of the damper tubular body 61 c . That is, the tab 63 c is not provided in the entire area of the damper tubular body 61 b in the height direction, but is provided only in a portion of the damper tubular body 61 b in the height direction.
  • the tab 63 c is provided only on a portion of the outer circumferential surface S 3 in the circumferential direction.
  • the present disclosure is not limited to this. It is only required that the tab 63 c be provided at least a part of the damper tubular body 61 b in the circumferential direction.
  • the tab 62 b may be multiple tabs arranged in the circumferential direction. For example, two, three, four, or more tabs 62 b may be arranged in the circumferential direction at equal intervals. Further, the tab 62 b may be provided in the entire area in the circumferential direction.
  • the tab 63 c tapers from a side of the tab 63 c close to the second surface S 2 toward the first surface S 1 . This makes it easier for the damper 6 c to be inserted into the second insertion hole 41 a.
  • the tab 63 c may be made of the same material as the damper tubular body 61 b , or may be made of a different material. Further, the tab 63 c may be integrally formed with the damper tubular body 61 b , or formed by connecting different members.
  • Each of the recesses 64 c is provided between the damper protrusion 62 c and the tab 63 c .
  • the recess 64 c is located inward than the damper protrusion 62 c and the tab 63 c .
  • the opening width of the recess 64 c is equal to or greater than the thickness of the insulating substrate 4 a .
  • the opening width is a width of the recess 64 c in the height direction of the damper tubular body 61 c . Further, the opening width corresponds to the distance between the damper protrusion 62 c and the tab 63 c in the height direction.
  • the bottom surface of the recess 64 c is the outer circumferential surface S 3 .
  • the damper protrusions 62 c in the first form extends between the facing region of the second insertion hole 41 a and an outside of the facing region.
  • the facing region is defined by virtually extending an area of the second insertion hole 41 a in the thickness direction.
  • the damper protrusions 62 c in the second form are disposed outside of the facing region of the second insertion hole 41 a.
  • the tabs 63 c in the first form are arranged in the facing region of the second insertion hole 41 a .
  • the tabs 63 c in the second form are arranged outside the facing region of the second insertion hole 41 a.
  • the end portion of the insulating substrate 4 a can be arranged in the recesses 64 c when the damper 6 c is in the second form.
  • the damper 6 a when stress is applied to the insulating substrate 4 a in the thickness direction, the upper portion and the lower portion of the damper 6 b facing the insertion hole surface S 11 are elastically deformed. Further, the damper protrusions 62 c and the tabs 63 c of the damper 6 c are elastically deformed.
  • the damper 6 a can protect the circuit board 1 when stress is applied to the insulating substrate 4 a in the thickness direction.
  • the damper 6 c can exert similar effects to those of the dampers 6 a and 6 b . Further, the damper 6 c includes the damper protrusions 62 c , the tabs 63 c , and the recesses 64 c . Therefore, the damper 6 c can appropriately position the insulating substrate 4 a with respect to the damper 6 c . Further, the damper 6 c can hold the insulating substrate 4 a between the damper protrusions 62 c and the tabs 63 c . Therefore, the damper 6 c can improve the holding force for the insulating substrate 4 a as compared with the damper 6 a.
  • the insulating substrate 4 a is held by the damper protrusions 62 c and the tabs 63 c .
  • the insulating substrate 4 a can be hold more strongly than in the case where the insulating substrate 4 a is held by the damper 6 a .
  • the circuit board 1 can be more surely protected when stress is applied to the insulating substrate 4 a in the thickness direction compared to the case including the damper 6 a.
  • the damper 6 b of the fourth modification will be described.
  • portions different from the second embodiment will be mainly described.
  • the damper 6 b is different from that in the second embodiment in including a height adjusting member 6 b 1 .
  • the base 3 b in FIG. 12 has a configuration in which the distance adjusting portion 36 b is not provided in the base 3 b described in the second embodiment.
  • the base 3 b in FIG. 12 has the same configuration as the base 3 b described in the second embodiment except for the distance adjusting portion 36 b.
  • the damper 6 b includes the height adjusting member 6 b 1 at a position surrounded by the damper tubular body 61 b .
  • the height adjusting member 6 b 1 corresponds to an adjusting member.
  • the height adjusting member 6 b 1 has, for example, a tubular shape.
  • the height adjusting member 6 b 1 is composed mainly of metal. However, the present disclosure is not limited to this. A member made mainly of a resin may be used as the height adjusting member 6 b 1 .
  • the height adjusting member 6 b 1 is configured to adjust the height of the damper tubular body 61 b that is the distance between the first surface S 1 and the second surface S 2 . Further, it can be said that the height adjusting member 6 b 1 is provided to set the compressibility of the damper tubular body 61 b to a desired value. That is, since the damper 6 b includes the height adjusting member 6 b 1 , it is possible to restrict the damper 6 b from being compressed more than necessary by the second screws 202 or the like and from losing the function of relaxing the stress to the circuit board 1 .
  • the damper 6 b of the fourth modification can also achieve similar effects to those of the damper 6 b of the second embodiment.
  • the height adjusting member 6 b 1 can also be applied to the first embodiment and other modifications.
  • a damper 6 d of a fifth modification will be described.
  • portions different from the second embodiment will be mainly described.
  • the damper 6 d is different from the second embodiment in including a cover.
  • the damper 6 d includes a damper tubular body 61 d and a damper protrusion 62 d .
  • the damper tubular body 61 d is the same as the damper tubular body 61 b .
  • the damper protrusion 62 d is the same as the damper protrusion 62 b.
  • the cover includes a bottom surface cover 6 d 3 and a member having a side surface 6 d 1 and an upper surface 6 d 2 .
  • the side surface 6 d 1 , the upper surface 6 d 2 , and the bottom cover 6 d 3 are composed mainly of metal, resin, or the like.
  • the side surface 6 d 1 , the upper surface 6 d 2 , and the bottom cover 6 d 3 may be made of the same material or may be made of different materials.
  • the side surface 6 d 1 and the upper surface 6 d 2 are integrally formed with each other, for example.
  • the side surface 6 d 1 is a tubular member and is arranged to face the inner circumferential surface S 4 .
  • the side surface 6 d 1 also serves as the height adjusting member.
  • the upper surface 6 d 2 is disposed at an end of the side surface 6 d 1 .
  • the upper surface 6 d 2 is arranged to face the second surface S 2 .
  • the bottom cover 6 d 3 is arranged to face the first surface S 1 .
  • the bottom cover 6 d 3 is a different member from the side surface 6 d 1 .
  • the bottom cover 6 d 3 is arranged to face the side surface 6 d 1 .
  • the damper tubular body 61 d is disposed between the upper surface 6 d 2 and the bottom cover 6 d 3 .
  • the damper 6 d can achieve similar effects to those of the second embodiment and the fourth modification. Further, the side surface 6 d 1 , the upper surface 6 d 2 , and the bottom cover 6 d 3 of the damper 6 d can protect the damper tubular body 61 d and the damper protrusion 62 d . That is, it is possible to restrict foreign matters from adhering to the damper tubular body 61 d and the damper protrusion 62 d of the damper 6 d . Thus, it is possible to restrict deterioration of the damper 6 d caused by the foreign matters adhered to the damper 6 d.
  • the electronic controller 100 of a third embodiment will be described.
  • portions different from those in the second embodiment will be mainly described.
  • the configuration of the second screw 203 is different from that of the second embodiment.
  • the shape of the damper 6 b is different from that of the second embodiment.
  • the configuration of the base 3 c and the deforming step are different from those in the second embodiment.
  • the base 3 c includes a pedestal 34 c , a base positioning portion 35 c , and a second screw hole 32 .
  • the pedestal 34 c is the same as the pedestal 34 b .
  • the base positioning portion 35 c is the same as the base positioning portion 35 b .
  • the second screw hole 32 is defined in the base positioning portion 35 c . That is, the base 3 c can be regarded to have a configuration in which the distance adjusting portion 36 b is omitted from the base 3 b and the second screw hole 32 is defined in the base 3 b .
  • the base 3 c may include the distance adjusting portion 36 b defining the second screw hole 32 .
  • the second screw 203 includes a columnar portion 203 a and a screw head 203 b , similarly to the second screw 202 .
  • the second screw 203 corresponds to a fixing member
  • the columnar portion corresponds to a fixed portion
  • the screw head 203 b corresponds to a pressing portion.
  • the columnar portion 203 a is the same as the columnar portion 202 a .
  • the screw head 203 b has a screw tilted surface S 32 at a position that presses the damper tubular body 61 b .
  • the screw tilted surface S 32 has an annular shape.
  • the screw head 203 b has a shape in which the cross-sectional area of the screw head 203 b increases in a direction away from the columnar portion 203 a . That is, the screw head 203 b having a conical shape is disposed at an end of the columnar portion 203 a.
  • the screw head 203 b is a portion that deforms the damper tubular body 61 b from the first form to the second form. That is, the screw head 203 b is a portion that expands the diameter of the damper tubular body 61 b .
  • the screw head 203 b can be referred to as an expanding portion.
  • the damper 6 b includes an end corner surface S 7 along the screw tilted surface S 32 .
  • the end corner surface S 7 is disposed between the first surface S 1 and the inner circumferential surface S 4 .
  • the end corner surface S 7 is a surface that is pressed by the second screw 203 and deformed along the screw tilted surface S 32 .
  • the end corner surface S 7 can be regarded as a surface that is formed by a portion of the first surface S 1 and a portion of the inner circumferential surface S 4 .
  • the end corner surface S 7 may be a surface provided in the damper tubular body 61 b in advance to be along the screw tilted surface S 32 .
  • the end corner surface S 7 is also referred to as an inner circumferential corner surface.
  • the circuit element 51 and the like are mounted on the insulating substrate 4 a .
  • the mounting method of the circuit element 51 is the same as that of the first embodiment.
  • the damper 6 b in the first form is arranged on the base 3 c .
  • the second surface S 2 is arranged to face the pedestal 34 c .
  • the base positioning portion 35 c is inserted into the through hole H 1 .
  • the second screw 203 is screwed into the second screw hole 32 .
  • the second screw 203 is screwed into the second screw hole 32 while the screw tilted surface S 32 is in contact with the end corner surface S 7 .
  • force from the screw head 203 b acts on the damper 6 b not only in the thickness direction but also in the plane direction.
  • the diameter of the damper tubular body 61 b is expanded by the force applied from the screw head 203 b .
  • the first end surface S 5 and the second end surface S 6 of the damper 6 b that are connected with the adhesive 7 are peeled off.
  • the adhesive 7 may be divided. Further, since the force from the screw head 203 b also acts on the damper 6 b in the plane direction, the holding force for the insulating substrate 4 a (circuit board 1 ) is improved.
  • the damper 6 b is deformed from the first form to the second form.
  • the diameter of the damper tubular body 61 b is expanded by the force from the second screw 203 .
  • the damper 6 b is changed from the first form to the second form with the force from the second screw 203 instead of using heat.
  • the first form can be shifted to the second form simply by screwing the second screw 203 .
  • the damper 6 a or the damper 6 c can be used instead of the damper 6 b.
  • an electronic controller of a sixth modification will be described.
  • portions different from the third embodiment will be mainly described.
  • the configuration of the base 3 d is different from that of the third embodiment.
  • the damper 6 a is adopted as an example.
  • the damper 6 b can also be adopted.
  • the damper 6 a is disposed so that the second surface S 2 is arranged to face the screw head 203 b and the first surface 51 is arranged to face the base 3 c .
  • an end corner surface S 8 is a surface extending along the screw tilted surface S 32 .
  • the base 3 d includes a pedestal 34 d and a base expanding portion 35 d .
  • the pedestal 34 d is the same as the pedestal 34 c .
  • the base expanding portion 35 d is a portion of the pedestal 34 d that protrudes from the base pressing surface S 21 .
  • the base expanding portion 35 d has a truncated cone shape.
  • the base expanding portion 35 d has an annular base tilted surface S 22 .
  • the base pressing surface S 21 is in contact with the first surface 51 .
  • the base tilted surface S 22 is in contact with the end corner surface S 7 of the damper 6 a .
  • the end corner surface S 7 will be described later.
  • the base expanding portion 35 d can expand the diameter of the damper tubular body 61 d . Further, the base expanding portion 35 d also serves as a base positioning portion.
  • the damper 6 a includes the end corner surface S 7 close to the first surface 51 and the end corner surface S 8 close to the second surface S 2 .
  • the end corner surface S 7 is a surface that is deformed along the base tilted surface S 22 by a pressing force of the second screw 203 .
  • the end corner surface S 7 can be regarded as a surface that is formed by a portion of the first surface S 1 and a portion of the inner circumferential surface S 4 .
  • the end corner surface S 7 may be a surface provided in advance to extend along the base tilted surface S 22 .
  • the end corner surface S 8 is the same as the end corner surface S 7 of the third embodiment.
  • Each of the end corner surfaces S 7 and S 8 is also referred to as an inner circumferential corner surface.
  • the second screw 203 is screwed into the second screw hole 32 .
  • the second screw 203 is screwed into the second screw hole 32 while the screw tilted surface S 32 is in contact with the end corner surface S 8 and the base tilted surface S 22 is in contact with the end corner surface S 7 .
  • the damper 6 a is changed from the first form to the second form in the same manner as in the third embodiment.
  • the base 3 d of this modification includes the base expanding portion 35 d .
  • force for expanding the diameter of the damper tubular body 61 a is improved as compared with the third embodiment. Therefore, in the deforming step of this modification, the damper tubular body 61 a can be shifted from the first form to the second form more easily than in the third embodiment. Further, the force to expand the diameter of the damper tubular body 61 a is improved with the electronic controller of the sixth modification, thereby improving the holding force for the insulating substrate 4 a (circuit board 1 ).
  • an electronic controller 100 of a fourth embodiment will be described.
  • portions different from those in the first embodiment will be mainly described.
  • configurations of a cover 2 e and a base 3 e are different from those in the first embodiment.
  • the electronic controller 100 includes the damper 6 a , the cover 2 e and the base 3 e that configure a housing, and the insulating substrate 4 a .
  • the electronic controller 100 includes the circuit board 1 having the insulating substrate 4 a , as in the first embodiment.
  • the circuit board 1 corresponds to a supported portion.
  • the cover 2 e includes a cover protrusion 22 e and a cover expanding portion 23 e .
  • the cover 2 e corresponds to a holding member.
  • the cover protrusion 22 e protrudes more than the periphery of the cover protrusion 22 e .
  • the cover protrusion 22 e protrudes toward the housing space.
  • the cover protrusion 22 e has a tip end surface and the tip end surface includes the cover pressing surface S 51 and the cover expanding portion 23 e .
  • the cover pressing surface S 51 is a surface that is in contact with the second surface S 2 of the damper 6 a and that presses the damper 6 a.
  • the cover expanding portion 23 e is inserted into the through hole H 1 .
  • the cover expanding portion 23 e protrudes from the tip end surface of the cover protrusion 22 e .
  • the cover expanding portion 23 e is a portion of the tip end surface of the cover protrusion 22 e outside of the cover pressing surface S 51 .
  • the cover expanding portion 23 e is located at a position surrounded by the cover pressing surface S 51 .
  • the cover expanding portion 23 e has the same configuration as the base expanding portion 35 d .
  • the cover expanding portion 23 e has a cover tilted surface S 52 .
  • the cover tilted surface S 52 is in contact with the end corner surface S 8 of the damper 6 a and presses the damper 6 a.
  • the cover 2 e When the cover 2 e is coupled to the base 3 e , the cover 2 e presses the damper 6 a toward the base 3 e between the cover 2 e and the base 3 e .
  • the cover 2 e and the base 3 e hold the damper 6 a while the cover 2 e presses the damper 6 a.
  • the base 3 e includes a pedestal 34 e and a base expanding portion 35 e .
  • the base 3 e corresponds to a supporting member.
  • the pedestal 34 e is the same as the pedestal 34 d .
  • the base expanding portion 35 e is the same as the base expanding portion 35 d .
  • the pedestal 34 e includes the base pressing surface S 21 and the base tilted surface S 22 .
  • the base expanding portion 35 e is inserted into the through hole H 1 .
  • the base pressing surface S 21 is in contact with the first surface S 1 of the damper 6 a and presses the damper 6 a .
  • the base tilted surface S 22 is in contact with the end corner surface S 7 and presses the damper 6 a.
  • Each of the cover expanding portion 23 e and the base expanding portion 35 e corresponds to a protrusion.
  • the cover 2 e includes the cover expanding portion 23 e and the base 3 e includes the base expanding portion 35 e is adopted.
  • the present disclosure is not limited to this. It is only required that at least one of the cover expanding portion 23 e and the base expansion portion 35 e be provided.
  • Each of the cover tilted surface S 52 and the base tilted surface S 22 corresponds to a tilted surface or an outer tilted surface.
  • the cover 2 e includes the cover tilted surface S 52 and the base 3 e includes the base tilted surface S 22 is adopted.
  • the present disclosure is not limited to this. It is only required that at least one of the cover tilted surface S 52 and the base tilted surface S 22 be provided.
  • the damper 6 a has the end corner surface S 7 closer to the first surface S 1 and the end corner surface S 8 closer to the second surface S 2 .
  • the end corner surface S 7 is a surface that is pressed by the base 3 e and deformed along the base tilted surface S 22 .
  • the end corner surface S 7 can be regarded as a surface that is formed by a portion of the first surface S 1 and a portion of the inner circumferential surface S 4 .
  • the end corner surface S 8 is a surface that is pressed by the cover expanding portion 23 e and deformed along the cover tilted surface S 52 .
  • the end corner surface S 8 can be regarded as a surface that is formed by a portion of the second surface S 2 and a portion of the inner circumferential surface S 4 .
  • Each of the end corner surfaces S 7 and S 8 corresponds to the inner circumferential corner surface.
  • the damper 6 a is arranged in the second insertion hole 41 a .
  • the damper 6 a is pressed by the cover 2 e toward the base 3 e while being arranged in the second insertion hole 41 a . That is, the damper 6 a is pressed toward the base 3 e by coupling the cover 2 e and the base 3 e.
  • the cover expanding portion 23 e and the base expanding portion 35 e are inserted into the through hole H 1 and fit to the damper 6 a . That is, not only the first surface S 1 and the second surface S 2 of the damper 6 a , but also the end corner surfaces S 7 and S 8 of the damper 6 a are pressed.
  • the force from the cover 2 e and the base 3 e acts on the damper 6 a not only in the thickness direction but also in the plane direction. Therefore, the force applied to the damper 6 a from the cover expanding portion 23 e and the base expanding portion 35 e expands the diameter of the damper tubular body 61 a , so that the damper 6 a is changed from the first form to the second form. Further, since the force from the cover 2 e and the base 3 e also acts on the damper 6 a in the plane direction, the holding force for the insulating substrate 4 a can be improved.
  • the damper 6 a the diameter of the damper tubular body 61 a is expanded, and the damper tubular body 61 a presses the insertion hole surface S 11 . That is, in the damper 6 a , the damper tubular body 61 a is pressed against the insertion hole surface S 11 . In this way, the damper 6 a is held in the circuit board 1 . The damper 6 a relaxes stress to the circuit board 1 while being held in the circuit board 1 .
  • the dampers 6 b and 6 c can be used instead of the damper 6 a.
  • the damper 6 a is elastically deformed in the thickness direction between the cover protrusion 22 e and the pedestal 34 e due to the stress applied in the thickness direction of the insulating substrate 4 a .
  • the upper portion and the lower portion of the damper 6 a facing the insertion hole surface S 11 are mainly elastically deformed.
  • the damper 6 a can protect the circuit board 1 when stress is applied to the insulating substrate 4 a in the thickness direction.
  • the damper 6 a a space is defined in a region surrounded by the inner circumferential surface S 4 . Therefore, the damper 6 a is easily elastically deformed in the intersecting direction. Therefore, the damper 6 a can relax not only the stress to the circuit board 1 in the thickness direction but also stress to the circuit board 1 in the intersecting direction. Therefore, the damper 6 a can appropriately relax the stress to the circuit board 1 .
  • the cover expanding portion 23 e and the base expanding portion 35 e are fit to the damper 6 a .
  • the cover 2 e and the base 3 e are restricted from being displaced from the damper 6 a . Therefore, the electronic controller 100 can protect the circuit board 1 from stress by appropriately pressing the damper 6 a against the insertion hole surface S 11 as compared with the case where the positions of the damper 6 a , the cover 2 e , and the base 3 e are displaced.
  • an electronic controller of a seventh modification will be described.
  • portions different from the fourth embodiment will be mainly described.
  • the configuration of the base 3 e is different from that of the fourth embodiment.
  • the same reference numerals as those in the fourth embodiment are adopted.
  • the base 3 e includes a distance adjusting portion 36 e .
  • the distance adjusting portion 36 e like the distance adjusting portion 36 b , restricts the inner circumferential surface S 4 of the damper tubular body 61 a from becoming too closer than necessary.
  • the electronic controller 100 of the seventh modification can achieve similar effects to those of the fourth embodiment.
  • the orientations of the base tilted surface S 22 of the base expanding portion 35 e and the cover tilted surface S 52 of the cover expanding portion 23 e may be appropriately changed as long as the holding force for the circuit board 1 can be improved.
  • the orientation of the screw tilted surface S 32 may be appropriately changed as long as the holding force for the circuit board 1 can be improved.
  • FIG. 19A is a side view of the damper 6 e .
  • FIG. 19B is a cross-sectional view taken along a line XIXB-XIXB in FIG. 19A .
  • the damper 6 e includes an annular damper tubular body 61 e .
  • the damper tubular body 61 e defines a through hole H 1 like the damper tubular body 61 a .
  • the damper tubular body 61 a includes the first surface S 1 , the second surface S 2 , the outer circumferential surface S 3 , and the inner circumferential surface S 4 .
  • the damper tubular body 61 e may be made of a material same as that of the damper tubular body 61 a .
  • the damper 6 e is also referred to as a tubular member because the gap G 1 is not defined.
  • the damper tubular body 61 e corresponds to a tubular body.
  • the damper 6 e can also be applied to the third embodiment, the fourth embodiment, the sixth modification, and the seventh modification. As an example, a case where the damper 6 e is applied to the fourth embodiment will be described.
  • the damper 6 e is arranged in the second insertion hole 41 a .
  • the damper 6 e is pressed by the cover 2 e toward the base 3 e while being arranged in the second insertion hole 41 a . That is, the damper 6 e is pressed toward the base 3 e by coupling the cover 2 e and the base 3 e.
  • the cover expanding portion 23 e and the base expanding portion 35 e are inserted into the through hole H 1 and fit to the damper 6 e . That is, not only the first surface S 1 and the second surface S 2 of the damper 6 e , but also the end corner surfaces S 7 and S 8 of the damper 6 e are pressed.
  • the force from the cover 2 e and the base 3 e acts on the damper 6 e not only in the thickness direction but also in the plane direction. Therefore, the force applied to the damper 6 e from the cover expanding portion 23 e and the base expanding portion 35 e expands the diameter of the damper tubular body 61 e , so that the damper 6 e is changed from the first form to the second form. Further, since the force from the cover 2 e and the base 3 e also acts on the damper 6 a in the plane direction, the holding force for the insulating substrate 4 a can be improved.
  • the eighth modification can achieve similar effects to those of the fourth embodiment and the seventh modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Textile Engineering (AREA)
  • Mounting Of Printed Circuit Boards And The Like (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

A damper is disposed in a holding hole that passes through, in a passing-through direction, a supported member that is supported by a supporting member. The dumper includes a tubular body defining therein a through hole extending in the passing-through direction. The tubular body is elastically deformable between a first form and a second form. The tubular body in the first form has an outer shape that is smaller than the holding hole. The tubular body in the second form has an outer shape that is equal to or greater than the holding hole.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is based on Japanese Patent Application No. 2020-215320 filed on Dec. 24, 2020, the disclosure of which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to a damper, an electronic controller, and a method for coupling the damper.
  • BACKGROUND ART
  • An anti-vibration bush, as an example of a damper, absorbs stress transmitted to an electronic device from an attached member.
  • SUMMARY
  • A damper is disposed in a holding hole that passes through, in a passing-through direction, a supported member that is supported by a supporting member. The dumper includes a tubular body defining a through hole therein extending in the passing-through direction. The tubular body is elastically deformable between a first form and a second form. The tubular body in the first form has an outer shape that is smaller than the holding hole. The tubular body in the second form has an outer shape that is equal to or greater than the holding hole.
  • An electronic controller in this disclosure includes a supporting member, a damper, a supported member, and a holding member. The damper has a tubular body that is elastically deformable and defines a through hole. The through hole passes through the tubular body between a first end and a second end of the tubular body. The supported member defines a holding hole in which the damper is disposed and is supported by the supporting member through the damper. The holding hole extends along the through hole of the tubular body. The holding member presses the damper toward the supporting member to hold the damper in the supported member. The damper includes an end corner surface. At least one of the supporting member or the holding member includes a tilted surface that is in contact with the end corner surface of the damper, so that the at least one of the supporting member or the holding member is fit to the damper. The damper is in contact with an inner circumferential surface of the holding hole with pressure to hold the supported member.
  • A method for coupling the damper in this disclosure includes an inserting step of inserting the tubular body in the first form into the holding hole and a deforming step of melting the adhesive with heat to deform the tubular body from the first form to the second form. Thereby, the tubular body is pressed against an inner surface of the holding hole by restoring force
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective exploded view illustrating a schematic configuration of an electronic controller of a first embodiment;
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the electronic controller of the first embodiment;
  • FIG. 3A is a diagram illustrating a schematic configuration of a damper in a first form of the first embodiment.
  • FIG. 3B is a cross-sectional view taken along a line IIIB-IIIB in FIG. 3A.
  • FIG. 3C is a diagram illustrating a schematic configuration of the damper in a second form of the first embodiment.
  • FIG. 3D is a cross-sectional view taken along a line IIID-IIID in FIG. 3C.
  • FIG. 4 is an explanatory diagram illustrating a method for manufacturing the electronic controller of the first embodiment.
  • FIG. 5 is a plan view from a direction of an arrow V in FIG. 4.
  • FIG. 6 is a plan view from a direction of an arrow VI in FIG. 4.
  • FIG. 7 is a plan view illustrating a state where the damper is hold in an insulating substrate of a first modification.
  • FIG. 8 is a cross-sectional view illustrating a state where the damper is hold in an insulating substrate of a second modification.
  • FIG. 9A is a diagram illustrating a schematic configuration of a damper of a second embodiment.
  • FIG. 9B is a cross-sectional view taken along a line IXB-IXB in FIG. 9A.
  • FIG. 10 is an explanatory diagram illustrating a method for manufacturing an electronic controller of the second embodiment.
  • FIG. 11A is a diagram illustrating a schematic configuration of a damper in a first form of a third modification.
  • FIG. 11B is a cross-sectional view taken along a line XIB-XIB in FIG. 11A.
  • FIG. 11C is a diagram illustrating a schematic configuration of the damper in a second form of the third modification.
  • FIG. 11D is a cross-sectional view taken along a line XID-XID in FIG. 11C.
  • FIG. 12 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a fourth modification.
  • FIG. 13 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a fifth modification.
  • FIG. 14 is an explanatory diagram illustrating a method for manufacturing an electronic controller of a third embodiment.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of the electronic controller of the third embodiment.
  • FIG. 16 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a sixth modification.
  • FIG. 17 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a forth embodiment.
  • FIG. 18 is a cross-sectional view illustrating a schematic configuration of an electronic controller of a seventh modification.
  • FIG. 19A is a diagram illustrating a schematic configuration of a damper of an eighth modification.
  • FIG. 19B is a cross-sectional view taken along a line XIXB-XIXB in FIG. 19A.
  • DETAILED DESCRIPTION
  • To begin with, examples of relevant techniques will be described.
  • As an example of a damper, there is an anti-vibration bush. The anti-vibration bush absorbs stress transmitted to an electronic device from an attached member.
  • By the way, the electronic device has a bracket defining a hole and the anti-vibration bush is arranged in the hole. However, when the anti-vibration bush is designed to be easily inserted into the hole, a holding force between the anti-vibration bush and the bracket may not be secured.
  • It is an object of the present disclosure to provide an improved damper, an electronic controller, and a method for coupling the damper. It is another object of the present disclosure to provide a damper that can secure a holding force. It is another object of the present disclosure to provide an electronic controller that can be protected from stress. It is another object of the present disclosure to provide a method for coupling the damper that can simplify a coupling step.
  • A damper in this disclosure is disposed in a holding hole that passes through, in a passing-through direction, a supported member that is supported by a supporting member. The dumper includes a tubular body defining a through hole therein extending in the passing-through direction. The tubular body is elastically deformable between a first form and a second form. The tubular body in the first form has an outer shape that is smaller than the holding hole. The tubular body in the second form has an outer shape that is equal to or greater than the holding hole.
  • According to this damper, since the tubular body can be in the first form that has the outer shape smaller than the holding hole, the damper can be easily inserted into the holding hole. Further, since the tubular body can be deformed to the second form that has the outer shape equal to or greater than the holding hole, the holding force for the supported member can be secured.
  • An electronic controller in this disclosure includes the damper, the supporting member, and the supported member. The tubular body in the second form is disposed in the holding hole and presses an inner surface of the holding hole. The supported member is supported by the supporting member through the damper.
  • The electronic controller includes the damper. Thus, the electronic controller can relax not only stress applied to the supported member in a direction along the through hole but also stress applied to the supported member in an intersecting direction. Therefore, the electronic controller can protect the supported member from stress.
  • An electronic controller in this disclosure includes a supporting member, a damper, a supported member, and a holding member. The damper has a tubular body that is elastically deformable and defines a through hole. The through hole passes through the tubular body between a first end and a second end of the tubular body. The supported member defines a holding hole in which the damper is disposed and is supported by the supporting member through the damper. The holding hole extends along the through hole of the tubular body. The holding member presses the damper toward the supporting member to hold the damper in the supported member. The damper includes an end corner surface. At least one of the supporting member or the holding member includes a tilted surface that is in contact with the end corner surface of the damper, so that the at least one of the supporting member or the holding member is fit to the damper. The damper is in contact with an inner circumferential surface of the holding hole with pressure to hold the supported member.
  • In this electronic controller, at least one of the supporting member and the holding member is fit to the damper. Thus, the electronic controller can restrict the damper from being displaced from the at least one of the supporting member and the holding member. Therefore, in the electronic controller, the damper can be appropriately pressed against the inner circumferential surface of the holding hole as compared with the case where the damper is displaced. Thus, the supported member can be protected from stress.
  • A method for coupling the damper in this disclosure includes an inserting step of inserting the tubular body in the first form into the holding hole and a deforming step of melting the adhesive with heat to deform the tubular body from the first form to the second form. Thereby, the tubular body is pressed against an inner surface of the holding hole by restoring force
  • In this method, since the damper is in the first form during the inserting step, it is easy to insert the damper into the holding hole. Then, since the deforming step is performed after the inserting step, the damper can be easily pressed against the inner surface of the holding hole. Thus, with this method, a coupling step of the damper can be simplified.
  • The disclosed aspects in this specification adopt different technical solutions from each other in order to achieve their respective objects. The objects, features, and advantages disclosed in this specification will become apparent by referring to following detailed descriptions and accompanying drawings.
  • Hereinafter, multiple embodiments for implementing the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to those described in the preceding embodiment are denoted by the same reference numerals, and redundant descriptions will be omitted in some cases. In each embodiment, when only a part of the configuration is described, the other parts of the configuration can be applied with reference to the preceding embodiments.
  • First Embodiment
  • First, a configuration of an electronic controller 100 will be described with reference to FIGS. 1 to 6. The electronic controller 100 includes a circuit board 1, a cover 2 a, a base 3 a, dampers 6 a, and the like. The electronic controller 100 is configured to be installed in a vehicle, for example. Thus, the electronic controller 100 can be applied to a controller that controls an in-vehicle device. In FIGS. 1 and 2, an illustration of the dampers 6 a is simplified.
  • <Circuit Board>
  • The circuit board 1 corresponds to a supported member. The circuit board 1 includes an insulating substrate 4 a, circuit elements 51 and 52, a connector 53, and the like. The insulating substrate 4 a is made of a material such as resin or ceramic and has an electrical insulation property. The insulating substrate 4 a defines second insertion holes 41 a that pass through the insulating substrate 4 a in a thickness direction.
  • In the following, the thickness direction of the insulating substrate 4 a is simply referred to as a thickness direction. The thickness direction is the same as a passing-through direction in which a through hole H1 of the damper 6 a, which will be described later, passes through the damper 6 a. Further, a direction intersecting the thickness direction corresponds to an intersecting direction. The intersecting direction is a plane direction parallel to a mounting surface of the insulating substrate 4 a on which the circuit element 51 and the like is mounted.
  • The insulating substrate 4 a is provided with a wiring pattern 42 that is a part of a conductive wiring. The wiring pattern 42 is provided on a surface or inside of the insulating substrate 4 a. The circuit board 1 may be a multi-layer board in which the wiring patterns 42 and the insulating substrates 4 a are stacked with each other, a single-layer board in which the single-layer wiring pattern 42 is provided on the insulating substrate 4 a, or the like.
  • Each of the second insertion holes 41 a corresponds to a holding hole. The second insertion holes 41 a are defined, for example, at four corners of the insulating substrate 4 a. Each of the second insertion holes 41 a is a hole into which a second screw 202 and the damper 6 a are inserted. The damper 6 a is arranged in the second insertion hole 41 a to be in contact with the second insertion hole 41 a with pressure. The damper 6 a will be described in detail later.
  • Further, as shown in FIGS. 5 and 6, the second insertion hole 41 a is a through hole surrounded by an annular insertion hole surface S11. The second insertion hole 41 a is a hole having an inner diameter R21. The insertion hole surface S11 corresponds to an inner surface of the holding hole.
  • The circuit elements 51 and 52 and the connector 53 correspond to electronic components. The circuit elements 51 and 52 and the connector 53 are mounted on the insulating substrate 4 a.
  • Each of the circuit elements 51 and 52 is, for example, a semiconductor switching element, a resistance element, a capacitor, or the like. The circuit element 51 is mounted on a first surface of the insulating substrate 4 a. On the other hand, the circuit element 52 is mounted on a second surface of the insulating substrate 4 a that is opposite to the first surface. More specifically, the circuit elements 51 and 52 are mounted on the insulating substrate 4 a with solder 51 a. Further, the circuit elements 51 and 52 are electrically connected to the wiring pattern 42 through the solder 51 a.
  • The number of the circuit elements 51 and 52 is not limited to that shown in FIG. 1. Further, in the present embodiment, the solder is adopted as an example of a conductive connecting member. However, the conductive connecting member is not limited to solder, and other members such as silver paste can also be adopted. The solder 51 a and the wiring pattern 42 can be regarded as a connecting portion between the electronic components and the insulating substrate 4 a.
  • The connector 53 includes terminals 531 and a connector case that holds the terminals 531. The connector 53 is mounted on the insulating substrate 4 a while the terminals 531 and the wiring are electrically connected to each other with solder. The connector 53 is provided for electrical connection between the electronic controller 100 and an external device provided outside the electronic controller 100. The external device is another electronic controller, a device to be controlled, or the like. Further, the connector 53 may be, for example, an interface for connecting to a communication line of an in-vehicle network. That is, in this embodiment, the connector 53 is adopted as an example of the interface.
  • In this embodiment, as an example, the circuit board 1 provided with the connector 53 is adopted. However, the circuit board 1 may not have the connector 53 in the present disclosure.
  • The circuit board 1 is supported by the base 3 a with the second screws 202. More specifically, the circuit board 1 is supported by the base 3 a with the second screws 202 via the dampers 6 a. Further, the circuit board 1 is supported by the base 3 a with the multiple second screws 202. In this embodiment, as an example, the circuit board 1 is supported by the base 3 a with the four second screws 202. Thus, each of the second screws 202 is also referred to as a supporting element.
  • The second screw 202 may contain a metal as a main component. The second screw 202 has a columnar portion 202 a with a male thread and a screw head 202 b located at an end of the columnar portion 202 a. The columnar portion 202 a is inserted into the second insertion hole 41 a and the through hole H1 of the damper 6 a, and a portion of the columnar portion 202 a is screwed with the second screw hole 32 (i.e., female thread) defined in the base 3 a.
  • The screw head 202 b has a screw pressing surface S31 that is in contact with an end surface (here, a second surface S2) of the damper 6 a and that presses the second surface S2. Thus, the screw pressing surface S31 presses the second surface S2 of the damper 6 a while the second screw 202 is screwed into the second screw hole 32. In other words, the second screw 202 presses the damper 6 a toward the base 3 a while the screw pressing surface S31 is in contact with the second surface S2.
  • In this way, the male threads of the second screws 202 are engaged with the female threads of the second screw holes 32, thereby the circuit board 1 is supported by the base 3 a. In other words, the circuit board 1 is screwed to the base 3 a with the second screws 202.
  • <Housing>
  • With reference to FIGS. 1 and 2, a housing will be described. The housing accommodates the circuit board 1. The housing includes the cover 2 a and the base 3 a. The cover 2 a and the base 3 a are assembled to each other to define a housing space for housing the circuit board 1. The cover 2 a and the base 3 a are mainly composed of a metal such as aluminum. Thus, the cover 2 a and the base 3 a have conductivity.
  • However, the housing is not limited to this. For example, the cover 2 a and the base 3 a may be composed mainly of a resin or the like. Further, only either one of the cover 2 a and the base 3 a may be composed of a metal as a main component.
  • The cover 2 a is, for example, a plate-shaped member. The cover 2 a defines first insertion holes 21 passing through the cover 2 a in the thickness direction. The first insertion holes 21 are defined at the four corners of the cover 2 a, for example. The first insertion holes 21 are holes into which first screws 201 are inserted.
  • The base 3 a corresponds to a supporting member. The base 3 a is, for example, a box-shaped member having a recess. The base 3 a defines first screw holes 31, the second screw holes 32, and a connector hole 33. The first screw holes 31 has female threads like the second screw holes 32. The first screw holes 31 are defined at four corners of the base 3 a, for example. Further, the first screw holes 31 are defined, for example, in a flange of the base 3 a. Further, the first screw holes 31 are defined in positions to face the first insertion holes 21 when the cover 2 a and the base 3 a are arranged to face each other.
  • The second screw holes 32 are defined in positions of the base 3 a at which the circuit board 1 is disposed. For example, the second screw holes 32 are defined to face the four corners of the circuit board 1. More specifically, the second screw holes 32 are defined in a pedestal 34 a of the base 3 a. The pedestal 34 a is a protruding portion that is protrude more than a peripheral portion of the pedestal 34 a. The second screw holes 32 are defined in positions to face the second insertion holes 41 a when the circuit board 1 is disposed on the pedestal 34 a. The surface of the pedestal 34 a is a base pressing surface S21 that is pressed by the damper 6 a. However, the present disclosure is not limited to this.
  • The connector hole 33 is a through hole defined in a bottom of the base 3 a. The connector hole 33 has an opening shape corresponding to an outer shape of the connector 53. The connector 53 is inserted into the connector hole 33 with the circuit board 1 arranged on the pedestal 34 a. The connector hole 33 is not necessarily defined in the base 3 a.
  • The first screw 201 has the same configuration as the second screw 202. The columnar portion of the first screw 201 is inserted into the first insertion hole 21, and a portion of the columnar portion is screwed with the first screw hole 31 defined in the base 3 a. Thus, the cover 2 a is fixed to the base 3 a by engaging the male threads of the first screws 201 and the female threads of the first screw holes 31. Further, in other words, the cover 2 a is screwed to the base 3 a with the first screws 201.
  • The cover 2 a and the base 3 a are coupled to each other while the circuit board 1 is supported by the base 3 a. Further, the cover 2 a is fixed to the base 3 a such that the columnar portions of the first screws 20 a are inserted into the first insertion holes 21 and the columnar portions of the first screws 20 a are engaged with the first screw holes 31.
  • <Damper>
  • Next, with reference to FIGS. 2 and 3A to 3D, the damper 6 a will be described. The damper 6 a is a member for relieving stress (external force) to the circuit board 1. For example, the damper 6 a absorbs impact applied to the circuit board 1. Further, the damper 6 a protects the circuit board 1 from stresses such as assembly strain, thermal shock, and vibration. The damper 6 a is also referred to as a member that relaxes stress to the insulating substrate 4 a.
  • The damper 6 a includes a damper tubular body 61 a. There is a gap G1 in the damper tubular body 61 a. The damper tubular body 61 a corresponds to a tubular body. The damper tubular body 61 a is configured to be in two forms. FIGS. 3A to 3D illustrate the two forms of the damper tubular body 61 a. FIG. 3A is a side view of the damper tubular body 61 a in a first form. FIG. 3B is a cross-sectional view taken along a line IIIB-IIIB in FIG. 3A. FIG. 3C is a side view of the damper tubular body 61 a in a second form. FIG. 3D is a cross-sectional view taken along a line IIID-IIID in FIG. 3C. The two forms will be described in detail later.
  • The damper tubular body 61 a includes a first surface S1, the second surface S2 that is opposite to the first surface S1, an outer circumferential surface S3 and an inner circumferential surface S4 that are connected to both the first surface S1 and the second surface S2. The distance between the first surface S1 and the second surface S2 is the height of the damper tubular body 61 a. Further, the distance between the outer circumferential surface S3 and the inner circumferential surface S4 is the thickness of the damper tubular body 61 a.
  • In the present embodiment, as an example of the damper tubular body 61 a, the first surface S1 and the second surface S2 are parallel to each other. Further, in the present embodiment, as an example, the damper tubular body 61 a has a cylindrical shape. However, the present disclosure is not limited to this. The first surface S1 corresponds to a first end. The second surface S2 corresponds to a second end.
  • The damper tubular body 61 a defines a through hole H1 extending between the first surface S1 and the second surface S2. The through hole H1 is surrounded by the inner circumferential surface S4. In other words, the damper tubular body 61 a defines the through hole H1 along the second insertion hole 41 a when the damper 6 a is held by the circuit board 1 (the insulating substrate 4 a).
  • The gap G1 extends between the first surface S1 and the second surface S2 of the damper tubular body 61 a. Thus, when the damper tubular body 61 a is viewed from the first surface S1 or the second surface S2, the damper tubular body 61 a has an annular shape, a part of which is cut off at the gap G1. The damper tubular body 61 a includes a first end surface S5 that is one end in the circumferential direction and a second end surface S6 that is the other end in the circumferential direction. The gap G1 is an area between the first end surface S5 and the second end surface S6. Thus, the first end surface S5 and the second end surface S6 are arranged to face each other across the gap G1. The gap G1 can be rephrased as a slit, a clearance, or the like.
  • Here, the two forms of the damper tubular body 61 a will be described. The damper tubular body 61 a can be in the first form that has an outer shape smaller than the second insertion hole 41 a and in the second form that has an outer shape equal to or larger than the second insertion hole 41 a. In other words, the outer shape of the damper tubular body 61 a in the first form is smaller than an opening area of the second insertion hole 41 a. On the other hand, the outer shape of the damper tubular body 61 a in the second form is larger than the opening area of the second insertion hole 41 a. Thus, the damper tubular body 61 a in the first form can be inserted into the second insertion hole 41 a without being deformed. On the other hand, the damper tubular body 61 a in the second form cannot be inserted into the second insertion hole 41 a without being deformed. The outer shape of the damper tubular body 61 a is an area surrounded by an annular curve that is defined by the outer circumferential surface S3.
  • In particular, in the present embodiment, as an example, the damper tubular body 61 a can be deformed between the first form having the small gap G1 and the second form having the wide gap G1. That is, the gap G1 in the second form is wider than the gap G1 in the first form. In other words, the gap G1 in the first form is narrower than the gap G1 in the second form. As shown in FIG. 3B, the gap G1 in the first form has a first distance R11 between the first end surface S5 and the second end surface S6. On the other hand, as shown in FIG. 3D, the gap G1 in the second form has a second distance R12 between the first end surface S5 and the second end surface S6. The first distance R11 is shorter than the second distance R12. As described above, the gap G1 has a different size between the first form and the second form.
  • The first end surface S5 and the second end surface S6 of the damper tubular body 61 a in the first form are located closer to each other than in the second form and connected with an adhesive 7. That is, the damper tubular body 61 a in the first form is connected with the adhesive 7 while pressed in directions of the white arrows in FIG. 3B. When the adhesive 7 is melted with heat, the damper tubular body 61 a is deformed to the second form from the first form with restoring force. Thus, as shown in FIGS. 3B and 3D, the damper tubular body 61 a has an elliptical shape in the first form and has a shape closer to a true circle than to the elliptical shape in the second form.
  • Further, the reference numeral R1 in FIG. 3B is given to a first outer diameter of the damper tubular body 61 a in the first form. The first outer diameter R1 is shorter than an inner diameter R21 of the second insertion hole 41 a.
  • Reference numeral R2 a in FIG. 3D is given to a second outer diameter of the damper tubular body 61 a in the second form. More specifically, the outer diameter in the second form differs between a state where the damper tubular body 61 a is inserted into the second insertion hole 41 a and a state where the damper tubular body 61 a is not inserted into the second insertion hole 41 a. The second outer diameter R2 a is the outer diameter in the second form when the damper tubular body 61 a is not inserted into the second insertion hole 41 a. The second outer diameter R2 a is equal to the diameter of the damper tubular body 61 a when no external force is applied to the damper tubular body 61 a.
  • On the other hand, as shown in FIG. 6, a third outer diameter R2 b is defined as the outer diameter of the damper tubular body 61 a in the second form in a state where the damper tubular body 61 a is inserted into the second insertion hole 41 a. The third outer diameter R2 b is equal to the inner diameter R21 of the second insertion hole 41 a. The second outer diameter R2 a is longer than the third outer diameter R2 b.
  • As will be described in detail later, the damper tubular body 61 a is inserted into the second insertion hole 41 a and presses the insertion hole surface S11, thereby the damper tubular body 61 a is held in the insulating substrate 4 a. To achieve this, the damper tubular body 61 a is formed such that the second outer diameter R2 a is longer than the third outer diameter R2 b. Similarly, the second distance R12 differs between the state where the damper tubular body 61 a is inserted into the second insertion hole 41 a and the state where the damper tubular body 61 a is not inserted into the second insertion hole 41 a.
  • Each of the outer diameters R1, R2 a, and R2 b is a distance of the outer circumferential surface S3 of the damper tubular body 61 a on a virtual straight line perpendicular to a center axis of the damper tubular body 61 a that extends along the through hole H1. Further, each of the outer diameters R1, R2 a, and R2 b is a distance of portions of the damper tubular body 61 a that face the insertion hole surface S11 when the damper tubular body 61 a is inserted into the second insertion hole 41 a.
  • In the first form of the damper tubular body 61 a, the first end surface S5 and the second end surface S6 are connected with the adhesive 7. That is, the gap G1 is filled with the adhesive 7. As the adhesive 7, one that is melted with heat is adopted.
  • The damper 6 a may have a configuration in which a part of the damper tubular body 61 a in the passing-through direction can be deformed between the first form and the second form. That is, when the damper 6 a is coupled to the circuit board 1, only the portion of the damper 6 a that is to be arranged in the second insertion hole 41 a and the portion of the damper 6 a to pass through the second insertion hole 41 a may be deformed between the first form and the second form.
  • The damper tubular body 61 a is configured to be elastically deformable. Thus, in the present embodiment, a wire mesh is adopted as an example of the damper tubular body 61 a. The wire mesh is formed by weaving metal wires such that spaces are defined in the damper tubular body 61 a. The wire mesh is not limited to the one in which the metal wires are woven regularly. The wire mesh may be formed by intricately weaving metal wires such that the metal wires are entangled with each other. The damper tubular body 61 a is also referred to as a shock-absorbing member or a stress cushioning member.
  • Further, the wire mesh is also referred to as a continuous porous body in which metal wires are entangled with each other. Further, in other words, the wire mesh is formed by compressing the metal wires that are entangled with each other. The wire mesh is also referred to as a metal cushioning member. As the metal wire, for example, stainless steel or the like can be adopted. However, the metal wire is not limited to stainless steel. Aluminum, iron, or the like can also be used as the metal wire. When the wire mesh is adopted, the adhesive 7 may be an organic material such as a resin or a solder used for metal bonding as long as the adhesive 7 is melted with heat.
  • However, the present disclosure is not limited to this. The damper tubular body 61 a may be composed mainly of a shape memory alloy. This is preferable because the damper tubular body 61 a be easily deformed to the second form from the first form. Further, the damper tubular body 61 a may be made of rubber or the like. However, when rubber is used, it is preferable that the adhesive 7 be an organic material such as a resin.
  • Further, the damper tubular body 61 a may include a protecting member that is composed mainly of an organic substance having viscoelasticity. As the protecting member, for example, a silicone member or the like can be adopted. The protecting member mainly protects the damper tubular body 61 a not to deteriorate its functions. That is, the protecting member restricts foreign matters from adhering to the damper tubular body 61 a not to deteriorate the functions. Further, the protecting member also has a function of restricting scrap metal and the like from falling out from the damper tubular body 61 a to the periphery of the damper tubular body 61 a. The protecting member soaks into the damper tubular body 61 a, thereby the protecting member is disposed in the spaces in the wire mesh of the damper tubular body 61 a. Foreign matters that adhere to or enter into the damper tubular body 61 a are substances containing water, salt, oil, and the like.
  • The viscosity of the protecting member changes through UV curing or the like. Further, the viscosity of the protecting member is adjusted by ultraviolet rays or the like while the protecting member is provided in the spaces. At this time, the viscosity is adjusted so that the characteristics of the damper 6 a has desired values. In other words, the compressibility of the damper tubular body 61 a is adjusted to a desired value by adjusting the viscosity of the protecting member.
  • The damper 6 a is held in the second insertion hole 41 a of the insulating substrate 4 a. The damper 6 a is held in a state where the damper tubular body 61 a is press-fit into the second insertion hole 41 a. Thus, the damper 6 a is held in the second insertion hole 41 a by the restoring force of the damper tubular body 61 a. The damper 6 a is held in a state where at least two points on the outer circumferential surface S3 are in contact with the insertion hole surface S11 of the second insertion hole 41 a with pressure. Further, the damper tubular body 61 a in the second from is arranged in the second insertion hole 41 a and presses the insertion hole surface S11 of the second insertion hole 41 a. In other words, the damper 6 a is fixed to the second insertion hole 41 a with the restoring force of the damper tubular body 61 a.
  • As shown in FIG. 2, the damper 6 a is pressed against the base 3 a with the second screw 202 while being held in the second insertion hole 41 a. In other words, the damper 6 a is held between the screw head 202 b and the pedestal 34 a while the second screw 202 is screwed into the second screw hole 32. In this state, the first surface S1 of the damper 6 a is in contact with the base pressing surface S21 and the second surface S2 of the damper 6 a is in contact with the screw pressing surface S31. In this way, the circuit board 1 is supported by the base 3 a via the damper 6 a. In this embodiment, as an example, the damper 6 a defines the gap G1. However, the present disclosure is not limited to this, and as shown in an eighth modification, the gap G1 may not be defined in the damper 6 a.
  • <Production Method>
  • With reference to FIGS. 4, 5, and 6, a method for producing the electronic controller 100 will be described. As shown in FIG. 4, the method includes (a) a preparing step, (b) an inserting step, (c) a deforming step, (d) a mounting step, and (e) a covering step. Further, the inserting step and the deforming step correspond to a method for coupling the damper 6 a to the circuit board 1.
  • In (a) the preparing step in FIG. 4, a first structure that the circuit element 51 is arranged on the insulating substrate 4 a is prepared. In (b) the inserting step in FIG. 4, the damper tubular body 61 a in the first form is inserted into the second insertion hole 41 a. At this time, the damper tubular body 61 a has the first outer diameter R1. Thus, as shown in FIG. 5, there is a sufficient gap between the outer circumferential surface S3 of the damper 6 a and the insertion hole surface S11. Therefore, in the inserting step, the damper 6 a can be easily inserted into the second insertion hole 41 a. Further, in the inserting step, it is preferable to use a supporter or the like that supports the damper 6 a so that the damper 6 a does not come off from the second insertion hole 41 a. The circuit element 51 may be arranged on the insulating substrate 4 a after the inserting step.
  • In (c) the deforming step shown in FIG. 4, after the inserting step, the adhesive 7 is melted with heat and the damper 6 a is deformed to the second form. As a result, the damper tubular body 61 a presses the insertion hole surface S11. At this time, the damper tubular body 61 a has the third outer diameter R2 b. Thus, as shown in FIG. 6, the entire circumference of the damper 6 a except for the gap G1 presses the insertion hole surface S11. Therefore, there is no gap between the outer circumferential surface S3 of the damper 6 a and the insertion hole surface S11. In this way, in the deforming step, the damper tubular body 61 a is deformed, so that the damper 6 a is held in the insulating substrate 4 a.
  • However, the present disclosure is not limited to this. In the present disclosure, it is only required that at least two points of the outer circumferential surface S3 press the insertion hole surface S11.
  • The producing method includes a reflow step of mounting the circuit elements 51 and 52 on the insulating substrate 4 a. In the reflow step, terminals of the circuit elements 51 and 52 and the wiring pattern 42 are connected with solder 51 a by reflow soldering. In the reflow step, the first structure is heated in a reflow furnace to melt the solder 51 a. Therefore, the deformation step can be performed together with the reflow step. As described above, in the assembly method of the present embodiment, it is not necessary to perform the deforming step separately from the reflow step.
  • A second structure is a structure that the circuit elements 51 and 52 are mounted on the insulating substrate 4 a and the damper 6 a is held in the insulating substrate 4 a. That is, the second structure is one that the damper 6 a is attached to the circuit board 1.
  • In the present embodiment, the adhesive 7 is melted with heat to deform the damper tubular body 61 a. Therefore, the damper tubular body 61 a is preferably formed by weaving metal wires. However, the damper tubular body 61 a may be made of rubber or the like that can withstand the temperature at which the adhesive 7 is melted.
  • In (d) the mounting step shown in FIG. 4, the second structure is arranged on the base 3 a. In the mounting step, the second structure is arranged at a position where the through hole H1 faces the second screw hole 32. Further, in the mounting step, the second structure is arranged at a position where the first surface S1 of the damper 6 a is in contact with the base pressing surface S21.
  • After that, in the mounting step, the second screw 202 is screwed into the second screw hole 32. At this time, the damper 6 a is pressed by the screw pressing surface S31. Along with this, the base pressing surface S21 is pressed by the damper 6 a. Thus, the damper 6 a is pressed (compressed) between the screw head 202 b and the pedestal 34 a while the damper 6 a is in contact with both the base pressing surface S21 and the screw pressing surface S31. In this way, the circuit board 1 is supported by the base 3 a through the damper 6 a.
  • After the mounting step, the damper tubular body 61 a may have a configuration in which a gap is defined between the inner circumferential surface S4 and the columnar portion 202 a, or may have a configuration in which no gap is defined therebetween. However, the damper tubular body 61 a preferably has the configuration in which the gap is defined because the damper tubular body 61 a can be elastically deformed more easily in the plane direction than the configuration in which the gap is not defined.
  • In (e) the covering step shown in FIG. 4, after the mounting step, the cover 2 a is attached to the base 3 a to house the second structure. In the covering step, the cover 2 a is arranged on the base 3 a on which the second structure is mounted. At this time, the cover 2 a is arranged at a position where the first insertion holes 21 face the first screw holes 31. In the covering step, the first screws 201 are screwed into the first screw holes 31. Thereby, the electronic controller 100 in which the second structure is housed in the housing space defined by the base 3 a and the cover 2 a can be manufactured.
  • <Effects>
  • In this way, the circuit board 1 is supported by the base 3 a through the damper 6 a fixed to the insulating substrate 4 a. Further, the damper 6 a is pressed between the screw head 202 b and the pedestal 34 a. Thus, stress applied to the insulating substrate 4 a in the thickness direction elastically deforms the damper 6 a in the thickness direction between the screw head 202 b and the pedestal 34 a. The damper 6 a has an area facing the insertion hole surface S11. An upper portion and a lower portion of the area of the damper 6 a are mainly elastically deformed. Thus, the damper 6 a can protect the circuit board 1 when stress is applied to the insulating substrate 4 a in the thickness direction.
  • Further, the damper 6 a defines the gap G1. Thus, the damper 6 a is easily elastically deformed in the intersecting direction. Thus, the damper 6 a can relax not only the stress to the circuit board 1 in the thickness direction but also stress to the circuit board 1 in the intersecting direction. Therefore, the damper 6 a can appropriately relax the stress to the circuit board 1. There may be a gap between the inner circumferential surface S4 and the columnar portion 202 a while the damper 6 a is pressed by the second screw 202. With the gap, the damper 6 a is easily elastically deformed in the intersecting direction.
  • Further, the damper 6 a is configured to form the first form and the second form. Thus, the damper 6 a can be easily inserted into the second insertion hole 41 a and can be easily fixed to the insulating substrate 4 a. That is, since the damper 6 a can form the first form in which the outer shape of the damper tubular body 61 a is smaller than the second insertion hole 41 a, the damper 6 a can be easily inserted into the second insertion hole 41 a. Further, since the damper tubular body 61 a is configured to form the second form in which the outer shape of the damper tubular body 61 a is equal to or larger than the second insertion hole 41 a, the damper 6 a can secure holding force for the circuit board 1. As described above, the damper 6 a can be easily inserted into the second insertion hole 41 a while the damper 6 a secures the holding force for the circuit board 1.
  • The electronic controller 100 includes the damper 6 a. The damper 6 a has the above-mentioned effects. Thus, the electronic controller 100 can restrict the solder 51 a, the wiring pattern 42, and the like from being cracked or restricts malfunctions of the circuit elements 51 and 52 due to the stress applied to the insulating substrate 4 a. Thus, the electronic controller 100 can suppress bad effects on electrical characteristics of the circuit board 1.
  • More specifically, the circuit board 1 is supported by the base 3 a with the second screws 202. However, the circuit board 1 is supported by the base 3 a through the damper 6 a. Thus, when the circuit board 1 itself is distorted or an external force is applied to the circuit board 1, the damper 6 a is elastically deformed. Therefore, in the circuit board 1, it is possible to restrict the solder 51 a, the wiring pattern 42, and the like from being cracked and to restrict malfunctions of the circuit elements 51 and 52 due to the stress applied to the insulating substrate 4 a.
  • Further, in the electronic controller 100, an influence caused by assembly distortion may be reduced by adjusting mounting positions of the circuit elements 51 and 52. That is, in the electronic controller 100, the circuit elements 51 and 52 may be mounted at positions away from screwing positions so as not to be affected by the assembly distortion. In this case, in the electronic controller 100, the distances between the screwing positions and the circuit elements 51 and 52 may be a factor that obstructs high-density mounting. However, in the present embodiment, the influence of the assembly distortion is mitigated by the damper 6 a. Therefore, in the electronic controller 100, the circuit elements 51 and 52 can be mounted at high density.
  • In the present embodiment, a wire mesh is adopted as an example of the damper tubular body 61 a. Thus, deterioration of the damper 6 a over time can be restricted as compared with the case where rubber is used as the damper tubular body 61 a.
  • In this embodiment, the second screw 202 is adopted as an example of the supporting element. However, in the present disclosure, a member using elastic deformation such as a snap fit can be adopted as the supporting element. Further, in the present embodiment, the circuit board 1 is adopted as an example of the supported member. However, in the present disclosure, the base 3 a may be the supported member. In this case, the supporting member may be a vehicle frame or the like. Further, in the present disclosure, the cover 2 a may be the supported member. In this case, the base 3 a may be the supporting member. The first screw 201 can be adopted as a supporting element.
  • The circuit board 1 may be supported by the base 3 a with the first screws 201 instead of the second screws 202. In this case, the first screw 201 corresponds to the supporting element.
  • First Modification
  • With reference to FIG. 7, the electronic controller 100 of a first modification will be described. In the electronic controller 100 of the first modification, the configuration of the insulating substrate 4 b is different from that of the above embodiment. However, in the electronic controller 100 of the first modification, the same reference numerals as those in the above embodiment are donated for convenience. The reference numeral 100 is adopted for the electronic controller 100 in other modifications and other embodiments.
  • As shown in FIG. 7, the shape of the second insertion hole 41 b of the insulating substrate 4 b is different from that of the insulating substrate 4 a. The second insertion hole 41 b is a through hole surrounded by an insertion hole surface S11. The insertion hole surface S11 has an annular shape, a part of which is cut off. In other words, the second insertion hole 41 b is a recess recessed from the side wall of the insulating substrate 4 b. The damper 6 a can be inserted into the second insertion hole 41 b in the thickness direction. Further, the damper 6 a can be inserted into the second insertion hole 41 b in a direction perpendicular to the thickness direction. The electronic controller 100 of the first modification can achieve similar effects to those of the above embodiment. The first modification can be applied to other embodiments and other modifications.
  • Second Modification
  • With reference to FIG. 8, the electronic controller 100 of a second modification will be described. The electronic controller 100 of the second modification is different from the above embodiment in a configuration of the insulating substrate 4 c.
  • As shown in FIG. 8, the shape of the second insertion hole 41 c of the insulating substrate 4 c is different from that of the insulating substrate 4 a. The second insertion hole 41 c is surrounded by the annular insertion hole surface S11, and an opening diameter of the second insertion hole 41 c differs in the thickness direction. The second insertion hole 41 c is divided into a portion into which the damper 6 a and the columnar portion 202 a of the second screw 202 are inserted and a portion into which the damper 6 a is not inserted. A portion of the columnar portion 202 a of the second screw 202 is inserted in the portion where the damper 6 a is not inserted. The portion where the damper 6 a and the columnar portion 202 a of the second screw 202 are inserted has a substrate pressing surface S41 as a bottom surface.
  • Thus, the damper 6 a is inserted into the second insertion hole 41 c, and the second surface S2 of the damper 6 a is in contact with the substrate pressing surface S41. Further, the damper 6 a is pressed between the substrate pressing surface S41 and the base pressing surface S21. The electronic controller 100 of the second modification can achieve similar effects to those of the above embodiment. The second modification can be appropriately applied to other embodiments and other modifications.
  • Second Embodiment
  • With reference to FIGS. 9A, 9B, and 10, a damper 6 b of a second embodiment will be described. In this embodiment, portions different from those in the first embodiment will be mainly described. This embodiment is different from the first embodiment in configurations of the damper 6 b, a cover 2 b, and a base 3 b. In this embodiment, the same reference numerals are given to the same configurations as those in the first embodiment.
  • As shown in FIGS. 9A and 9B, the damper 6 b is different from the damper 6 a in that the damper 6 b includes a damper protrusion 62 b. The damper 6 b includes a damper tubular body 61 b and the damper protrusion 62 b. The damper tubular body 61 b is the same as the damper tubular body 61 a.
  • The damper protrusion 62 b corresponds to a protrusion. The damper protrusion 62 b protrudes from the outer circumferential surface S3 of the damper tubular body 61 b. The damper protrusion 62 b is provided to prevent the damper 6 b in the first form from coming off from the second insertion hole 41 a.
  • The damper protrusion 62 b is provided within a predetermined range from the second surface S2 in the height direction of the damper tubular body 61 b. That is, the damper protrusion 62 b is not provided in the entire area of the damper tubular body 61 b in the height direction, but it is provided only in a portion of the damper tubular body 61 b in the height direction.
  • Further, the damper protrusion 62 b is provided only on a portion of the outer circumferential surface S3 in the circumferential direction. However, the present disclosure is not limited to this, and it is only required that the damper protrusion 62 b be provided at least a part of the damper tubular body 61 b in the circumferential direction. Thus, the damper protrusion 62 b may be multiple damper protrusions arranged in the circumferential direction. For example, the two, three, four, or more damper protrusions 62 b may be arranged in the circumferential direction at equal intervals. Further, the damper protrusion 62 b may be provided in the entire area in the circumferential direction.
  • The damper protrusion 62 b may be made of the same material as the damper tubular body 61 b, or may be made of a different material. Further, the damper protrusion 62 b may be integrally formed with the damper tubular body 61 b, or formed by connecting different members.
  • Here, with reference to FIG. 10, a method for manufacturing the electronic controller 100 including the damper 6 b will be described. Further, here, the configuration of the electronic controller 100 will also be described. The preparing step and the deforming step shown in FIG. 10 are the same as those in the first embodiment.
  • In (b) the inserting step shown in FIG. 10, the damper tubular body 61 b in the first form is inserted into the second insertion hole 41 a as in the first embodiment. At this time, there is a sufficient gap between the outer circumferential surface S3 of the damper 6 b and the insertion hole surface S11. Thus, in the inserting step, the damper 6 b can be easily inserted into the second insertion hole 41 a.
  • However, the damper 6 b includes the damper protrusion 62 b. Thus, the damper protrusion 62 b of the damper 6 b is arranged in the vicinity of the second insertion hole 41 a of the insulating substrate 4 a. Therefore, in the inserting step, it is possible to prevent the damper 6 b from coming off from the second insertion hole 41 a.
  • In (d) the mounting step shown in FIG. 10, the second structure is arranged on the base 3 b as in the first embodiment. Here, the base 3 b will be described. The base 3 b is different from the base 3 a in that the base 3 b includes a base positioning portion 35 b and a distance adjusting portion 36 b. The pedestal 34 b is the same as the pedestal 34 a.
  • The base positioning portion 35 b positions the damper 6 b with respect to the base 3 b. The base positioning portion 35 b protrudes from the pedestal 34 b in the thickness direction. The base positioning portion 35 b is inserted into the through hole H1 of the damper 6 b.
  • The distance adjusting portion 36 b restricts the inner circumferential surface S4 of the damper tubular body 61 b from becoming too closer than necessary. The distance adjusting portion 36 b protrudes from a tip end of the base positioning portion 35 b in the thickness direction. The thickness direction is the same as the direction perpendicular to the base pressing surface S21. The base 3 b may not include the distance adjusting portion 36 b.
  • In the mounting step, the second structure is arranged on the base 3 b so that the base positioning portion 35 b and the distance adjusting portion 36 b are inserted into the through hole H1. Further, in the mounting step, the second structure is arranged at a position where the first surface S1 is in contact with the base pressing surface S21. Thus, in the mounting step, the damper 6 b can be arranged at an appropriate position on the base 3 b. Thus, in the mounting step, the second structure can be arranged at an appropriate position.
  • In the mounting step of the present embodiment, the second screws 202 are not used. Therefore, at the stage of the mounting step, the second structure is only arranged on the base 3 b.
  • In (e) the covering step shown in FIG. 10, the cover 2 b is attached to the base 3 b to house the second structure as in the first embodiment. Here, the cover 2 b will be described. The cover 2 b is different from the cover 2 a in that the cover 2 b includes a cover protrusion 22 b and a cover positioning portion 23 b.
  • The cover protrusion 22 b is provided on the side of the cover 2 b facing the housing space. The cover protrusion 22 b is a portion that presses the damper 6 b against the pedestal 34 b. The cover protrusion 22 b protrudes more in the thickness direction than the periphery of the cover protrusion 22 b. The tip end of the cover protrusion 22 b has a cover pressing surface S51 that presses the damper 6 b.
  • The cover positioning portion 23 b positions the damper 6 b with respect to the cover 2 b. The cover positioning portion 23 b protrudes from the tip end of the cover protrusion 22 b in the thickness direction. That is, the cover pressing surface S51 is a portion of the tip end of the cover protrusion 22 b where the cover positioning portion 23 b is not provided.
  • In the covering step, the cover 2 b is arranged on the base 3 b on which the second structure is mounted. At this time, the cover positioning portion 23 b is inserted into the through hole H1 to arrange the cover 2 b. In the covering step, the first screws 201 are screwed into the first screw holes 31.
  • When the first screws 201 are engaged with the first screw holes 31, the cover pressing surface S51 presses the damper 6 b. Along with this, the base pressing surface S21 is pressed by the damper 6 b. Therefore, the damper 6 a is pressed between the cover protrusion 22 b and the pedestal 34 b while the damper 6 b is in contact with both the base pressing surface S21 and the cover pressing surface S51. In this way, the circuit board 1 is supported by the base 3 b through the damper 6 b. Thereby, the electronic controller 100 in which the second structure is housed in the housing space defined by the base 3 a and the cover 2 a can be manufactured.
  • The damper 6 b can exert similar effects to those of the damper 6 a. The damper 6 b has an area facing the insertion hole surface S11. An upper portion and a lower portion of the area of the damper 6 b are elastically deformed due to stress applied to the insulating substrate 4 a in the thickness direction. Further, in the damper 6 b, the damper protrusion 62 b is elastically deformed between the insulating substrate 4 a and the cover protrusion 22 b. Thus, when stress is applied to the insulating substrate 4 a in the thickness direction, the damper 6 b can protect the circuit board 1.
  • Further, the damper 6 b includes the damper protrusion 62 b. Thus, the damper 6 b in the first form can be retained in the second insertion hole 41 a. That is, the damper 6 b can be retained in the second insertion hole 41 a without using a jig such as a supporting base.
  • In the method of the present embodiment, since the damper 6 b includes the damper protrusion 62 b, it is possible to restrict the damper 6 b from coming off from the second insertion hole 41 a during the inserting step. Thus, it is not necessary to use a supporting base or the like in the method of the present embodiment.
  • The damper 6 b can be applied to the first embodiment and its modifications. The cover 2 b and the base 3 b can be applied to the first embodiment and its modifications. Further, the electronic controller 100 of the present embodiment can adopt the cover 2 a and the base 3 a. In this case, the second screw 202 is used.
  • Third Modification
  • With reference to FIGS. 11A to 11D, a damper 6 c of a third modification will be described. In this modification, portions different from the second embodiment will be mainly described. The damper 6 c of the third modification is different from the second embodiment mainly in that the damper 6 c includes damper protrusions 62 c and tabs 63 c. FIGS. 11A to 11D illustrate the two forms of the damper tubular body 61 c and the insulating substrate 4 a. FIG. 11A is a plan view of the first form. FIG. 11B is a cross-sectional view taken along a line XIB-XIB in FIG. 11A. FIG. 11C is a plan view of the second form. FIG. 11D is a cross-sectional view taken along a line XID-XID in FIG. 11C.
  • As shown in FIGS. 11A to 11D, the damper 6 c includes the damper tubular body 61 c, the damper protrusions 62 c, the tabs 63 c, and recesses 64 c. The damper tubular body 61 c is the same as the damper tubular body 61 b. Each of the damper protrusions 62 c is the same as the damper protrusion 62 b. Only the number of the damper protrusions are different. Each of the damper protrusions 62 c corresponds to a second protrusion.
  • Each of the tab 63 c corresponds to a first protrusion. The tab 63 c protrudes from the outer circumferential surface S3 of the damper tubular body 61 c. The tab 63 c is provided to hold the insulating substrate 4 a with the damper protrusion 62 c.
  • The tab 63 c is provided within a predetermined range from the first surface 51 in the height direction of the damper tubular body 61 c. That is, the tab 63 c is not provided in the entire area of the damper tubular body 61 b in the height direction, but is provided only in a portion of the damper tubular body 61 b in the height direction.
  • Further, the tab 63 c is provided only on a portion of the outer circumferential surface S3 in the circumferential direction. However, the present disclosure is not limited to this. It is only required that the tab 63 c be provided at least a part of the damper tubular body 61 b in the circumferential direction. Thus, the tab 62 b may be multiple tabs arranged in the circumferential direction. For example, two, three, four, or more tabs 62 b may be arranged in the circumferential direction at equal intervals. Further, the tab 62 b may be provided in the entire area in the circumferential direction.
  • The tab 63 c tapers from a side of the tab 63 c close to the second surface S2 toward the first surface S1. This makes it easier for the damper 6 c to be inserted into the second insertion hole 41 a.
  • The tab 63 c may be made of the same material as the damper tubular body 61 b, or may be made of a different material. Further, the tab 63 c may be integrally formed with the damper tubular body 61 b, or formed by connecting different members.
  • Each of the recesses 64 c is provided between the damper protrusion 62 c and the tab 63 c. The recess 64 c is located inward than the damper protrusion 62 c and the tab 63 c. The opening width of the recess 64 c is equal to or greater than the thickness of the insulating substrate 4 a. The opening width is a width of the recess 64 c in the height direction of the damper tubular body 61 c. Further, the opening width corresponds to the distance between the damper protrusion 62 c and the tab 63 c in the height direction. The bottom surface of the recess 64 c is the outer circumferential surface S3.
  • As shown in FIGS. 11A and 11B, the damper protrusions 62 c in the first form extends between the facing region of the second insertion hole 41 a and an outside of the facing region. The facing region is defined by virtually extending an area of the second insertion hole 41 a in the thickness direction. As shown in FIGS. 11C and 11D, the damper protrusions 62 c in the second form are disposed outside of the facing region of the second insertion hole 41 a.
  • On the other hand, as shown in FIG. 11B, the tabs 63 c in the first form are arranged in the facing region of the second insertion hole 41 a. As shown in FIG. 11D, the tabs 63 c in the second form are arranged outside the facing region of the second insertion hole 41 a.
  • As described above, the end portion of the insulating substrate 4 a can be arranged in the recesses 64 c when the damper 6 c is in the second form. Thus, when stress is applied to the insulating substrate 4 a in the thickness direction, the upper portion and the lower portion of the damper 6 b facing the insertion hole surface S11 are elastically deformed. Further, the damper protrusions 62 c and the tabs 63 c of the damper 6 c are elastically deformed. Thus, the damper 6 a can protect the circuit board 1 when stress is applied to the insulating substrate 4 a in the thickness direction.
  • The damper 6 c can exert similar effects to those of the dampers 6 a and 6 b. Further, the damper 6 c includes the damper protrusions 62 c, the tabs 63 c, and the recesses 64 c. Therefore, the damper 6 c can appropriately position the insulating substrate 4 a with respect to the damper 6 c. Further, the damper 6 c can hold the insulating substrate 4 a between the damper protrusions 62 c and the tabs 63 c. Therefore, the damper 6 c can improve the holding force for the insulating substrate 4 a as compared with the damper 6 a.
  • In the electronic controller 100 including the damper 6 c, the insulating substrate 4 a is held by the damper protrusions 62 c and the tabs 63 c. Thus, in the electronic controller 100, the insulating substrate 4 a can be hold more strongly than in the case where the insulating substrate 4 a is held by the damper 6 a. Thus, in the electronic controller 100, the circuit board 1 can be more surely protected when stress is applied to the insulating substrate 4 a in the thickness direction compared to the case including the damper 6 a.
  • Fourth Modification
  • With reference to FIG. 12, the damper 6 b of the fourth modification will be described. In this modification, portions different from the second embodiment will be mainly described. The damper 6 b is different from that in the second embodiment in including a height adjusting member 6 b 1. However, in this modification, for convenience, the same reference numerals as those in the second embodiment are used. The base 3 b in FIG. 12 has a configuration in which the distance adjusting portion 36 b is not provided in the base 3 b described in the second embodiment. The base 3 b in FIG. 12 has the same configuration as the base 3 b described in the second embodiment except for the distance adjusting portion 36 b.
  • The damper 6 b includes the height adjusting member 6 b 1 at a position surrounded by the damper tubular body 61 b. The height adjusting member 6 b 1 corresponds to an adjusting member. The height adjusting member 6 b 1 has, for example, a tubular shape.
  • The height adjusting member 6 b 1 is composed mainly of metal. However, the present disclosure is not limited to this. A member made mainly of a resin may be used as the height adjusting member 6 b 1.
  • The height adjusting member 6 b 1 is configured to adjust the height of the damper tubular body 61 b that is the distance between the first surface S1 and the second surface S2. Further, it can be said that the height adjusting member 6 b 1 is provided to set the compressibility of the damper tubular body 61 b to a desired value. That is, since the damper 6 b includes the height adjusting member 6 b 1, it is possible to restrict the damper 6 b from being compressed more than necessary by the second screws 202 or the like and from losing the function of relaxing the stress to the circuit board 1. The damper 6 b of the fourth modification can also achieve similar effects to those of the damper 6 b of the second embodiment. The height adjusting member 6 b 1 can also be applied to the first embodiment and other modifications.
  • Fifth Modification
  • With reference to FIG. 13, a damper 6 d of a fifth modification will be described. In this modification, portions different from the second embodiment will be mainly described. The damper 6 d is different from the second embodiment in including a cover.
  • The damper 6 d includes a damper tubular body 61 d and a damper protrusion 62 d. The damper tubular body 61 d is the same as the damper tubular body 61 b. The damper protrusion 62 d is the same as the damper protrusion 62 b.
  • The cover includes a bottom surface cover 6 d 3 and a member having a side surface 6 d 1 and an upper surface 6 d 2. The side surface 6 d 1, the upper surface 6 d 2, and the bottom cover 6 d 3 are composed mainly of metal, resin, or the like. The side surface 6 d 1, the upper surface 6 d 2, and the bottom cover 6 d 3 may be made of the same material or may be made of different materials.
  • The side surface 6 d 1 and the upper surface 6 d 2 are integrally formed with each other, for example. The side surface 6 d 1 is a tubular member and is arranged to face the inner circumferential surface S4. The side surface 6 d 1 also serves as the height adjusting member. The upper surface 6 d 2 is disposed at an end of the side surface 6 d 1. The upper surface 6 d 2 is arranged to face the second surface S2.
  • The bottom cover 6 d 3 is arranged to face the first surface S1. The bottom cover 6 d 3 is a different member from the side surface 6 d 1. The bottom cover 6 d 3 is arranged to face the side surface 6 d 1. The damper tubular body 61 d is disposed between the upper surface 6 d 2 and the bottom cover 6 d 3.
  • The damper 6 d can achieve similar effects to those of the second embodiment and the fourth modification. Further, the side surface 6 d 1, the upper surface 6 d 2, and the bottom cover 6 d 3 of the damper 6 d can protect the damper tubular body 61 d and the damper protrusion 62 d. That is, it is possible to restrict foreign matters from adhering to the damper tubular body 61 d and the damper protrusion 62 d of the damper 6 d. Thus, it is possible to restrict deterioration of the damper 6 d caused by the foreign matters adhered to the damper 6 d.
  • Third Embodiment
  • With reference to FIGS. 14 and 15, the electronic controller 100 of a third embodiment will be described. In this embodiment, portions different from those in the second embodiment will be mainly described. In this embodiment, the configuration of the second screw 203 is different from that of the second embodiment. Along with this, in this embodiment, the shape of the damper 6 b is different from that of the second embodiment. Further, in the present embodiment, the configuration of the base 3 c and the deforming step are different from those in the second embodiment.
  • As shown in FIGS. 14 and 15, the base 3 c includes a pedestal 34 c, a base positioning portion 35 c, and a second screw hole 32. The pedestal 34 c is the same as the pedestal 34 b. The base positioning portion 35 c is the same as the base positioning portion 35 b. The second screw hole 32 is defined in the base positioning portion 35 c. That is, the base 3 c can be regarded to have a configuration in which the distance adjusting portion 36 b is omitted from the base 3 b and the second screw hole 32 is defined in the base 3 b. However, the base 3 c may include the distance adjusting portion 36 b defining the second screw hole 32.
  • As shown in FIG. 15, the second screw 203 includes a columnar portion 203 a and a screw head 203 b, similarly to the second screw 202. The second screw 203 corresponds to a fixing member, the columnar portion corresponds to a fixed portion, and the screw head 203 b corresponds to a pressing portion. The columnar portion 203 a is the same as the columnar portion 202 a. The screw head 203 b has a screw tilted surface S32 at a position that presses the damper tubular body 61 b. The screw tilted surface S32 has an annular shape. The screw head 203 b has a shape in which the cross-sectional area of the screw head 203 b increases in a direction away from the columnar portion 203 a. That is, the screw head 203 b having a conical shape is disposed at an end of the columnar portion 203 a.
  • As will be described later, the screw head 203 b is a portion that deforms the damper tubular body 61 b from the first form to the second form. That is, the screw head 203 b is a portion that expands the diameter of the damper tubular body 61 b. Thus, the screw head 203 b can be referred to as an expanding portion.
  • The damper 6 b includes an end corner surface S7 along the screw tilted surface S32. The end corner surface S7 is disposed between the first surface S1 and the inner circumferential surface S4. The end corner surface S7 is a surface that is pressed by the second screw 203 and deformed along the screw tilted surface S32. In this case, the end corner surface S7 can be regarded as a surface that is formed by a portion of the first surface S1 and a portion of the inner circumferential surface S4. The end corner surface S7 may be a surface provided in the damper tubular body 61 b in advance to be along the screw tilted surface S32. The end corner surface S7 is also referred to as an inner circumferential corner surface.
  • Here, a method of manufacturing the electronic controller 100 including the damper 6 b will be described with reference to FIG. 14. The covering step of the present embodiment is omitted because it is the same as that of the first embodiment.
  • In (a) the preparing step shown in FIG. 14, the circuit element 51 and the like are mounted on the insulating substrate 4 a. The mounting method of the circuit element 51 is the same as that of the first embodiment.
  • In (b) the arranging step shown in FIG. 14, the damper 6 b in the first form is arranged on the base 3 c. In the arranging step, the second surface S2 is arranged to face the pedestal 34 c. Further, in the arranging step, the base positioning portion 35 c is inserted into the through hole H1.
  • In (c) the inserting step shown in FIG. 14, the damper 6 b arranged on the base 3 c is inserted into the second insertion hole 41 a. At this time, as in the first embodiment, there is a sufficient gap between the outer circumferential surface S3 and the insertion hole surface S11. Thus, in the inserting step, the damper 6 b can be easily inserted into the second insertion hole 41 a.
  • In (d) the deforming step shown in FIG. 14, the second screw 203 is screwed into the second screw hole 32. In the deforming step, the second screw 203 is screwed into the second screw hole 32 while the screw tilted surface S32 is in contact with the end corner surface S7. At this time, in the damper 6 b, force from the screw head 203 b acts on the damper 6 b not only in the thickness direction but also in the plane direction. Thus, in the damper 6 b, the diameter of the damper tubular body 61 b is expanded by the force applied from the screw head 203 b. Thus, the first end surface S5 and the second end surface S6 of the damper 6 b that are connected with the adhesive 7 are peeled off. Alternatively, in the damper 6 b, the adhesive 7 may be divided. Further, since the force from the screw head 203 b also acts on the damper 6 b in the plane direction, the holding force for the insulating substrate 4 a (circuit board 1) is improved.
  • As a result, the damper 6 b is deformed from the first form to the second form. In other words, the diameter of the damper tubular body 61 b is expanded by the force from the second screw 203. As described above, in the deforming step of the present embodiment, the damper 6 b is changed from the first form to the second form with the force from the second screw 203 instead of using heat. Thus, in the assembly method of the present embodiment, the first form can be shifted to the second form simply by screwing the second screw 203. In this embodiment, the damper 6 a or the damper 6 c can be used instead of the damper 6 b.
  • Sixth Modification
  • With reference to FIG. 16, an electronic controller of a sixth modification will be described. In this modification, portions different from the third embodiment will be mainly described. In the electronic controller of this modification, the configuration of the base 3 d is different from that of the third embodiment. In this modification, the damper 6 a is adopted as an example. However, in this modification, the damper 6 b can also be adopted.
  • In this modification, the damper 6 a is disposed so that the second surface S2 is arranged to face the screw head 203 b and the first surface 51 is arranged to face the base 3 c. Thus, in this modification, an end corner surface S8 is a surface extending along the screw tilted surface S32.
  • As shown in FIG. 16, the base 3 d includes a pedestal 34 d and a base expanding portion 35 d. The pedestal 34 d is the same as the pedestal 34 c. The base expanding portion 35 d is a portion of the pedestal 34 d that protrudes from the base pressing surface S21. The base expanding portion 35 d has a truncated cone shape. The base expanding portion 35 d has an annular base tilted surface S22. The base pressing surface S21 is in contact with the first surface 51. On the other hand, the base tilted surface S22 is in contact with the end corner surface S7 of the damper 6 a. The end corner surface S7 will be described later.
  • Similar to the screw head 203 b, the base expanding portion 35 d can expand the diameter of the damper tubular body 61 d. Further, the base expanding portion 35 d also serves as a base positioning portion.
  • The damper 6 a includes the end corner surface S7 close to the first surface 51 and the end corner surface S8 close to the second surface S2. The end corner surface S7 is a surface that is deformed along the base tilted surface S22 by a pressing force of the second screw 203. In this case, the end corner surface S7 can be regarded as a surface that is formed by a portion of the first surface S1 and a portion of the inner circumferential surface S4. The end corner surface S7 may be a surface provided in advance to extend along the base tilted surface S22. The end corner surface S8 is the same as the end corner surface S7 of the third embodiment. Each of the end corner surfaces S7 and S8 is also referred to as an inner circumferential corner surface.
  • In the deforming step of this modification, the second screw 203 is screwed into the second screw hole 32. In the deforming step, the second screw 203 is screwed into the second screw hole 32 while the screw tilted surface S32 is in contact with the end corner surface S8 and the base tilted surface S22 is in contact with the end corner surface S7. At this time, the damper 6 a is changed from the first form to the second form in the same manner as in the third embodiment.
  • Thus, in the deforming step of this modification, similar effects to those of the third embodiment can be obtained. Further, the base 3 d of this modification includes the base expanding portion 35 d. Thus, force for expanding the diameter of the damper tubular body 61 a is improved as compared with the third embodiment. Therefore, in the deforming step of this modification, the damper tubular body 61 a can be shifted from the first form to the second form more easily than in the third embodiment. Further, the force to expand the diameter of the damper tubular body 61 a is improved with the electronic controller of the sixth modification, thereby improving the holding force for the insulating substrate 4 a (circuit board 1).
  • Fourth Embodiment
  • With reference to FIG. 17, an electronic controller 100 of a fourth embodiment will be described. In this embodiment, portions different from those in the first embodiment will be mainly described. In this embodiment, configurations of a cover 2 e and a base 3 e are different from those in the first embodiment.
  • As shown in FIG. 17, the electronic controller 100 includes the damper 6 a, the cover 2 e and the base 3 e that configure a housing, and the insulating substrate 4 a. The electronic controller 100 includes the circuit board 1 having the insulating substrate 4 a, as in the first embodiment. The circuit board 1 corresponds to a supported portion.
  • As shown in FIG. 17, the cover 2 e includes a cover protrusion 22 e and a cover expanding portion 23 e. The cover 2 e corresponds to a holding member.
  • The cover protrusion 22 e protrudes more than the periphery of the cover protrusion 22 e. The cover protrusion 22 e protrudes toward the housing space. The cover protrusion 22 e has a tip end surface and the tip end surface includes the cover pressing surface S51 and the cover expanding portion 23 e. The cover pressing surface S51 is a surface that is in contact with the second surface S2 of the damper 6 a and that presses the damper 6 a.
  • The cover expanding portion 23 e is inserted into the through hole H1. The cover expanding portion 23 e protrudes from the tip end surface of the cover protrusion 22 e. The cover expanding portion 23 e is a portion of the tip end surface of the cover protrusion 22 e outside of the cover pressing surface S51. For example, the cover expanding portion 23 e is located at a position surrounded by the cover pressing surface S51. The cover expanding portion 23 e has the same configuration as the base expanding portion 35 d. Thus, the cover expanding portion 23 e has a cover tilted surface S52. The cover tilted surface S52 is in contact with the end corner surface S8 of the damper 6 a and presses the damper 6 a.
  • When the cover 2 e is coupled to the base 3 e, the cover 2 e presses the damper 6 a toward the base 3 e between the cover 2 e and the base 3 e. The cover 2 e and the base 3 e hold the damper 6 a while the cover 2 e presses the damper 6 a.
  • As shown in FIG. 17, the base 3 e includes a pedestal 34 e and a base expanding portion 35 e. The base 3 e corresponds to a supporting member. The pedestal 34 e is the same as the pedestal 34 d. The base expanding portion 35 e is the same as the base expanding portion 35 d. Thus, the pedestal 34 e includes the base pressing surface S21 and the base tilted surface S22. The base expanding portion 35 e is inserted into the through hole H1. The base pressing surface S21 is in contact with the first surface S1 of the damper 6 a and presses the damper 6 a. The base tilted surface S22 is in contact with the end corner surface S7 and presses the damper 6 a.
  • Each of the cover expanding portion 23 e and the base expanding portion 35 e corresponds to a protrusion. In the present embodiment, an example in which the cover 2 e includes the cover expanding portion 23 e and the base 3 e includes the base expanding portion 35 e is adopted. However, the present disclosure is not limited to this. It is only required that at least one of the cover expanding portion 23 e and the base expansion portion 35 e be provided.
  • Each of the cover tilted surface S52 and the base tilted surface S22 corresponds to a tilted surface or an outer tilted surface. In the present embodiment, an example in which the cover 2 e includes the cover tilted surface S52 and the base 3 e includes the base tilted surface S22 is adopted. However, the present disclosure is not limited to this. It is only required that at least one of the cover tilted surface S52 and the base tilted surface S22 be provided.
  • As shown in FIG. 17, the damper 6 a has the end corner surface S7 closer to the first surface S1 and the end corner surface S8 closer to the second surface S2. The end corner surface S7 is a surface that is pressed by the base 3 e and deformed along the base tilted surface S22. In this case, the end corner surface S7 can be regarded as a surface that is formed by a portion of the first surface S1 and a portion of the inner circumferential surface S4. The end corner surface S8 is a surface that is pressed by the cover expanding portion 23 e and deformed along the cover tilted surface S52. In this case, the end corner surface S8 can be regarded as a surface that is formed by a portion of the second surface S2 and a portion of the inner circumferential surface S4. Each of the end corner surfaces S7 and S8 corresponds to the inner circumferential corner surface.
  • In the electronic controller 100, the damper 6 a is arranged in the second insertion hole 41 a. The damper 6 a is pressed by the cover 2 e toward the base 3 e while being arranged in the second insertion hole 41 a. That is, the damper 6 a is pressed toward the base 3 e by coupling the cover 2 e and the base 3 e.
  • At this time, the cover expanding portion 23 e and the base expanding portion 35 e are inserted into the through hole H1 and fit to the damper 6 a. That is, not only the first surface S1 and the second surface S2 of the damper 6 a, but also the end corner surfaces S7 and S8 of the damper 6 a are pressed. Thus, the force from the cover 2 e and the base 3 e acts on the damper 6 a not only in the thickness direction but also in the plane direction. Therefore, the force applied to the damper 6 a from the cover expanding portion 23 e and the base expanding portion 35 e expands the diameter of the damper tubular body 61 a, so that the damper 6 a is changed from the first form to the second form. Further, since the force from the cover 2 e and the base 3 e also acts on the damper 6 a in the plane direction, the holding force for the insulating substrate 4 a can be improved.
  • Then, in the damper 6 a, the diameter of the damper tubular body 61 a is expanded, and the damper tubular body 61 a presses the insertion hole surface S11. That is, in the damper 6 a, the damper tubular body 61 a is pressed against the insertion hole surface S11. In this way, the damper 6 a is held in the circuit board 1. The damper 6 a relaxes stress to the circuit board 1 while being held in the circuit board 1. In this embodiment, the dampers 6 b and 6 c can be used instead of the damper 6 a.
  • The damper 6 a is elastically deformed in the thickness direction between the cover protrusion 22 e and the pedestal 34 e due to the stress applied in the thickness direction of the insulating substrate 4 a. The upper portion and the lower portion of the damper 6 a facing the insertion hole surface S11 are mainly elastically deformed. Thus, the damper 6 a can protect the circuit board 1 when stress is applied to the insulating substrate 4 a in the thickness direction.
  • Further, in the damper 6 a, a space is defined in a region surrounded by the inner circumferential surface S4. Therefore, the damper 6 a is easily elastically deformed in the intersecting direction. Therefore, the damper 6 a can relax not only the stress to the circuit board 1 in the thickness direction but also stress to the circuit board 1 in the intersecting direction. Therefore, the damper 6 a can appropriately relax the stress to the circuit board 1.
  • In the electronic controller 100, the cover expanding portion 23 e and the base expanding portion 35 e are fit to the damper 6 a. Thus, in the electronic controller 100, the cover 2 e and the base 3 e are restricted from being displaced from the damper 6 a. Therefore, the electronic controller 100 can protect the circuit board 1 from stress by appropriately pressing the damper 6 a against the insertion hole surface S11 as compared with the case where the positions of the damper 6 a, the cover 2 e, and the base 3 e are displaced.
  • Seventh Modification
  • With reference to FIG. 18, an electronic controller of a seventh modification will be described. In this modification, portions different from the fourth embodiment will be mainly described. In the electronic controller of this modification, the configuration of the base 3 e is different from that of the fourth embodiment. However, in this modification, for convenience, the same reference numerals as those in the fourth embodiment are adopted.
  • As shown in FIG. 18, the base 3 e includes a distance adjusting portion 36 e. The distance adjusting portion 36 e, like the distance adjusting portion 36 b, restricts the inner circumferential surface S4 of the damper tubular body 61 a from becoming too closer than necessary. The electronic controller 100 of the seventh modification can achieve similar effects to those of the fourth embodiment.
  • The orientations of the base tilted surface S22 of the base expanding portion 35 e and the cover tilted surface S52 of the cover expanding portion 23 e may be appropriately changed as long as the holding force for the circuit board 1 can be improved. Similarly, as for the screw head 203 b shown in FIG. 16, the orientation of the screw tilted surface S32 may be appropriately changed as long as the holding force for the circuit board 1 can be improved.
  • Eighth Modification
  • With reference to FIGS. 19A and 19B, a damper 6 e of the eighth modification will be described. FIG. 19A is a side view of the damper 6 e. FIG. 19B is a cross-sectional view taken along a line XIXB-XIXB in FIG. 19A.
  • As shown in FIGS. 19A and 19B, the damper 6 e includes an annular damper tubular body 61 e. The damper tubular body 61 e defines a through hole H1 like the damper tubular body 61 a. Similar to the damper tubular body 61 a, the damper tubular body 61 a includes the first surface S1, the second surface S2, the outer circumferential surface S3, and the inner circumferential surface S4. The damper tubular body 61 e may be made of a material same as that of the damper tubular body 61 a. The damper 6 e is also referred to as a tubular member because the gap G1 is not defined. The damper tubular body 61 e corresponds to a tubular body.
  • The damper 6 e can also be applied to the third embodiment, the fourth embodiment, the sixth modification, and the seventh modification. As an example, a case where the damper 6 e is applied to the fourth embodiment will be described. The damper 6 e is arranged in the second insertion hole 41 a. The damper 6 e is pressed by the cover 2 e toward the base 3 e while being arranged in the second insertion hole 41 a. That is, the damper 6 e is pressed toward the base 3 e by coupling the cover 2 e and the base 3 e.
  • At this time, the cover expanding portion 23 e and the base expanding portion 35 e are inserted into the through hole H1 and fit to the damper 6 e. That is, not only the first surface S1 and the second surface S2 of the damper 6 e, but also the end corner surfaces S7 and S8 of the damper 6 e are pressed. Thus, the force from the cover 2 e and the base 3 e acts on the damper 6 e not only in the thickness direction but also in the plane direction. Therefore, the force applied to the damper 6 e from the cover expanding portion 23 e and the base expanding portion 35 e expands the diameter of the damper tubular body 61 e, so that the damper 6 e is changed from the first form to the second form. Further, since the force from the cover 2 e and the base 3 e also acts on the damper 6 a in the plane direction, the holding force for the insulating substrate 4 a can be improved.
  • Then, in the damper 6 e, the diameter of the damper tubular body 61 e is expanded, so that the damper tubular body 61 e presses the insertion hole surface S11. That is, in the damper 6 e, the damper tubular body 61 e is in contact with the insertion hole surface S11 with pressure. In this way, the damper 6 e is held in the circuit board 1. The damper 6 e relaxes stress to the circuit board 1 while being held in the circuit board 1. Therefore, the eighth modification can achieve similar effects to those of the fourth embodiment and the seventh modification.
  • Although the present disclosure has been described in accordance with the embodiments, it is understood that the present disclosure is not limited to such embodiments or structures. The present disclosure encompasses various modifications and variations within the scope of equivalents. In addition, while the various combinations and configurations are shown in this disclosure, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the present disclosure.

Claims (13)

What is claimed is:
1. A damper disposed in a holding hole that passes through, in a passing-through direction, a supported member that is supported by a supporting member, the dumper comprising
a tubular body defining therein a through hole that extends in the passing-through direction, wherein
the tubular body is elastically deformable between a first form and a second form, and
the tubular body in the first form has an outer shape that is smaller than the holding hole, and
the tubular body in the second form has an outer shape that is equal to or greater than the holding hole.
2. The damper according to claim 1, wherein
the tubular body has a first end and a second end opposite to the first end in the passing-through direction,
the tubular body defines a gap extending between the first end and the second end, and
the gap is larger in the second form than in the first form.
3. The damper according to claim 2, wherein
the gap is filled with an adhesive when the tubular body is in the first form, and
the adhesive is to be melted by heat.
4. The damper according to claim 1 further comprising
an adjusting member disposed in a space surrounded by the tubular body and configured to adjust a height of the tubular body, and
the height of the tubular body is a length between a first end and a second end of the tubular body.
5. The damper according to claim 1 further comprising
a protrusion protruding from an outer circumferential surface of the tubular body.
6. The damper according to claim 5, wherein
the tubular body has a first end and a second end,
the protrusion includes:
a first protrusion disposed closer to the first end than to the second end and protruding from the outer circumferential surface of the tubular body; and
a second protrusion disposed closer to the second end than to the first end and protruding from the outer circumferential surface of the tubular body, the first protrusion and the second protrusion being located between the first end and the second end, and
a distance between the first protrusion and the second protrusion is equal to or greater than a thickness of the supported member.
7. The damper according to claim 1, wherein
the tubular body is formed by weaving metal wires such that spaces are defined in the tubular body.
8. The damper according to claim 1, wherein
the tubular body is composed mainly of a shape memory alloy.
9. An electronic controller comprising:
the damper according to claim 1;
the supporting member; and
the supported member, wherein
the tubular body in the second form is disposed in the holding hole and presses an inner surface of the holding hole, and
the supported member is supported by the supporting member through the damper.
10. An electronic controller comprising:
a supporting member;
a damper having a tubular body that defines a through hole, the through hole passing through the tubular body between a first end and a second end of the tubular body, the tubular body being elastically deformable;
a supported member defining a holding hole extending along the through hole of the tubular body, the damper being disposed in the holding hole such that the supported member is supported by the supporting member through the damper; and
a holding member pressing the damper toward the supporting member to hold the damper in the supported member, wherein
the damper includes an end corner surface,
at least one of the supporting member or the holding member includes a tilted surface that is in contact with the end corner surface of the damper, so that the at least one of the supporting member or the holding member is fit to the damper, and
the damper is in contact with an inner circumferential surface of the holding hole with pressure to hold the supported member.
11. The electronic controller according to claim 10, wherein
the supporting member is a base that is a first part of a housing for the supported member,
the holding member is a cover that is a second part of the housing, the second part being different from the first part,
the damper includes, as the end corner surface, an inner circumferential corner surface that is an end portion of an inner circumferential surface of the tubular body,
at least one of the base or the cover includes a protrusion inserted into the through hole of the tubular body, and
the protrusion includes, as the tilted surface, an outer tilted surface that is in contact with the inner circumferential corner surface of the damper.
12. The electronic controller according to claim 10, wherein
the supporting member is a base that is a portion of a housing for the supported member,
the holding member is a fixing member including:
a columnar fixed portion that is fixed to the base; and
a pressing portion that presses the damper toward the base while the fixed portion is fixed to the base,
the damper includes, as the end corner surface, an inner circumferential corner surface that is an end portion of an inner circumferential surface of the tubular body, and
the pressing portion includes, as the tilted surface, an outer tilted surface that is in contact with the inner circumferential corner surface.
13. A method for coupling the damper according to claim 3 to the supported member, the method comprising:
inserting the tubular body in the first form into the holding hole; and then
melting the adhesive with heat to deform the tubular body from the first form to the second form, whereby the tubular body is pressed against an inner surface of the holding hole by restoring force.
US17/524,795 2020-12-24 2021-11-12 Damper, electronic controller, and method for coupling damper Pending US20220210932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215320 2020-12-24
JP2020215320A JP2022100997A (en) 2020-12-24 2020-12-24 Damper, electronic control device, and assembly method

Publications (1)

Publication Number Publication Date
US20220210932A1 true US20220210932A1 (en) 2022-06-30

Family

ID=81972470

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/524,795 Pending US20220210932A1 (en) 2020-12-24 2021-11-12 Damper, electronic controller, and method for coupling damper

Country Status (4)

Country Link
US (1) US20220210932A1 (en)
JP (1) JP2022100997A (en)
CN (1) CN114673746A (en)
DE (1) DE102021129839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154802A1 (en) * 2020-11-19 2022-05-19 Denso Corporation Damper, assembly, and electronic controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924239B2 (en) 2012-11-09 2016-05-25 株式会社デンソー Anti-vibration bush and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154802A1 (en) * 2020-11-19 2022-05-19 Denso Corporation Damper, assembly, and electronic controller
US11668368B2 (en) * 2020-11-19 2023-06-06 Denso Corporation Damper, assembly, and electronic controller

Also Published As

Publication number Publication date
CN114673746A (en) 2022-06-28
JP2022100997A (en) 2022-07-06
DE102021129839A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US9692156B2 (en) Electronic device
JP5354024B2 (en) Semiconductor device
WO2020079801A1 (en) Substrate accommodating housing
KR20130121402A (en) Semiconductor package module
US20220210932A1 (en) Damper, electronic controller, and method for coupling damper
JP2008124468A (en) Power module
JP5846181B2 (en) Electronic control unit
JP6541593B2 (en) Power semiconductor device
JP6435145B2 (en) Electronic control unit
US11728240B2 (en) Circuit carrier arrangement and method for producing such a circuit carrier arrangement
CN211509142U (en) Photosensitive assembly, camera module and electronic equipment
CN107079597B (en) Housing for accommodating electrical and/or electronic components, electronic control device, and method for producing the housing and the electronic control device
WO2019102737A1 (en) Flow rate meter
US9763328B1 (en) Electrolytic capacitor retention device
US11553607B2 (en) Electronic device
US11668368B2 (en) Damper, assembly, and electronic controller
JP2007080592A (en) Socket for mounting semiconductor device
JP2007066575A (en) Mounting structure and mounting method of connector
KR20040017319A (en) Solder-free pcb assembly
JP6866259B2 (en) Chip type electrolytic capacitor
WO2024004248A1 (en) Pressure sensor
JP2002093979A (en) Composite semiconductor device
JP2005123307A (en) Mounting structure of capacitor
JP4601509B2 (en) Molded electronic circuit device and manufacturing method thereof
JP6319115B2 (en) Electronic equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TADA, SHINGO;HOZUKA, MINORU;KURIOKA, TAKAHIRO;AND OTHERS;SIGNING DATES FROM 20211019 TO 20211022;REEL/FRAME:058093/0323

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION