US20220110506A1 - Endoscope with bendable insertion unit - Google Patents

Endoscope with bendable insertion unit Download PDF

Info

Publication number
US20220110506A1
US20220110506A1 US17/552,013 US202117552013A US2022110506A1 US 20220110506 A1 US20220110506 A1 US 20220110506A1 US 202117552013 A US202117552013 A US 202117552013A US 2022110506 A1 US2022110506 A1 US 2022110506A1
Authority
US
United States
Prior art keywords
tube
endoscope
resin
insertion unit
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/552,013
Inventor
Takayoshi MORISHIMA
Kohei Iketani
Keiji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to US17/552,013 priority Critical patent/US20220110506A1/en
Assigned to HOYA CORPORATION reassignment HOYA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ITO, KEIJI, IKETANI, KOHEI, MORISHIMA, TAKAYOSHI
Publication of US20220110506A1 publication Critical patent/US20220110506A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00103Constructional details of the endoscope body designed for single use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00091Nozzles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00098Deflecting means for inserted tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/053Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion being detachable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • the present disclosure relates to an endoscope.
  • Patent Literature 1 there is known an invention related to an endoscope flexible tube having excellent resistance to autoclave sterilization (see Patent Literature 1 below).
  • the endoscope flexible tube disclosed in Patent Literature 1 is provided with a spiral tube, a mesh tube placed on the spiral tube, and an outer skin covering the outer periphery of the mesh tube.
  • this endoscope flexible tube at least the outer surface of the outer skin contains a thermoplastic elastomer compounded with 0.5 to 50% by weight of a fullerene compound (see, for example, claim 1 in Patent Literature 1).
  • Patent Literature 1 JP 2006-116128 A
  • the endoscope may reduce in operability and insertability and may increase in cost.
  • the present disclosure provides an endoscope that enables cost containment without deteriorating operability and insertability.
  • An endoscope according to the present disclosure is an endoscope provided with an insertion unit including an imaging unit and an operation unit configured to bend a part of the insertion unit, wherein at least a part of the insertion unit includes a tube formed of a resin, the tube including a plurality of channels formed of the resin included in the tube.
  • the endoscope may be provided with a single-use portion including the tube that is replaced for each use and a reusable portion including the imaging unit that is collected for each use to be reused.
  • the insertion unit may include a distal tip including the imaging unit, a bending section that is bent by the operation unit, and a flexible section disposed between the bending section and the operation unit, and at least a part of the bending section and a part of the flexible section may include the tube, and the resin excluding the channels may have a porosity of 0% or more and 80% or less.
  • the resin in the bending section may have an average porosity larger than an average porosity of the resin in the flexible section.
  • At least a part of the resin included in the tube may be a porous resin.
  • the porous resin may have a porosity changing in an axial direction or in a radial direction of the tube.
  • the endoscope may be provided with a rigid member inserted through the channels and an angle wire inserted through the rigid member and connected to a bending mechanism of the bending section, and the operation unit may be configured to operate the angle wire.
  • the rigid member may have flexural rigidity higher than flexural rigidity of the tube, being inserted through the channels in the flexible section.
  • the insertion unit may include a breaking section that is broken when the imaging unit is removed.
  • FIG. 1 is a schematic configuration diagram illustrating an endoscope system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view illustrating the overall configuration of the endoscope illustrated in FIG. 1 .
  • FIG. 3A is a graph illustrating flexural rigidity of a tube of an insertion unit illustrated in FIG. 2 .
  • FIG. 3B is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2 .
  • FIG. 3C is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2 .
  • FIG. 3D is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2 .
  • FIG. 3E is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2 .
  • FIG. 3F is a graph illustrating flexural rigidity of the insertion unit illustrated in FIG. 2 .
  • FIG. 4 is a view illustrating an example of a measurement method of flexural rigidity.
  • FIG. 5 is an enlarged view illustrating an example of an imaging unit of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 6 is a schematic cross-sectional view illustrating an exemplary configuration of the imaging unit illustrated in FIG. 5 .
  • FIG. 7A is an enlarged cross-sectional view illustrating a first modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 7B is an enlarged perspective view illustrating the first modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 8A is an enlarged cross-sectional view illustrating a second modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 8B is an enlarged perspective view illustrating the second modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 9A is an enlarged cross-sectional view illustrating a third modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 9B is an enlarged cross-sectional view illustrating the third modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 9C is an enlarged cross-sectional view illustrating the third modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 9D is an enlarged cross-sectional view illustrating the third modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 10A is an enlarged cross-sectional view illustrating a fourth modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 10B is an enlarged cross-sectional view illustrating the fourth modification of the endoscope illustrated in FIGS. 1 and 2 .
  • FIG. 11 is an enlarged cross-sectional view illustrating a fifth modification of the endoscope illustrated in FIGS. 1 and 2 .
  • axial direction indicates an axial direction of an insertion unit in an endoscope
  • front side indicates the side close to a subject
  • rear side indicates the side close to an operation unit of the endoscope.
  • FIG. 1 is a schematic configuration diagram illustrating an endoscope system 1 according to this embodiment.
  • a connection between devices is indicated by an arrow.
  • the endoscope system 1 of this embodiment is provided with, for example, a monitor 2 , a processor 3 , and an endoscope 100 .
  • the endoscope 100 is provided with an insertion unit 110 that is inserted through a subject and an operation unit 130 that bends a part of the insertion unit 110 .
  • at least a part of the insertion unit 110 includes a tube 110 a formed of a resin.
  • the tube 110 a includes a plurality of channels 110 b formed of the resin included in the tube 110 a.
  • the insertion unit 110 is provided with, for example, a distal tip 111 that includes an imaging unit 120 , a bending section 112 that is bent by the operation unit 130 , and a flexible section 113 that is disposed between the bending section 112 and the operation unit 130 . At least a part of the bending section 112 and a part of the flexible section 113 include the tube 110 a .
  • the resin included in the tube 110 a excluding the channels 110 b has a porosity of, for example, 0% or more and 80% or less.
  • the plurality of channels 110 b of the tube 110 a of the insertion unit 110 of the endoscope 100 includes, for example, a cable channel through which a signal cable for imaging is inserted.
  • the plurality of channels 110 b of the tube 110 a also includes, for example, a treatment tool channel for inserting a treatment tool such as forceps, an air supply channel for supplying air, a water supply channel and a secondary water supply channel for supplying water.
  • the plurality of channels 110 b of the tube 110 a may also include, for example, a lighting channel through which a light guide fiber bundle for lighting is inserted.
  • the endoscope 100 is provided with, for example, a rigid member inserted through the channels 110 b of the tube 110 a of the insertion unit 110 and provided with an angle wire inserted through the rigid member and connected to a bending mechanism of the bending section 112 .
  • the rigid member include a guide tube and a metallic close coil.
  • the operation unit 130 is configured to operate the angle wire.
  • the bending mechanism for example, a known bending mechanism that bends an insertion unit of a known endoscope is applicable.
  • the endoscope 100 is provided with a connector cable 140 extending from the operation unit 130 and a connector unit 150 disposed at an end of the connector cable 140 .
  • the connector unit 150 is connected to the processor 3 .
  • the processor 3 is a device for processing image data input from the endoscope 100 and producing a video signal.
  • the monitor 2 is connected to the processor 3 .
  • the monitor 2 displays an internal image of the subject imaged by the endoscope 100 and produced by the processor 3 .
  • FIG. 2 is a schematic perspective view illustrating the overall configuration of the endoscope 100 illustrated in FIG. 1 .
  • the configuration of the endoscope 100 will be described in more detail with reference to FIG. 2 .
  • the position and shape of the operation unit 130 in the endoscope 100 may be different from the actual position and shape for the purpose of illustration.
  • the endoscope 100 is provided with the insertion unit 110 and the operation unit 130 that bends a part of the insertion unit 110 .
  • the insertion unit 110 is provided with, for example, the distal tip 111 that includes the imaging unit 120 , the bending section 112 that is bent by the operation unit 130 , and the flexible section 113 that is disposed between the bending section 112 and the operation unit 130 .
  • At least a part of the insertion unit 110 includes the resinous tube 110 a having the plurality of channels 110 b , that is, for example, a multi-lumen tube having pliability and flexibility. More specifically, at least a part of the bending section 112 and a part of the flexible section 113 includes the resinous tube 110 a having the plurality of channels 110 b .
  • the resin included in the tube 110 a has a porosity of, for example, 0% to 80%.
  • the resin in the bending section 112 may have an average porosity, for example, larger than that of the resin in the flexible section 113 .
  • an average porosity of a certain part of resin indicates an average porosity of the whole resin included in the part.
  • the distal tip 111 of the insertion unit 110 includes the imaging unit 120 .
  • the distal tip 111 of the insertion unit 110 may include the tube 110 a , and the imaging unit 120 may be disposed inside the tube 110 a of the distal tip 111 .
  • the endoscope 100 of this embodiment is, for example, a single-use endoscope provided with a single-use portion S and a reusable portion R.
  • the single-use portion S includes, for example, the tube 110 a included in at least a part of the insertion unit 110 . Every time the endoscope 100 is used, the single-use portion S is replaced.
  • the reusable portion R includes, for example, the imaging unit 120 . Every time the endoscope 100 is used, the reusable portion R is collected, cleaned, sterilized, and disinfected for reuse.
  • the single-use portion S may be the tube 110 a of the insertion unit 110 , or may be the entire insertion unit 110 including the tube 110 a . Alternatively, the single-use portion S may be a part of the insertion unit 110 including the tube 110 a .
  • the single-use portion S may also include the operation unit 130 , the connector cable 140 , and the connector unit 150 .
  • the bending section 112 may include one tube 110 a , being formed in an integrated manner with the flexible section 113 . Alternatively, the bending section 112 may include another tube 110 a different from the tube 110 a included in the flexible section 113 .
  • Each part of the single-use portion S is preferably formed of a resin to the extent possible from a viewpoint of cost reduction.
  • the reusable portion R may include the imaging unit 120 exclusively or may include a part of the insertion unit 110 excluding the tube 110 a .
  • the reusable portion R may include the bending section 112 .
  • the reusable portion R may include a part or all of the operation unit 130 , the connector cable 140 , and the connector unit 150 .
  • the resin included in the tube 110 a may be a non-porous resin as a whole, or a solid resin which is not a porous resin. However, at least a part of the resin included in the tube 110 a may be a porous resin. It is possible to produce the tube 110 a , for example, by extrusion molding of a resin material.
  • Examples of the porous resin included in the tube 110 a include polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyethylene (PE), high density polyethylene (HDPE), and polypropylene (PP).
  • Examples of the non-porous resin included in the tube 110 a include polyurethane (PU), polypropylene (PP), polyethylene (PE), and polyamide.
  • the porous resin included in the tube 110 a excluding the channels 110 b has a porosity of, for example, from 0% to 80%.
  • the porosity of the porous resin varies, for example, about ⁇ 5%. From a viewpoint of facilitating the production of the tube 110 a , the porosity of the porous resin is preferably 15% or more.
  • the porosity of the porous resin is set to, for example, 20% or more and 80% or less.
  • the porosity of the porous resin in the bending section 112 is set, for example, in the following manner according to a material and an outer diameter of the porous resin.
  • the material of the porous resin is PTFE.
  • the outer diameter of the tube 110 a included in the bending section 112 and the porosity of the porous resin are set as shown in Table 1 below. Accordingly, the bending section 112 improves in pliability and flexibility, which enables the bending section 112 to have flexural rigidity appropriate for bending operation.
  • the tube 110 a of the insertion unit 110 may be compressed constantly in the axial direction between the imaging unit 120 and the operation unit 130 . Such a state improves the tube 110 a in density and improves the insertion unit 110 in flexural rigidity.
  • the porous resin may have a porosity changing in the axial direction or in a radial direction of the tube 110 a .
  • the porous resin may have a porosity changing in the radial direction of the tube 110 a .
  • the outer surface of the tube 110 a may have a porosity smaller than that of the center of the tube 110 a.
  • the porosity may decrease continuously or gradually from the center toward the outer surface. In the radial direction of the tube 110 a , the porosity may decrease continuously or gradually from the outer surface toward the center.
  • the gradual change in porosity includes a discontinuous change in porosity.
  • the discontinuous change in porosity indicates that there is a part with a porosity unchanging between parts with a porosity changing, or indicates that the porosity changes stepwise.
  • the tube 110 a may include a non-porous resin layer having a porosity of 0% on the radially outer surface and in a part close to the outer surface. Such a configuration prevents liquid infiltration from the outer surface of the insertion unit 110 . Still further, the tube 110 a may include a non-porous resin layer having a porosity of 0% on the inner wall of the channels 110 b and in a part close to the inner wall. Such a configuration prevents liquid infiltration from the inner wall of the channels 110 b of the insertion unit 110 .
  • the porous resin included in the tube 110 a may have a porosity changing continuously or gradually.
  • the resin in the bending section 112 may have an average porosity, for example, larger than that of the resin in the flexible section 113 .
  • the gradual change in porosity in the axial direction includes a discontinuous change in porosity in the radial direction.
  • the discontinuous change in porosity indicates that there is a part with a porosity unchanging between parts with a porosity changing, or indicates that the porosity changes stepwise.
  • a material of the tube 110 a in a part connected to the operation unit 130 of the insertion unit 110 may be, for example, a non-porous resin having a porosity of 0%.
  • FIGS. 3A to 3F are graphs illustrating examples of flexural rigidity of the tube 110 a of the insertion unit 110 .
  • the flexural rigidity of the tube 110 a is taken along the ordinate, and the distance from the distal tip of the insertion unit 110 is taken along the abscissa.
  • the porous resin in the tube 110 a has a porosity continuously decreasing at a substantially constant rate from a distal tip in which the bending section 112 is disposed to a proximal end which is connected to the operation unit 130 . Accordingly, the tube 110 a alone included in the insertion unit 110 has flexural rigidity increasing at a substantially constant rate from the distal tip to the proximal end.
  • the guide tube for inserting the angle wire when the guide tube for inserting the angle wire is inserted through the channels 110 b of the tube 110 a of the insertion unit 110 , the guide tube may have flexural rigidity higher than that of the tube 110 a .
  • the guide tube may be inserted through the channels 110 b of the tube 110 a on the side closer to the proximal end than the bending section 112 of the insertion unit 110 , that is, on the side closer to the operation unit 130 than the bending section 112 .
  • the porous resin has a porosity continuously decreasing at a substantially constant rate from the distal tip to the proximal end.
  • four guide tubes are inserted through the channels 110 b at the flexible section 113 closer to the proximal end than the bending section 112 of the insertion unit 110 .
  • the guide tube has flexural rigidity higher than that of the tube 110 a . Therefore, compared to the example illustrated in FIG. 3A , in the example illustrated in FIG. 3B , the tube 110 a has high flexural rigidity in a part closer to the proximal end than the bending section 112 of the insertion unit 110 .
  • a rigid member having flexural rigidity higher than that of the tube 110 a may be inserted through the channels 110 b of the tube 110 a so as to improve the flexural rigidity of the tube 110 a,
  • the porous resin has a porosity at a relatively high constant value on the side close to the distal tip 111 where the bending section 112 is disposed, and in the flexible section 113 closer to the proximal end than the bending section 112 , the porous resin has a porosity continuously decreasing from the distal tip to the proximal end. Accordingly, the flexural rigidity of the tube 110 a alone is set to a relatively low constant value in the bending section 112 , increasing continuously from the distal tip to the proximal end in the flexible section 113 closer to the proximal end than the bending section 112 .
  • the porous resin has a porosity gradually decreasing in two stages from the distal tip to the proximal end. Accordingly, the tube 110 a alone included in the insertion unit 110 has flexural rigidity increasing in two stages from the distal tip to the proximal end.
  • the tube 110 a includes a non-porous resin, or a solid resin, from the distal tip to the proximal end, having a porosity of 0%. Therefore, the flexural rigidity of the tube 110 a alone included in the insertion unit 110 is constant from the distal tip to the proximal end and is higher than a case where the material of the tube 110 a is a porous resin.
  • the tube 110 a includes a non-porous resin from the distal tip to the proximal end as in the example illustrated in FIG. 3E , and the guide tube of the angle wire is inserted through the channels 110 b as in the example illustrated in FIG. 3B .
  • the tube 110 a in addition to the guide tube, other members included in the insertion unit 110 are inserted through and disposed in the channels 110 b , being included in the insertion unit 110 . Therefore, compared to the example illustrated in FIG. 3E , in the example illustrated in FIG. 3F , the tube 110 a has high flexural rigidity in a part closer to the proximal end than the bending section 112 of the insertion unit 110 .
  • FIG. 4 is a view illustrating an example of a measurement method of flexural rigidity. It is possible to measure the flexural rigidity of the tube 110 a alone included in the insertion unit 110 , the flexural rigidity of the rigid member inserted through the tube 110 a and the channels 110 b , or the flexural rigidity of the insertion unit 110 including the tube 110 a and other members, for example, in the following manner. First, the tube 110 a is straightened and disposed between two pairs of rollers W 1 and W 2 . Accordingly, the tube 110 a is supported from both sides in the radial direction by the two pairs of rollers W 1 and W 2 which are separated in the axial direction.
  • a roller W 3 is disposed on one side of the tube 110 a in the radial direction.
  • the roller W 3 is pushed in the radial direction of the tube 110 a at a predetermined amount of indentation D 1 by a measuring rod L of a measuring instrument M so as to bend the tube 110 a supported between the two pairs of rollers W 1 and W 2 .
  • a reaction force acting on the measuring rod L is measured by the measuring instrument M, and this reaction force is defined as the flexural rigidity of the tube 110 a alone or that of the insertion unit 110 .
  • an interval D 2 of the rollers W 1 separated in the axial direction of the tube 110 a is set to 200 mm, and the amount of indentation D 1 is set to 20 mm.
  • the operation unit 130 of the endoscope 100 includes an operation unit body 131 including a grip section, and a treatment tool inlet 132 disposed in the operation unit body 131 on the side close to the insertion unit 110 .
  • the treatment tool inlet 132 is an opening of the treatment tool channel disposed in the operation unit 130 .
  • the operation unit body 131 is provided with a bending operation knob 133 for bending the bending section 112 , and switches 134 or the like associated with each operation of the endoscope 100 .
  • the proximal end of the tube 110 a of the insertion unit 110 is connected to the operation unit body 131 .
  • FIG. 5 is an enlarged view illustrating an example of the imaging unit 120 of the endoscope 100 illustrated in FIG. 1 and FIG. 2 .
  • the insertion unit 110 includes an opening 112 a for the treatment tool channel, an opening 112 b for the air supply channel, an opening 112 c for the water supply channel, and an opening 112 d for the secondary water channel.
  • the insertion unit 110 also includes a contact-type power connector 110 c and a signal connector 110 d .
  • the power connector 110 c is connected, for example, to a power terminal of the connector unit 150 through a power cable passing through the cable channel of the tube 110 a .
  • the signal connector 110 d is connected, for example, to a signal terminal of the connector unit 150 through the signal cable passing through the cable channel of the tube 110 a of the insertion unit 110 .
  • the imaging unit 120 is provided with, for example, a cylindrical body section 121 , and a forceps port 121 a , an air supply port 121 b , a water supply port 121 c , and a secondary water supply port 121 d disposed in the body section 121 .
  • the forceps port 121 a , the air supply port 121 b , the water supply port 121 c , and the secondary water supply port 121 d are openings for the treatment tool channel, the air supply channel, the water supply channel, and the secondary water supply channel disposed in the body section 121 , respectively.
  • the forceps port 121 a , the air supply port 121 b , the water supply port 121 c , and the secondary water supply port 121 d are respectively communicated with the treatment tool channel, the air supply channel, the water supply channel, and the secondary water supply channel disposed in the tube 110 a through the openings 112 a , 112 b , 112 c , and 112 d of the tube 110 a .
  • the imaging unit 120 also includes a power pin 122 and a signal pin 123 at the rear end of the body section 121 connected to the distal tip of the tube 110 a.
  • a joint between the imaging unit 120 and the insertion unit 110 is covered with a tube-shaped breaking section 114 .
  • a material of the breaking section 114 include a resin having pliability and flexibility as similar to the tube 110 a of the insertion unit 110 .
  • the breaking section 114 covers not only the joint between the imaging unit 120 and the insertion unit 110 but also, for example, the rear end of the imaging unit 120 adjacent to the joint and the distal tip of the bending section 112 .
  • the breaking section 114 is bonded or joined to the rear end of the imaging unit 120 and the distal tip of the bending section 112 , and the breaking section 114 is broken when the imaging unit 120 included in the distal tip 111 of the insertion unit 110 is removed from the insertion unit 110 .
  • FIG. 6 is a schematic cross-sectional view illustrating an exemplary configuration of the imaging unit 120 illustrated in FIG. 5 .
  • the imaging unit 120 includes at least an imaging element 124 such as CMOS or CCD.
  • the imaging unit 120 is provided with, for example, the imaging element 124 , an objective lens 125 , and a small LED lighting 127 including a lens 126 .
  • the body section 121 closes and seals each part of the imaging unit 120 including the imaging element 124 .
  • the imaging unit 120 is provided with the power pin 122 and the signal pin 123 at the rear end of the body section 121 .
  • the imaging unit 120 does not have to include all the components illustrated in FIG. 6 and may include, for example, minimal components that enable reuse of the imaging element 124 .
  • the power pin 122 is connected to, for example, the imaging element 124 and the small LED lighting 127 . Inserting and connecting the power pin 122 to the power connector 110 c disposed at the distal tip of the tube 110 a enables electric power supply to the imaging element 124 and to the small LED lighting 127 . Furthermore, the signal pin 123 is connected to, for example, the imaging element 124 and the small LED lighting 127 . Inserting and connecting the signal pin 123 to the signal connector 110 d disposed at the distal tip of the tube 110 a enables output of an image signal of the imaging element 124 to the signal terminal of the connector unit 150 through the signal cable.
  • the connection for outputting the image signal of the imaging element 124 is not limited to the contact method using pins and connectors and may be changed to, for example, wireless connection such as Bluetooth (registered trademark).
  • the body section 121 includes, for example, a hard resin different from the resin included in the tube 110 a and having pliability.
  • a part or all of the body section 121 may be transparent.
  • lenses such as the objective lens 125 and the lens 126 for lighting may be formed in an integrated manner with the body section 121 .
  • the imaging unit 120 includes the imaging element 124 alone, the imaging unit 120 does not necessarily include the body section 121 .
  • the imaging unit 120 includes the imaging element 124 sealed with a resin or the like, being embedded in the distal tip of the tube 110 a included in the distal tip 111 of the insertion unit 110 .
  • the endoscope 100 is provided with the insertion unit 110 including the imaging unit 120 and the operation unit 130 that bends a part of the insertion unit 110 .
  • At least a part of the insertion unit 110 includes the resinous tube 110 a .
  • the tube 110 a includes a plurality of channels 110 b formed of the resin included in the tube 110 a.
  • the insertion unit 110 of the endoscope 100 is made to include the resinous tube 110 a . Accordingly, characteristics of the tube 110 a such as flexibility, pliability, and smoothness of the outer surface lead to prevention of deterioration in operability and insertability when the insertion unit 110 is inserted through the body of a patient.
  • the tube 110 a is made to include the plurality of channels 110 b formed of the resin included in the tube 110 a itself, that is to say, the resinous tube 110 a is made to include the plurality of channels 110 b , or for example, the tube 110 a is made to be a multi-lumen tube. Such a configuration enables production of the insertion unit 110 with ease and with a relatively inexpensive material, which leads to cost reduction of the endoscope 100 .
  • the endoscope 100 of this embodiment is provided with the insertion unit 110 and the operation unit 130 that bends a part of the insertion unit 110 as described above.
  • the insertion unit 110 is provided with the distal tip 111 that includes the imaging unit 120 , the bending section 112 that is bent by the operation unit 130 , and the flexible section 113 that is disposed between the bending section 112 and the operation unit 130 .
  • at least a part of the bending section 112 and a part of the flexible section 113 include the resinous tube 110 a provided with the plurality of channels.
  • the tube 110 a excluding the resin channels 110 b has a porosity of 0% or more and 80% or less.
  • the bending section 112 and a part of the flexible section 113 is made to include the resinous tube 110 a . Accordingly, characteristics of the tube 110 a such as flexibility, pliability, and smoothness of the outer surface leads to prevention of deterioration in operability and insertability when the bending section 112 and the flexible section 113 are inserted through the body of a patient.
  • the tube 110 a excluding the resin channels 110 b has a porosity of 0% or more and 80% or less. Accordingly, the bending section 112 and the flexible section 113 are imparted with flexural rigidity according to the porosity of the tube 110 a.
  • the flexural rigidity of the tube 110 a in the bending section 112 is made smaller than the flexural rigidity of the tube 110 a in the flexible section 113 .
  • Such a configuration facilitates the operation to bend the bending section 112 and further improves operability of the endoscope 100 .
  • the endoscope 100 of this embodiment is also provided with the single-use portion S including the tube 110 a which is replaced for each use and the reusable portion R including the imaging unit 120 which is collected for each use to be reused. Accordingly, the single-use portion S including the relatively inexpensive tube 110 a is discarded, which enables an endoscopic examination with a high level of cleanliness maintained.
  • Replacement of the single-use portion S including the tube 110 a with a new one for each use saves labor such as cleaning, sterilization, and disinfection of the insertion unit 110 , which reduces the risk of damaging or malfunctioning of the insertion unit 110 .
  • collecting of the reusable portion R including the relatively expensive imaging unit 120 for each use and cleaning, sterilization, and disinfection of the reusable portion R for reuse reduce maintenance costs of the single-use type endoscope 100 in which members other than the reusable portion R are discarded.
  • the insertion unit 110 includes the breaking section 114 that is broken when the imaging unit 120 is removed. Accordingly, for example, after the endoscope 100 is used, when a third party having no authority to replace the single-use portion S removes the imaging unit 120 , the breaking section 114 is broken, and the endoscope 100 cannot be reformed. Therefore, it is possible to prevent reuse of the single-use portion S including the tube 110 a and to prevent erroneous removal of the imaging unit 120 . Thus, it is possible to improve traceability of the endoscope 100 and to further improve safety and reliability of the endoscope 100 .
  • the tube 110 a serves as the breaking section 114 .
  • the breaking section 114 in order to collect the reusable portion R including the imaging unit 120 , it is required to break the tube 110 a and take out the imaging unit 120 disposed inside the tube 110 a.
  • the endoscope 100 when used, when a third party having no authority to replace the single-use portion S removes the imaging unit 120 , the tube 110 a is broken, and the endoscope 100 cannot be reformed. Therefore, it is possible to prevent reuse of the single-use portion S including the tube 110 a and to prevent erroneous removal of the imaging unit 120 . Thus, it is possible to improve traceability of the endoscope 100 and to further improve safety and reliability of the endoscope 100 .
  • the breaking section 114 or the tube 110 a prevents the imaging unit 120 from being removed by an unauthorized third party. Even when the imaging unit 120 is removed, it is possible to determine easily that the imaging unit 120 is removed by the broken breaking section 114 or the broken tube 110 a.
  • a rightful manager who controls the endoscope 100 collects the reusable portion R including the imaging unit 120 , he/she breaks the breaking section 114 or the tube 110 a and easily ejects the imaging unit 120 and the small LED lighting 127 .
  • the reusable portion R including the ejected imaging unit 120 is cleaned and sterilized so as to be reused.
  • the imaging element 124 and the small LED lighting 127 of the imaging unit 120 have similar performances to an imaging element and a small LED lighting used in an imaging unit of a general reusable endoscope. Since the imaging unit 120 including such high-performance imaging element 124 and small LED lighting 127 are expensive, after the used endoscope 100 is collected from a user, those members are ejected by the manager of the endoscope 100 , and then, cleaned, sterilized, and disinfected to be reused.
  • the inexpensive single-use portion S including the tube 110 a is, for example, discarded and incinerated.
  • the resin included in the single-use portion S may be, for example, dissolved to be reused as a raw material.
  • the reusable portion R including the imaging unit 120 that is cleaned, sterilized, and disinfected and with the single-use portion S including a brand-new tube 110 a , a new endoscope 100 is produced and repeatedly provided to a user.
  • the tube 110 a When at least a part of the tube 110 a includes a porous resin, it is possible to improve flexibility and pliability of a porous resin portion more than flexibility and pliability of a non-porous portion not including the porous resin. Accordingly, it is possible to improve operability and insertability of the insertion unit 110 .
  • the porous resin may have a porosity changing in the axial direction or the radial direction of the tube 110 a .
  • the porous resin improves in flexibility and pliability but increases in liquid permeability.
  • the porous resin decreases in flexibility and pliability but improves in liquid barrier property.
  • a change in porosity of the porous resin included in the tube 110 a changes the flexibility and pliability.
  • a change in porosity of the porous resin included in the tube 110 a improves the flexibility and pliability of the insertion unit 110 while preventing liquid infiltration.
  • the endoscope 100 is provided with the rigid member that is inserted through the channels 110 b of the tube 110 a and the angle wire that is inserted through the rigid member and connected to the bending mechanism of the bending section 112 .
  • the operation unit 130 is configured to operate the angle wire. Accordingly, it is possible to operate the angle wire by the operation unit 130 and to bend the bending mechanism by the angle wire. Therefore, the bending section 112 is bent freely by the operation of the operation unit 130 .
  • the rigid member inserted through the channels 110 b of the tube 110 a has, for example, flexural rigidity higher than that of the tube 110 a , and the rigid member is inserted through the channels 110 b in the flexible section 113 closer to the proximal end than the bending section 112 .
  • the channels 110 b are protected by the flexible section 113 closer to the proximal end than the bending section 112 , which prevents the channels 110 b from being damaged by the guide wire.
  • FIG. 7A is an enlarged cross-sectional view illustrating a first modification of the endoscope 100 .
  • FIG. 7B is an enlarged perspective view illustrating the first modification of the endoscope 100 .
  • the endoscope 100 according to the first modification is an example where electric power is transmitted to the imaging unit 120 by electric-field coupling.
  • FIG. 8A is an enlarged cross-sectional view illustrating a second modification of the endoscope 100 .
  • FIG. 8B is an enlarged perspective view illustrating the second modification of the endoscope 100 .
  • the endoscope 100 of the second modification is an example where electric power is transmitted to the imaging unit 120 by two-dimensional communication (evanescent waves).
  • FIGS. 9A to 9D are cross-sectional views illustrating a third modification of the endoscope 100 .
  • the endoscope 100 according to the third modification is an example where electric power is transmitted to the imaging unit 120 by electromagnetic induction.
  • electric power is transmitted from a power transmission coil of the bending section 112 to a power reception coil of the imaging unit 120 by electromagnetic induction.
  • FIGS. 10A and 10B are cross-sectional views illustrating a fourth modification of the endoscope 100 .
  • the endoscope 100 according to the fourth modification is an example where electric power or a signal is transmitted by optical transmission.
  • FIG. 11 is a cross-sectional view illustrating a fifth modification of the endoscope 100 .
  • the endoscope 100 of the fifth modification may transmit electric power or a signal by wireless transmission.

Abstract

An endoscope 100 is provided with an insertion unit 110 including an imaging unit 120 and an operation unit 130 that bends a part of the insertion unit 110. At least a part of the insertion unit 110 includes a tube 110 a formed of a resin. The tube 110 a includes a plurality of channels 110 b formed of the resin included in the tube 110 a.

Description

  • This application is a division of U.S. application Ser. No. 16/499,751, filed Sep. 30, 2019, which is the national phase application under 35 U.S.C. § 371 of international application No. PCT/JP2017/024395, filed Jul. 3, 2017, which claims priority based on U.S. provisional application 62/513,903, filed Jun. 1, 2017, in the United States, the contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to an endoscope.
  • BACKGROUND ART
  • In the related art, there is known an invention related to an endoscope flexible tube having excellent resistance to autoclave sterilization (see Patent Literature 1 below). The endoscope flexible tube disclosed in Patent Literature 1 is provided with a spiral tube, a mesh tube placed on the spiral tube, and an outer skin covering the outer periphery of the mesh tube. In this endoscope flexible tube, at least the outer surface of the outer skin contains a thermoplastic elastomer compounded with 0.5 to 50% by weight of a fullerene compound (see, for example, claim 1 in Patent Literature 1).
  • CITATION LIST Patent Literature
  • Patent Literature 1: JP 2006-116128 A
  • SUMMARY OF INVENTION Technical Problem
  • In recent years, there is growing demand for price reduction of endoscopes. However, depending on materials used for an insertion unit in an endoscope, the endoscope may reduce in operability and insertability and may increase in cost.
  • Accordingly, the present disclosure provides an endoscope that enables cost containment without deteriorating operability and insertability.
  • Solution to Problem
  • An endoscope according to the present disclosure is an endoscope provided with an insertion unit including an imaging unit and an operation unit configured to bend a part of the insertion unit, wherein at least a part of the insertion unit includes a tube formed of a resin, the tube including a plurality of channels formed of the resin included in the tube.
  • The endoscope may be provided with a single-use portion including the tube that is replaced for each use and a reusable portion including the imaging unit that is collected for each use to be reused.
  • The insertion unit may include a distal tip including the imaging unit, a bending section that is bent by the operation unit, and a flexible section disposed between the bending section and the operation unit, and at least a part of the bending section and a part of the flexible section may include the tube, and the resin excluding the channels may have a porosity of 0% or more and 80% or less.
  • The resin in the bending section may have an average porosity larger than an average porosity of the resin in the flexible section.
  • At least a part of the resin included in the tube may be a porous resin.
  • The porous resin may have a porosity changing in an axial direction or in a radial direction of the tube.
  • The endoscope may be provided with a rigid member inserted through the channels and an angle wire inserted through the rigid member and connected to a bending mechanism of the bending section, and the operation unit may be configured to operate the angle wire.
  • The rigid member may have flexural rigidity higher than flexural rigidity of the tube, being inserted through the channels in the flexible section.
  • The insertion unit may include a breaking section that is broken when the imaging unit is removed.
  • Advantageous Effects of Invention
  • According to the present disclosure, it is possible to provide an endoscope that enables cost containment without deteriorating operability and insertability.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic configuration diagram illustrating an endoscope system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view illustrating the overall configuration of the endoscope illustrated in FIG. 1.
  • FIG. 3A is a graph illustrating flexural rigidity of a tube of an insertion unit illustrated in FIG. 2.
  • FIG. 3B is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2.
  • FIG. 3C is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2.
  • FIG. 3D is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2.
  • FIG. 3E is a graph illustrating flexural rigidity of the tube of the insertion unit illustrated in FIG. 2.
  • FIG. 3F is a graph illustrating flexural rigidity of the insertion unit illustrated in FIG. 2.
  • FIG. 4 is a view illustrating an example of a measurement method of flexural rigidity.
  • FIG. 5 is an enlarged view illustrating an example of an imaging unit of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 6 is a schematic cross-sectional view illustrating an exemplary configuration of the imaging unit illustrated in FIG. 5.
  • FIG. 7A is an enlarged cross-sectional view illustrating a first modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 7B is an enlarged perspective view illustrating the first modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 8A is an enlarged cross-sectional view illustrating a second modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 8B is an enlarged perspective view illustrating the second modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 9A is an enlarged cross-sectional view illustrating a third modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 9B is an enlarged cross-sectional view illustrating the third modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 9C is an enlarged cross-sectional view illustrating the third modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 9D is an enlarged cross-sectional view illustrating the third modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 10A is an enlarged cross-sectional view illustrating a fourth modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 10B is an enlarged cross-sectional view illustrating the fourth modification of the endoscope illustrated in FIGS. 1 and 2.
  • FIG. 11 is an enlarged cross-sectional view illustrating a fifth modification of the endoscope illustrated in FIGS. 1 and 2.
  • DESCRIPTION OF EMBODIMENTS
  • Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the accompanying drawings, functionally identical elements may be denoted by the same reference numerals. In the following description, “axial direction” indicates an axial direction of an insertion unit in an endoscope, “front side” indicates the side close to a subject, and “rear side” indicates the side close to an operation unit of the endoscope.
  • <Configuration of Endoscope System>
  • FIG. 1 is a schematic configuration diagram illustrating an endoscope system 1 according to this embodiment. In FIG. 1, for sake of simplicity, a connection between devices is indicated by an arrow.
  • The endoscope system 1 of this embodiment is provided with, for example, a monitor 2, a processor 3, and an endoscope 100.
  • The endoscope 100 is provided with an insertion unit 110 that is inserted through a subject and an operation unit 130 that bends a part of the insertion unit 110. Although details will be described later, in the endoscope 100 of this embodiment, at least a part of the insertion unit 110 includes a tube 110 a formed of a resin. Furthermore, the tube 110 a includes a plurality of channels 110 b formed of the resin included in the tube 110 a.
  • More specifically, the insertion unit 110 is provided with, for example, a distal tip 111 that includes an imaging unit 120, a bending section 112 that is bent by the operation unit 130, and a flexible section 113 that is disposed between the bending section 112 and the operation unit 130. At least a part of the bending section 112 and a part of the flexible section 113 include the tube 110 a. The resin included in the tube 110 a excluding the channels 110 b has a porosity of, for example, 0% or more and 80% or less.
  • The plurality of channels 110 b of the tube 110 a of the insertion unit 110 of the endoscope 100 includes, for example, a cable channel through which a signal cable for imaging is inserted. The plurality of channels 110 b of the tube 110 a also includes, for example, a treatment tool channel for inserting a treatment tool such as forceps, an air supply channel for supplying air, a water supply channel and a secondary water supply channel for supplying water. The plurality of channels 110 b of the tube 110 a may also include, for example, a lighting channel through which a light guide fiber bundle for lighting is inserted.
  • Although not illustrated, the endoscope 100 is provided with, for example, a rigid member inserted through the channels 110 b of the tube 110 a of the insertion unit 110 and provided with an angle wire inserted through the rigid member and connected to a bending mechanism of the bending section 112. Examples of the rigid member include a guide tube and a metallic close coil. The operation unit 130 is configured to operate the angle wire. As the bending mechanism, for example, a known bending mechanism that bends an insertion unit of a known endoscope is applicable.
  • The endoscope 100 is provided with a connector cable 140 extending from the operation unit 130 and a connector unit 150 disposed at an end of the connector cable 140. The connector unit 150 is connected to the processor 3. The processor 3 is a device for processing image data input from the endoscope 100 and producing a video signal. The monitor 2 is connected to the processor 3. The monitor 2 displays an internal image of the subject imaged by the endoscope 100 and produced by the processor 3.
  • <Endoscope>
  • FIG. 2 is a schematic perspective view illustrating the overall configuration of the endoscope 100 illustrated in FIG. 1. Hereinafter, the configuration of the endoscope 100 will be described in more detail with reference to FIG. 2. The position and shape of the operation unit 130 in the endoscope 100 may be different from the actual position and shape for the purpose of illustration.
  • As described above, the endoscope 100 is provided with the insertion unit 110 and the operation unit 130 that bends a part of the insertion unit 110. The insertion unit 110 is provided with, for example, the distal tip 111 that includes the imaging unit 120, the bending section 112 that is bent by the operation unit 130, and the flexible section 113 that is disposed between the bending section 112 and the operation unit 130.
  • In the endoscope 100 of this embodiment, as described above, at least a part of the insertion unit 110 includes the resinous tube 110 a having the plurality of channels 110 b, that is, for example, a multi-lumen tube having pliability and flexibility. More specifically, at least a part of the bending section 112 and a part of the flexible section 113 includes the resinous tube 110 a having the plurality of channels 110 b. The resin included in the tube 110 a has a porosity of, for example, 0% to 80%.
  • The resin in the bending section 112 may have an average porosity, for example, larger than that of the resin in the flexible section 113. Here, an average porosity of a certain part of resin indicates an average porosity of the whole resin included in the part.
  • In the example illustrated in FIGS. 1 and 2, the distal tip 111 of the insertion unit 110 includes the imaging unit 120. However, the distal tip 111 of the insertion unit 110 may include the tube 110 a, and the imaging unit 120 may be disposed inside the tube 110 a of the distal tip 111.
  • The endoscope 100 of this embodiment is, for example, a single-use endoscope provided with a single-use portion S and a reusable portion R. The single-use portion S includes, for example, the tube 110 a included in at least a part of the insertion unit 110. Every time the endoscope 100 is used, the single-use portion S is replaced. The reusable portion R includes, for example, the imaging unit 120. Every time the endoscope 100 is used, the reusable portion R is collected, cleaned, sterilized, and disinfected for reuse.
  • The single-use portion S may be the tube 110 a of the insertion unit 110, or may be the entire insertion unit 110 including the tube 110 a. Alternatively, the single-use portion S may be a part of the insertion unit 110 including the tube 110 a. The single-use portion S may also include the operation unit 130, the connector cable 140, and the connector unit 150. Furthermore, the bending section 112 may include one tube 110 a, being formed in an integrated manner with the flexible section 113. Alternatively, the bending section 112 may include another tube 110 a different from the tube 110 a included in the flexible section 113. Each part of the single-use portion S is preferably formed of a resin to the extent possible from a viewpoint of cost reduction.
  • The reusable portion R may include the imaging unit 120 exclusively or may include a part of the insertion unit 110 excluding the tube 110 a. For example, the reusable portion R may include the bending section 112. The reusable portion R may include a part or all of the operation unit 130, the connector cable 140, and the connector unit 150.
  • The resin included in the tube 110 a may be a non-porous resin as a whole, or a solid resin which is not a porous resin. However, at least a part of the resin included in the tube 110 a may be a porous resin. It is possible to produce the tube 110 a, for example, by extrusion molding of a resin material.
  • Examples of the porous resin included in the tube 110 a include polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyethylene (PE), high density polyethylene (HDPE), and polypropylene (PP). Examples of the non-porous resin included in the tube 110 a include polyurethane (PU), polypropylene (PP), polyethylene (PE), and polyamide.
  • The porous resin included in the tube 110 a excluding the channels 110 b has a porosity of, for example, from 0% to 80%. The porosity of the porous resin varies, for example, about ±5%. From a viewpoint of facilitating the production of the tube 110 a, the porosity of the porous resin is preferably 15% or more. When using the porous resin tube 110 a for the bending section 112, the porosity of the porous resin is set to, for example, 20% or more and 80% or less.
  • More specifically, the porosity of the porous resin in the bending section 112 is set, for example, in the following manner according to a material and an outer diameter of the porous resin. Here, provided that the material of the porous resin is PTFE. In this case, the outer diameter of the tube 110 a included in the bending section 112 and the porosity of the porous resin are set as shown in Table 1 below. Accordingly, the bending section 112 improves in pliability and flexibility, which enables the bending section 112 to have flexural rigidity appropriate for bending operation.
  • TABLE 1
    Outer diameter of tube Porosity of porous resin
    φ8 mm to φ9 mm 30% to 50%
     φ9 mm to φ10 mm 40% to 60%
    φ10 mm to φ11 mm 50% to 70%
    φ11 mm to φ13 mm 60% or more and 80% or less
  • The tube 110 a of the insertion unit 110, for example, may be compressed constantly in the axial direction between the imaging unit 120 and the operation unit 130. Such a state improves the tube 110 a in density and improves the insertion unit 110 in flexural rigidity.
  • In the tube 110 a of the insertion unit 110, the porous resin may have a porosity changing in the axial direction or in a radial direction of the tube 110 a. For example, in the tube 110 a of the insertion unit 110, the porous resin may have a porosity changing in the radial direction of the tube 110 a. More specifically, in the radial direction of the tube 110 a, the outer surface of the tube 110 a may have a porosity smaller than that of the center of the tube 110 a.
  • In the radial direction of the tube 110 a, the porosity may decrease continuously or gradually from the center toward the outer surface. In the radial direction of the tube 110 a, the porosity may decrease continuously or gradually from the outer surface toward the center. The gradual change in porosity includes a discontinuous change in porosity. Here, the discontinuous change in porosity indicates that there is a part with a porosity unchanging between parts with a porosity changing, or indicates that the porosity changes stepwise.
  • Furthermore, the tube 110 a may include a non-porous resin layer having a porosity of 0% on the radially outer surface and in a part close to the outer surface. Such a configuration prevents liquid infiltration from the outer surface of the insertion unit 110. Still further, the tube 110 a may include a non-porous resin layer having a porosity of 0% on the inner wall of the channels 110 b and in a part close to the inner wall. Such a configuration prevents liquid infiltration from the inner wall of the channels 110 b of the insertion unit 110.
  • In the axial direction of the tube 110 a, that is, from an end close to the operation unit 130 or a proximal end of the insertion unit 110 to the distal tip 111 of the insertion unit 110, the porous resin included in the tube 110 a may have a porosity changing continuously or gradually. For example, as described above, in the axial direction of the tube 110 a, the resin in the bending section 112 may have an average porosity, for example, larger than that of the resin in the flexible section 113.
  • The gradual change in porosity in the axial direction includes a discontinuous change in porosity in the radial direction. Here, the discontinuous change in porosity indicates that there is a part with a porosity unchanging between parts with a porosity changing, or indicates that the porosity changes stepwise. A material of the tube 110 a in a part connected to the operation unit 130 of the insertion unit 110 may be, for example, a non-porous resin having a porosity of 0%.
  • FIGS. 3A to 3F are graphs illustrating examples of flexural rigidity of the tube 110 a of the insertion unit 110. In the graphs illustrated in FIGS. 3A to 3F, the flexural rigidity of the tube 110 a is taken along the ordinate, and the distance from the distal tip of the insertion unit 110 is taken along the abscissa.
  • In the example illustrated in FIG. 3A, the porous resin in the tube 110 a has a porosity continuously decreasing at a substantially constant rate from a distal tip in which the bending section 112 is disposed to a proximal end which is connected to the operation unit 130. Accordingly, the tube 110 a alone included in the insertion unit 110 has flexural rigidity increasing at a substantially constant rate from the distal tip to the proximal end.
  • As described above, when the guide tube for inserting the angle wire is inserted through the channels 110 b of the tube 110 a of the insertion unit 110, the guide tube may have flexural rigidity higher than that of the tube 110 a. In this case, the guide tube may be inserted through the channels 110 b of the tube 110 a on the side closer to the proximal end than the bending section 112 of the insertion unit 110, that is, on the side closer to the operation unit 130 than the bending section 112.
  • In the tube 110 a of the example illustrated in FIG. 3B, as in the example illustrated in FIG. 3A, the porous resin has a porosity continuously decreasing at a substantially constant rate from the distal tip to the proximal end. In this example, four guide tubes are inserted through the channels 110 b at the flexible section 113 closer to the proximal end than the bending section 112 of the insertion unit 110. The guide tube has flexural rigidity higher than that of the tube 110 a. Therefore, compared to the example illustrated in FIG. 3A, in the example illustrated in FIG. 3B, the tube 110 a has high flexural rigidity in a part closer to the proximal end than the bending section 112 of the insertion unit 110. In addition to the guide tube, a rigid member having flexural rigidity higher than that of the tube 110 a may be inserted through the channels 110 b of the tube 110 a so as to improve the flexural rigidity of the tube 110 a,
  • In the tube 110 a in the example illustrated in FIG. 3C, the porous resin has a porosity at a relatively high constant value on the side close to the distal tip 111 where the bending section 112 is disposed, and in the flexible section 113 closer to the proximal end than the bending section 112, the porous resin has a porosity continuously decreasing from the distal tip to the proximal end. Accordingly, the flexural rigidity of the tube 110 a alone is set to a relatively low constant value in the bending section 112, increasing continuously from the distal tip to the proximal end in the flexible section 113 closer to the proximal end than the bending section 112.
  • In the example illustrated in FIG. 3D, in the tube 110 a, the porous resin has a porosity gradually decreasing in two stages from the distal tip to the proximal end. Accordingly, the tube 110 a alone included in the insertion unit 110 has flexural rigidity increasing in two stages from the distal tip to the proximal end.
  • In the example illustrated in FIG. 3E, the tube 110 a includes a non-porous resin, or a solid resin, from the distal tip to the proximal end, having a porosity of 0%. Therefore, the flexural rigidity of the tube 110 a alone included in the insertion unit 110 is constant from the distal tip to the proximal end and is higher than a case where the material of the tube 110 a is a porous resin.
  • In the example illustrated in FIG. 3F, the tube 110 a includes a non-porous resin from the distal tip to the proximal end as in the example illustrated in FIG. 3E, and the guide tube of the angle wire is inserted through the channels 110 b as in the example illustrated in FIG. 3B. In the example illustrated in FIG. 3F, in addition to the guide tube, other members included in the insertion unit 110 are inserted through and disposed in the channels 110 b, being included in the insertion unit 110. Therefore, compared to the example illustrated in FIG. 3E, in the example illustrated in FIG. 3F, the tube 110 a has high flexural rigidity in a part closer to the proximal end than the bending section 112 of the insertion unit 110.
  • FIG. 4 is a view illustrating an example of a measurement method of flexural rigidity. It is possible to measure the flexural rigidity of the tube 110 a alone included in the insertion unit 110, the flexural rigidity of the rigid member inserted through the tube 110 a and the channels 110 b, or the flexural rigidity of the insertion unit 110 including the tube 110 a and other members, for example, in the following manner. First, the tube 110 a is straightened and disposed between two pairs of rollers W1 and W2. Accordingly, the tube 110 a is supported from both sides in the radial direction by the two pairs of rollers W1 and W2 which are separated in the axial direction.
  • Next, between the two pairs of rollers W1 and W2 in the axial direction of the tube 110 a, a roller W3 is disposed on one side of the tube 110 a in the radial direction. The roller W3 is pushed in the radial direction of the tube 110 a at a predetermined amount of indentation D1 by a measuring rod L of a measuring instrument M so as to bend the tube 110 a supported between the two pairs of rollers W1 and W2. In this state, a reaction force acting on the measuring rod L is measured by the measuring instrument M, and this reaction force is defined as the flexural rigidity of the tube 110 a alone or that of the insertion unit 110. For example, when the tube 110 a has an outer diameter of 0 mm, an interval D2 of the rollers W1 separated in the axial direction of the tube 110 a is set to 200 mm, and the amount of indentation D1 is set to 20 mm.
  • As illustrated in FIG. 2, the operation unit 130 of the endoscope 100 includes an operation unit body 131 including a grip section, and a treatment tool inlet 132 disposed in the operation unit body 131 on the side close to the insertion unit 110. The treatment tool inlet 132 is an opening of the treatment tool channel disposed in the operation unit 130. The operation unit body 131 is provided with a bending operation knob 133 for bending the bending section 112, and switches 134 or the like associated with each operation of the endoscope 100. For example, the proximal end of the tube 110 a of the insertion unit 110 is connected to the operation unit body 131.
  • FIG. 5 is an enlarged view illustrating an example of the imaging unit 120 of the endoscope 100 illustrated in FIG. 1 and FIG. 2. In the example illustrated in FIG. 5, at a distal tip of the bending section 112 that includes the tube 110 a, the insertion unit 110 includes an opening 112 a for the treatment tool channel, an opening 112 b for the air supply channel, an opening 112 c for the water supply channel, and an opening 112 d for the secondary water channel.
  • At the distal tip of the tube 110 a, the insertion unit 110 also includes a contact-type power connector 110 c and a signal connector 110 d. The power connector 110 c is connected, for example, to a power terminal of the connector unit 150 through a power cable passing through the cable channel of the tube 110 a. The signal connector 110 d is connected, for example, to a signal terminal of the connector unit 150 through the signal cable passing through the cable channel of the tube 110 a of the insertion unit 110.
  • The imaging unit 120 is provided with, for example, a cylindrical body section 121, and a forceps port 121 a, an air supply port 121 b, a water supply port 121 c, and a secondary water supply port 121 d disposed in the body section 121. The forceps port 121 a, the air supply port 121 b, the water supply port 121 c, and the secondary water supply port 121 d are openings for the treatment tool channel, the air supply channel, the water supply channel, and the secondary water supply channel disposed in the body section 121, respectively. The forceps port 121 a, the air supply port 121 b, the water supply port 121 c, and the secondary water supply port 121 d are respectively communicated with the treatment tool channel, the air supply channel, the water supply channel, and the secondary water supply channel disposed in the tube 110 a through the openings 112 a, 112 b, 112 c, and 112 d of the tube 110 a. The imaging unit 120 also includes a power pin 122 and a signal pin 123 at the rear end of the body section 121 connected to the distal tip of the tube 110 a.
  • A joint between the imaging unit 120 and the insertion unit 110 is covered with a tube-shaped breaking section 114. Examples of a material of the breaking section 114 include a resin having pliability and flexibility as similar to the tube 110 a of the insertion unit 110. The breaking section 114 covers not only the joint between the imaging unit 120 and the insertion unit 110 but also, for example, the rear end of the imaging unit 120 adjacent to the joint and the distal tip of the bending section 112. For example, the breaking section 114 is bonded or joined to the rear end of the imaging unit 120 and the distal tip of the bending section 112, and the breaking section 114 is broken when the imaging unit 120 included in the distal tip 111 of the insertion unit 110 is removed from the insertion unit 110.
  • FIG. 6 is a schematic cross-sectional view illustrating an exemplary configuration of the imaging unit 120 illustrated in FIG. 5. The imaging unit 120 includes at least an imaging element 124 such as CMOS or CCD. In this embodiment, the imaging unit 120 is provided with, for example, the imaging element 124, an objective lens 125, and a small LED lighting 127 including a lens 126. For example, the body section 121 closes and seals each part of the imaging unit 120 including the imaging element 124. The imaging unit 120 is provided with the power pin 122 and the signal pin 123 at the rear end of the body section 121. The imaging unit 120 does not have to include all the components illustrated in FIG. 6 and may include, for example, minimal components that enable reuse of the imaging element 124.
  • The power pin 122 is connected to, for example, the imaging element 124 and the small LED lighting 127. Inserting and connecting the power pin 122 to the power connector 110 c disposed at the distal tip of the tube 110 a enables electric power supply to the imaging element 124 and to the small LED lighting 127. Furthermore, the signal pin 123 is connected to, for example, the imaging element 124 and the small LED lighting 127. Inserting and connecting the signal pin 123 to the signal connector 110 d disposed at the distal tip of the tube 110 a enables output of an image signal of the imaging element 124 to the signal terminal of the connector unit 150 through the signal cable. The connection for outputting the image signal of the imaging element 124 is not limited to the contact method using pins and connectors and may be changed to, for example, wireless connection such as Bluetooth (registered trademark).
  • The body section 121 includes, for example, a hard resin different from the resin included in the tube 110 a and having pliability. For example, a part or all of the body section 121 may be transparent. In this case, lenses such as the objective lens 125 and the lens 126 for lighting may be formed in an integrated manner with the body section 121. In a case where the imaging unit 120 includes the imaging element 124 alone, the imaging unit 120 does not necessarily include the body section 121. In this case, the imaging unit 120 includes the imaging element 124 sealed with a resin or the like, being embedded in the distal tip of the tube 110 a included in the distal tip 111 of the insertion unit 110.
  • Hereinafter described is the operation of the endoscope 100 according to this embodiment.
  • As described above, the endoscope 100 according to this embodiment is provided with the insertion unit 110 including the imaging unit 120 and the operation unit 130 that bends a part of the insertion unit 110. At least a part of the insertion unit 110 includes the resinous tube 110 a. Furthermore, the tube 110 a includes a plurality of channels 110 b formed of the resin included in the tube 110 a.
  • In this manner, at least a part of the insertion unit 110 of the endoscope 100 is made to include the resinous tube 110 a. Accordingly, characteristics of the tube 110 a such as flexibility, pliability, and smoothness of the outer surface lead to prevention of deterioration in operability and insertability when the insertion unit 110 is inserted through the body of a patient. In addition, the tube 110 a is made to include the plurality of channels 110 b formed of the resin included in the tube 110 a itself, that is to say, the resinous tube 110 a is made to include the plurality of channels 110 b, or for example, the tube 110 a is made to be a multi-lumen tube. Such a configuration enables production of the insertion unit 110 with ease and with a relatively inexpensive material, which leads to cost reduction of the endoscope 100.
  • Furthermore, the endoscope 100 of this embodiment is provided with the insertion unit 110 and the operation unit 130 that bends a part of the insertion unit 110 as described above. The insertion unit 110 is provided with the distal tip 111 that includes the imaging unit 120, the bending section 112 that is bent by the operation unit 130, and the flexible section 113 that is disposed between the bending section 112 and the operation unit 130. Still further, at least a part of the bending section 112 and a part of the flexible section 113 include the resinous tube 110 a provided with the plurality of channels. The tube 110 a excluding the resin channels 110 b has a porosity of 0% or more and 80% or less.
  • In this manner, at least a part of the bending section 112 and a part of the flexible section 113 is made to include the resinous tube 110 a. Accordingly, characteristics of the tube 110 a such as flexibility, pliability, and smoothness of the outer surface leads to prevention of deterioration in operability and insertability when the bending section 112 and the flexible section 113 are inserted through the body of a patient. In addition, the tube 110 a excluding the resin channels 110 b has a porosity of 0% or more and 80% or less. Accordingly, the bending section 112 and the flexible section 113 are imparted with flexural rigidity according to the porosity of the tube 110 a.
  • For example, when the resin in the bending section 112 has an average porosity larger than that of the resin in the flexible section 113, the flexural rigidity of the tube 110 a in the bending section 112 is made smaller than the flexural rigidity of the tube 110 a in the flexible section 113. Such a configuration facilitates the operation to bend the bending section 112 and further improves operability of the endoscope 100.
  • The endoscope 100 of this embodiment is also provided with the single-use portion S including the tube 110 a which is replaced for each use and the reusable portion R including the imaging unit 120 which is collected for each use to be reused. Accordingly, the single-use portion S including the relatively inexpensive tube 110 a is discarded, which enables an endoscopic examination with a high level of cleanliness maintained.
  • Replacement of the single-use portion S including the tube 110 a with a new one for each use saves labor such as cleaning, sterilization, and disinfection of the insertion unit 110, which reduces the risk of damaging or malfunctioning of the insertion unit 110. In addition, collecting of the reusable portion R including the relatively expensive imaging unit 120 for each use and cleaning, sterilization, and disinfection of the reusable portion R for reuse reduce maintenance costs of the single-use type endoscope 100 in which members other than the reusable portion R are discarded.
  • In the endoscope 100 of this embodiment, the insertion unit 110 includes the breaking section 114 that is broken when the imaging unit 120 is removed. Accordingly, for example, after the endoscope 100 is used, when a third party having no authority to replace the single-use portion S removes the imaging unit 120, the breaking section 114 is broken, and the endoscope 100 cannot be reformed. Therefore, it is possible to prevent reuse of the single-use portion S including the tube 110 a and to prevent erroneous removal of the imaging unit 120. Thus, it is possible to improve traceability of the endoscope 100 and to further improve safety and reliability of the endoscope 100.
  • As described above, when the imaging unit 120 is embedded in the distal tip of the tube 110 a included in the distal tip 111 of the insertion unit 110, the tube 110 a serves as the breaking section 114. In other words, in order to collect the reusable portion R including the imaging unit 120, it is required to break the tube 110 a and take out the imaging unit 120 disposed inside the tube 110 a.
  • Accordingly, after the endoscope 100 is used, when a third party having no authority to replace the single-use portion S removes the imaging unit 120, the tube 110 a is broken, and the endoscope 100 cannot be reformed. Therefore, it is possible to prevent reuse of the single-use portion S including the tube 110 a and to prevent erroneous removal of the imaging unit 120. Thus, it is possible to improve traceability of the endoscope 100 and to further improve safety and reliability of the endoscope 100.
  • According to the endoscope 100 of this embodiment, the breaking section 114 or the tube 110 a prevents the imaging unit 120 from being removed by an unauthorized third party. Even when the imaging unit 120 is removed, it is possible to determine easily that the imaging unit 120 is removed by the broken breaking section 114 or the broken tube 110 a.
  • On the other hand, when a rightful manager who controls the endoscope 100 collects the reusable portion R including the imaging unit 120, he/she breaks the breaking section 114 or the tube 110 a and easily ejects the imaging unit 120 and the small LED lighting 127. The reusable portion R including the ejected imaging unit 120 is cleaned and sterilized so as to be reused.
  • The imaging element 124 and the small LED lighting 127 of the imaging unit 120 have similar performances to an imaging element and a small LED lighting used in an imaging unit of a general reusable endoscope. Since the imaging unit 120 including such high-performance imaging element 124 and small LED lighting 127 are expensive, after the used endoscope 100 is collected from a user, those members are ejected by the manager of the endoscope 100, and then, cleaned, sterilized, and disinfected to be reused.
  • The inexpensive single-use portion S including the tube 110 a is, for example, discarded and incinerated. The resin included in the single-use portion S may be, for example, dissolved to be reused as a raw material. In other words, with the reusable portion R including the imaging unit 120 that is cleaned, sterilized, and disinfected, and with the single-use portion S including a brand-new tube 110 a, a new endoscope 100 is produced and repeatedly provided to a user.
  • When at least a part of the tube 110 a includes a porous resin, it is possible to improve flexibility and pliability of a porous resin portion more than flexibility and pliability of a non-porous portion not including the porous resin. Accordingly, it is possible to improve operability and insertability of the insertion unit 110.
  • As described above, the porous resin may have a porosity changing in the axial direction or the radial direction of the tube 110 a. With an increase in porosity, the porous resin improves in flexibility and pliability but increases in liquid permeability. On the other hand, with a decrease in porosity, the porous resin decreases in flexibility and pliability but improves in liquid barrier property.
  • Therefore, for example, in the axial direction or in a longitudinal direction of the insertion unit 110, a change in porosity of the porous resin included in the tube 110 a changes the flexibility and pliability. In addition, in the radial direction of the insertion unit 110, a change in porosity of the porous resin included in the tube 110 a improves the flexibility and pliability of the insertion unit 110 while preventing liquid infiltration.
  • Specifically, for example, it is possible to decrease the porosity of the porous resin included in the tube 110 a from the radially inner side to the outer side of the insertion unit 110, or to decrease the porosity of the porous resin included in the tube 110 a from the radially outer side to the inner side of the insertion unit 110.
  • In addition, as described above, the endoscope 100 according to this embodiment is provided with the rigid member that is inserted through the channels 110 b of the tube 110 a and the angle wire that is inserted through the rigid member and connected to the bending mechanism of the bending section 112. The operation unit 130 is configured to operate the angle wire. Accordingly, it is possible to operate the angle wire by the operation unit 130 and to bend the bending mechanism by the angle wire. Therefore, the bending section 112 is bent freely by the operation of the operation unit 130.
  • As described above, the rigid member inserted through the channels 110 b of the tube 110 a has, for example, flexural rigidity higher than that of the tube 110 a, and the rigid member is inserted through the channels 110 b in the flexible section 113 closer to the proximal end than the bending section 112. With this rigid member, the channels 110 b are protected by the flexible section 113 closer to the proximal end than the bending section 112, which prevents the channels 110 b from being damaged by the guide wire. In addition, it is possible to improve the flexural rigidity of the flexible section 113 by the rigid member inserted through the channels 110 b of the tube 110 a and to improve operability and insertability when the insertion unit 110 is inserted through the body of a patient.
  • As described above, according to this embodiment, it is possible to provide the endoscope 100 and the endoscope system 1 that enable cost containment without deteriorating operability and insertability.
  • <First Modification of Endoscope>
  • FIG. 7A is an enlarged cross-sectional view illustrating a first modification of the endoscope 100. FIG. 7B is an enlarged perspective view illustrating the first modification of the endoscope 100. The endoscope 100 according to the first modification is an example where electric power is transmitted to the imaging unit 120 by electric-field coupling.
  • <Second Modification of Endoscope>
  • FIG. 8A is an enlarged cross-sectional view illustrating a second modification of the endoscope 100. FIG. 8B is an enlarged perspective view illustrating the second modification of the endoscope 100. The endoscope 100 of the second modification is an example where electric power is transmitted to the imaging unit 120 by two-dimensional communication (evanescent waves).
  • <Third Modification of Endoscope>
  • FIGS. 9A to 9D are cross-sectional views illustrating a third modification of the endoscope 100. The endoscope 100 according to the third modification is an example where electric power is transmitted to the imaging unit 120 by electromagnetic induction. According to the endoscope 100 of this modification, electric power is transmitted from a power transmission coil of the bending section 112 to a power reception coil of the imaging unit 120 by electromagnetic induction.
  • <Fourth Modification of Endoscope>
  • FIGS. 10A and 10B are cross-sectional views illustrating a fourth modification of the endoscope 100. The endoscope 100 according to the fourth modification is an example where electric power or a signal is transmitted by optical transmission.
  • <Fifth Modification of Endoscope>
  • FIG. 11 is a cross-sectional view illustrating a fifth modification of the endoscope 100. The endoscope 100 of the fifth modification may transmit electric power or a signal by wireless transmission.
  • Although preferred embodiments of the present disclosure have been described, the present disclosure is not limited to the embodiments. Some configurations may be added, omitted, substituted, and modified without departing from the gist of the present disclosure. The present disclosure is not limited by the foregoing description except as by the scope of the appended claims.
  • REFERENCE SIGNS LIST
    • 100 Endoscope
    • 110 Insertion unit
    • 110 a Tube
    • 110 b Channel
    • 111 Distal tip
    • 112 Bending section
    • 113 Flexible section
    • 114 Breaking section
    • 120 Imaging unit
    • 130 Operation unit
    • S Single-use portion
    • R Reusable portion

Claims (13)

1. An endoscope comprising:
an insertion unit including an imaging unit; and an operation unit configured to bend a part of the insertion unit,
wherein at least a part of the insertion unit includes a tube formed of a resin, the tube including a plurality of channels formed of the resin included in the tube,
wherein the insertion unit includes a distal tip including the imaging unit, a bending section that is bent by the operation unit, and a flexible section disposed between the bending section and the operation unit,
at least a part of the bending section and a part of the flexible section include the tube,
the resin excluding the channels has a porosity of 0% or more and 80% or less,
a rigid member inserted through the channels; and an angle wire inserted through the rigid member and connected to a bending mechanism of the bending section,
wherein the operation unit is configured to operate the angle wire.
2. (canceled)
3. The endoscope according to claim 1, wherein the resin in the bending section has an average porosity larger than an average porosity of the resin in the flexible section.
4. The endoscope according to claim 1, wherein at least a part of the resin is a porous resin.
5. The endoscope according to claim 4, wherein the porous resin has a porosity changing in an axial direction or in a radial direction of the tube.
6. The endoscope according to claim 1, wherein the rigid member has flexural rigidity higher than flexural rigidity of the tube, being inserted through the channels in the flexible section.
7. The endoscope according to claim 1, wherein the insertion unit includes a breaking section that is broken when the imaging unit is removed.
8. An endoscope comprising:
an insertion unit comprising:
a distal tip including an imaging unit;
a bending section;
a flexible section; and
an operation unit configured to cause the bending section to bend,
wherein the flexible section is disposed between the bending section and the operation unit, and
wherein at least a part of the bending section and a part of the flexible section include a tube formed of a resin, the tube including a plurality of channels formed of the resin included in the tube, the resin excluding the channels having a porosity of 0% or more and 80% or less, wherein the endoscope further comprises:
a rigid member inserted through the channels; and
an angle wire inserted through the rigid member and connected to a bending mechanism of the bending section, wherein the operation unit is configured to operate the angle wire.
9. The endoscope according to claim 8, wherein the rigid member has flexural rigidity higher than flexural rigidity of the tube, being inserted through the channels in the flexible section.
10. The endoscope according to claim 8, wherein the resin in the bending section has an average porosity larger than an average porosity of the resin in the flexible section.
11. The endoscope according to claim 8, wherein at least a part of the resin is a porous resin having a porosity changing in an axial direction or in a radial direction of the tube.
12. The endoscope according to claim 8, the endoscope comprising:
a single-use portion including the tube that is replaced for each use; and
a reusable portion including the imaging unit that is collected for each use to be reused.
13. The endoscope according to claim 8, wherein the insertion unit includes a breaking section that is broken when the imaging unit is removed.
US17/552,013 2017-06-01 2021-12-15 Endoscope with bendable insertion unit Abandoned US20220110506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/552,013 US20220110506A1 (en) 2017-06-01 2021-12-15 Endoscope with bendable insertion unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762513903P 2017-06-01 2017-06-01
PCT/JP2017/024395 WO2018220867A1 (en) 2017-06-01 2017-07-03 Endoscope
US201916499751A 2019-09-30 2019-09-30
US17/552,013 US20220110506A1 (en) 2017-06-01 2021-12-15 Endoscope with bendable insertion unit

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/024395 Division WO2018220867A1 (en) 2017-06-01 2017-07-03 Endoscope
US16/499,751 Division US11229350B2 (en) 2017-06-01 2017-07-03 Endoscope with bendable insertion unit

Publications (1)

Publication Number Publication Date
US20220110506A1 true US20220110506A1 (en) 2022-04-14

Family

ID=64454611

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/499,751 Active US11229350B2 (en) 2017-06-01 2017-07-03 Endoscope with bendable insertion unit
US16/499,805 Active US10806330B2 (en) 2017-06-01 2018-05-31 Single use endoscope device
US17/552,013 Abandoned US20220110506A1 (en) 2017-06-01 2021-12-15 Endoscope with bendable insertion unit

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/499,751 Active US11229350B2 (en) 2017-06-01 2017-07-03 Endoscope with bendable insertion unit
US16/499,805 Active US10806330B2 (en) 2017-06-01 2018-05-31 Single use endoscope device

Country Status (5)

Country Link
US (3) US11229350B2 (en)
EP (2) EP3590403B1 (en)
JP (2) JP6450892B1 (en)
CN (3) CN111657824A (en)
WO (3) WO2018220867A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459442B2 (en) 2014-09-23 2016-10-04 Scott Miller Optical coupler for optical imaging visualization device
CN113143174A (en) 2015-07-21 2021-07-23 图像科学有限责任公司 Endoscopic accessory with angularly adjustable exit port
JP7048628B2 (en) 2016-11-28 2022-04-05 アダプティブエンドウ エルエルシー Endoscope with separable disposable shaft
WO2018220867A1 (en) 2017-06-01 2018-12-06 Hoya株式会社 Endoscope
WO2019138440A1 (en) * 2018-01-09 2019-07-18 オリンパス株式会社 Imaging device, endoscope, and manufacturing method for imaging device
CN111970975B (en) * 2018-03-29 2024-04-09 泰尔茂株式会社 Photographing apparatus
JP7121591B2 (en) 2018-08-27 2022-08-18 信越ポリマー株式会社 Transdermal formulation
US10905309B2 (en) * 2019-03-19 2021-02-02 Reed Cam, Inc. Method and apparatus for enforced provisioning and compliant usage authorization of endoscope applications
JP7364414B2 (en) * 2019-10-10 2023-10-18 Hoya株式会社 Endoscope
CN110974501B (en) * 2019-12-18 2022-03-01 傅发军 Ureteral stent catheter
CN114845619A (en) * 2019-12-20 2022-08-02 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Endoscope with detachable camera module
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
TWM603741U (en) * 2020-05-22 2020-11-11 榮晶生物科技股份有限公司 Endoscope device
CN111887789A (en) * 2020-08-05 2020-11-06 深圳市医创生物科技有限公司 Disposable endoscope and control system
WO2022070722A1 (en) * 2020-09-29 2022-04-07 富士フイルム株式会社 Flexible tube for endoscope, endoscope-type medical device, and methods for producing these
US20220401128A1 (en) * 2021-06-21 2022-12-22 Karl Storz Se & Co. Kg Trocar with detachable lighting system
CN114343544A (en) * 2021-12-17 2022-04-15 北京大学 Endoscope with movable front end

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064593A (en) * 1989-12-07 1991-11-12 Daikin Industries Ltd. Process for producing multilayer polytetrafluoroethylene porous membrane
US20040122464A1 (en) * 2002-12-18 2004-06-24 Edwin Wang Balloon catheter having a microporous distal tip
US20050167875A1 (en) * 2002-05-02 2005-08-04 Fumihiro Hayashi Stretched polytetrafluoroethylene moldings and process for production thereof
US20050242021A1 (en) * 2002-04-16 2005-11-03 Pall Corporation Hollow fibres

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245624A (en) * 1977-01-20 1981-01-20 Olympus Optical Co., Ltd. Endoscope with flexible tip control
JPH0644105B2 (en) * 1985-01-14 1994-06-08 オリンパス光学工業株式会社 Endoscope
JPH02246920A (en) 1989-03-20 1990-10-02 Olympus Optical Co Ltd Medical tube
JP3098062B2 (en) 1990-09-19 2000-10-10 テルモ株式会社 Catheter tube
US5193525A (en) * 1990-11-30 1993-03-16 Vision Sciences Antiglare tip in a sheath for an endoscope
US5168864A (en) * 1991-09-26 1992-12-08 Clarus Medical Systems, Inc. Deflectable endoscope
WO1993015648A1 (en) * 1992-02-07 1993-08-19 Wilk Peter J Endoscope with disposable insertion member
JP3306155B2 (en) 1993-03-01 2002-07-24 オリンパス光学工業株式会社 Endoscope device
JPH07327923A (en) 1994-06-02 1995-12-19 Olympus Optical Co Ltd Endoscope system
JP3356355B2 (en) 1994-07-14 2002-12-16 オリンパス光学工業株式会社 Combination endoscope
JP3549264B2 (en) 1994-10-18 2004-08-04 テルモ株式会社 Catheter tube
US6095970A (en) * 1997-02-19 2000-08-01 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope
US6450948B1 (en) * 1999-11-02 2002-09-17 Vista Medical Technologies, Inc. Deflecting tip for surgical cannula
US6458076B1 (en) * 2000-02-01 2002-10-01 5 Star Medical Multi-lumen medical device
JP2002236260A (en) * 2001-02-07 2002-08-23 Olympus Optical Co Ltd Endoscope
JP3831683B2 (en) * 2002-05-16 2006-10-11 ペンタックス株式会社 Bending prevention of flexible tube insertion part of endoscope with outer sheath
JP2004229947A (en) 2003-01-31 2004-08-19 Terumo Corp Guidewire
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US7762949B2 (en) * 2003-10-16 2010-07-27 Granit Medical Innovation, Llc Endoscope with open channels
EP1737335B1 (en) * 2004-03-23 2013-05-15 Boston Scientific Limited In-vivo visualization system
JP5143332B2 (en) * 2004-07-05 2013-02-13 オリンパス株式会社 Imaging device, fixing member for imaging device, and method of repairing imaging device
WO2006004123A1 (en) 2004-07-05 2006-01-12 Olympus Medical Systems Corp. Electronic endoscope
JP2006075238A (en) 2004-09-07 2006-03-23 Olympus Corp Endoscope
JP4767519B2 (en) 2004-10-22 2011-09-07 オリンパス株式会社 Endoscope flexible tube
JP4746308B2 (en) 2004-11-29 2011-08-10 オリンパス株式会社 Internal medical device and internal medical system
JP2006149844A (en) 2004-11-30 2006-06-15 Olympus Corp Endoscope system
WO2006069396A1 (en) * 2004-12-21 2006-06-29 Onset Medical Corporation Non-expandable transluminal access sheath
US20060217594A1 (en) * 2005-03-24 2006-09-28 Ferguson Gary W Endoscopy device with removable tip
JP2006296675A (en) * 2005-04-19 2006-11-02 Olympus Medical Systems Corp Disposable medical tool and distribution system of the disposable medical tool
JP2006325691A (en) * 2005-05-24 2006-12-07 Pentax Corp Insertion part of flexible endoscope and its manufacturing method
JP2006340878A (en) * 2005-06-09 2006-12-21 Pentax Corp Insertion part of flexible endoscope
US20070232858A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc. Steering system tension control devices
DE102006053487B4 (en) * 2006-11-14 2013-12-19 Storz Endoskop Produktions Gmbh Endoscopic system with fiber-pumped fluorescence illumination
US8398540B2 (en) * 2007-05-10 2013-03-19 Technion Research & Development Foundation Ltd. Semi disposable endoscope
JP2009148420A (en) 2007-12-20 2009-07-09 Olympus Medical Systems Corp Separable endoscope
JP2010035923A (en) * 2008-08-07 2010-02-18 Olympus Medical Systems Corp Flexible tube for endoscope and its manufacturing method
US20140358140A1 (en) * 2008-10-21 2014-12-04 Microcube, Llc Microwave treatment devices and methods
US8648932B2 (en) * 2009-08-13 2014-02-11 Olive Medical Corporation System, apparatus and methods for providing a single use imaging device for sterile environments
CN201500353U (en) * 2009-09-28 2010-06-09 陈洪芳 Disposable syringe used for infection department
US8137293B2 (en) * 2009-11-17 2012-03-20 Boston Scientific Scimed, Inc. Guidewires including a porous nickel-titanium alloy
ES2874194T3 (en) * 2009-12-16 2021-11-04 Boston Scient Scimed Inc Arrangements for making an endoluminal anatomical structure
JP5139597B2 (en) * 2010-09-10 2013-02-06 オリンパスメディカルシステムズ株式会社 Endoscope
WO2012132883A1 (en) * 2011-03-25 2012-10-04 オリンパスメディカルシステムズ株式会社 Endoscope
EP3659491A1 (en) 2011-12-13 2020-06-03 EndoChoice Innovation Center Ltd. Removable tip endoscope
CN104955376B (en) 2013-01-21 2018-04-27 G.I.视频有限公司 Integral type manipulation device
US11553832B2 (en) * 2015-06-05 2023-01-17 Fujifilm Corporation Endoscope system
WO2016199478A1 (en) * 2015-06-10 2016-12-15 オリンパス株式会社 Endoscope
US9913570B2 (en) * 2015-08-07 2018-03-13 Enlightenvue Llc Endoscope with variable profile tip
WO2018131204A1 (en) * 2017-01-13 2018-07-19 オリンパス株式会社 Endoscope
WO2018220867A1 (en) 2017-06-01 2018-12-06 Hoya株式会社 Endoscope
EP3818921B1 (en) * 2018-07-06 2024-04-03 Hoya Corporation Endoscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064593A (en) * 1989-12-07 1991-11-12 Daikin Industries Ltd. Process for producing multilayer polytetrafluoroethylene porous membrane
US20050242021A1 (en) * 2002-04-16 2005-11-03 Pall Corporation Hollow fibres
US20050167875A1 (en) * 2002-05-02 2005-08-04 Fumihiro Hayashi Stretched polytetrafluoroethylene moldings and process for production thereof
US20040122464A1 (en) * 2002-12-18 2004-06-24 Edwin Wang Balloon catheter having a microporous distal tip

Also Published As

Publication number Publication date
EP3590403A4 (en) 2020-06-17
JPWO2018220867A1 (en) 2019-06-27
JP6450892B1 (en) 2019-01-09
CN110494075B (en) 2020-12-22
CN110475498B (en) 2021-04-13
US10806330B2 (en) 2020-10-20
WO2018220866A1 (en) 2018-12-06
CN111657824A (en) 2020-09-15
EP3925511A1 (en) 2021-12-22
EP3590403B1 (en) 2021-09-08
US20200100655A1 (en) 2020-04-02
JPWO2018221672A1 (en) 2019-11-21
CN110475498A (en) 2019-11-19
JP6644190B2 (en) 2020-02-12
WO2018220867A1 (en) 2018-12-06
WO2018221672A1 (en) 2018-12-06
US20200046202A1 (en) 2020-02-13
CN110494075A (en) 2019-11-22
US11229350B2 (en) 2022-01-25
EP3590403A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
US20220110506A1 (en) Endoscope with bendable insertion unit
US20220211249A1 (en) Endoscope with variable profile tip
EP3818921B1 (en) Endoscope
US11241150B2 (en) Flexible digital ureteroscope
EP2400878B1 (en) Disposable sheath for use with an imaging system
US8529439B2 (en) Endoscopic system
US8485965B2 (en) Endoscope main body and endoscope
US20240000298A1 (en) Endoscope with low-profile distal section
CN115348831A (en) System and method for a modular endoscope
US20210338045A1 (en) Insertion sheath for modular disposable endoscope components
CN219500957U (en) Endoscopic device and endoscopic system
JP2009183333A (en) Endoscope for medical checkup

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOYA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORISHIMA, TAKAYOSHI;IKETANI, KOHEI;ITO, KEIJI;SIGNING DATES FROM 20190911 TO 20190913;REEL/FRAME:058702/0341

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION