US20210395621A1 - Method for co-production of aviation fuel and diesel - Google Patents

Method for co-production of aviation fuel and diesel Download PDF

Info

Publication number
US20210395621A1
US20210395621A1 US17/287,711 US201917287711A US2021395621A1 US 20210395621 A1 US20210395621 A1 US 20210395621A1 US 201917287711 A US201917287711 A US 201917287711A US 2021395621 A1 US2021395621 A1 US 2021395621A1
Authority
US
United States
Prior art keywords
intermediate product
catalytically active
feedstock
product
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/287,711
Inventor
Asbjørn Sune ANDERSSON
Ole Frej ALKILDE
Thi Hong Diep DUONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Assigned to HALDOR TOPSØE A/S reassignment HALDOR TOPSØE A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALKILDE, Ole Frej, ANDERSSON, Asbjørn Sune, DUONG, Thi Hong Diep
Publication of US20210395621A1 publication Critical patent/US20210395621A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/52Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/802Diluents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0484Vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the standard controlling the quality of jet fuel originating from hydroprocessed esters and fatty acids is ASTM D7566, A2.1, which inter alia specifies the boiling point curve and composition. Most of these properties can be easily met by hydrotreating and fractionation. However, special care need to be taken to meet the freezing point (FP) requirement of max ⁇ 40° C. and the total aromatics content of max 0.5 wt/wt %. In addition, the standard requires an amount of low boiling product by requiring T 10 , i.e. the temperatures below which 10% boils, to be below 205° C.
  • the final boiling point (FBP) is specified as 300° C., according to ASTM D86, which means that all material boiling above 300° C. needs to be converted into lighter components to fall into the jet fuel range.
  • stage shall be used for a section of the process, in which no separation is performed.
  • ppm volumetric parts per million, e.g. molar gas concentration.
  • ppm molar shall be used to signify atomic parts per million.
  • vol/vol % shall be used to signify volume percentage for a gas.
  • renewable feedstock or hydrocarbon shall be used to indicate a feedstock or hydrocarbon originating from biological sources or waste recycle.
  • Recycled waste of fossil origin such as plastic shall also be construed as renewable.
  • hydrodeoxygenation shall be used to signify removal of oxygen from oxygenates by formation of water in the presence of hydrogen, as well as removal of oxygen from oxygenates by formation of carbon oxides in the presence of hydrogen.
  • topology of a molecular sieve is used in the sense described in the “Atlas of Zeolite Framework Types,” Sixth Revised Edition, Elsevier, 2007, and three letter framework type codes are used in accordance herewith.
  • a broad aspect of the present disclosure relates to a process for production of a hydrocarbon fraction suitable for use as jet fuel from a feedstock being an oxygenate feedstock, comprising the steps of combining the feedstock with an amount of a liquid diluent, to form a combined feedstock, directing said combined feedstock to contact a material catalytically active in hydrodeoxygenation under hydrotreating conditions to provide a hydrodeoxygenated intermediate product, directing at least an amount of said hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions to provide the hydrocracked intermediate product, separating said hydrocracked intermediate product in at least two fractions including a vapor fraction and a liquid fraction, optionally providing at least an amount of said liquid hydrocracked product as said liquid diluent, directing at least an amount of said liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product, and fractionating said is
  • said hydrocarbon fraction suitable for use as jet fuel has a final boiling point according to ASTM D86 being less than 300° C., with the associated benefit of the product of such a process fulfilling boiling point specifications of the renewable jet fuel specification ASTM D7566.
  • the total volume of hydrogen sulfide relative to the volume of molecular hydrogen in the gas phase of the combined feedstock directed to contact the material catalytically active in hydrodeoxygenation is at least 50 ppm v , 100 ppm v or 200 ppm v , optionally by adding a stream comprising one or more sulfur compounds, such as dimethyl disulfide or fossil fuels, with the associated benefit of such a process operating efficiently with a low cost material catalytically active in hydrodeoxygenation comprising sulfided base metal.
  • said feedstock comprises at least 50 wt/wt % triglycerides or fatty acids, with the associated benefit of such a feedstock being highly suited for providing a jet fuel with excellent properties.
  • hydrodeoxygenation conditions involve a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.1-2 and wherein the material catalytically active in hydrodeoxygenation comprises one or more sulfided metals taken from the group of nickel, cobalt, molybdenum or tungsten nickel, molybdenum or tungsten, supported on a carrier comprising one or more refractory oxides, such as alumina, silica or titania, with the associated benefit of such process conditions being well suited for cost effective removal of heteroatoms, especially oxygen from a renewable feedstock.
  • LHSV liquid hourly space velocity
  • hydrocracking conditions involve a temperature in the interval 250-425° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-4, optionally together with intermediate cooling by quenching with cold hydrogen, feed or product and wherein the material catalytically active in hydrocracking comprises (a) one or more active metals taken from the group platinum, palladium, nickel, cobalt, tungsten and molybdenum, (b) an acidic support taken from the group of a molecular sieve showing high cracking activity, and having a topology such as MFI, BEA and FAU and amorphous acidic oxides such as silica-alumina and (c) a refractory support such as alumina, silica or titania, or combinations thereof, with the associated benefit of such process conditions being highly suited for reducing the boiling point of a product to match the kerosene boiling point range.
  • LHSV liquid hourly space velocity
  • the amount of material boiling above 300° C. in said hydrocracked intermediate product is reduced by at least 20 wt/wt %, 50 wt/wt % or 80 wt/wt % or more compared to said hydrodeoxygenated intermediate product, with the associated benefit of the high conversion being a minimization of product boiling above 300° C., as a result of a high process severity.
  • At least an amount of said isomerized intermediate product is directed to contact a material catalytically active in hydrodearomatization under hydrodearomatization conditions to provide a hydrodearomatized product comprising less than 1 wt/wt %, 0.5 wt/wt % or 0.1 wt/wt %, calculated by total mass of the aromatic molecules relative to all hydrocarbons in the stream, where said hydrodearomatized product is fractionated in place of said isomerized intermediate product, with the associated benefit of the product of such a process fulfilling jet fuel specification ASTM D7566.
  • Said material catalytically active in hydrodearomatization under hydrodearomatization conditions may be the material catalytically active in hydrocracking or material catalytically active isomerization operating at moderate temperatures favoring hydrodearomatization.
  • Hydrodearomatization conditions preferably involve at least 50% or 80% conversion of aromatics.
  • hydrodearomatization conditions involve a temperature in the interval 200-350° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8 and wherein said material catalytically active in hydrodearomatization comprises an active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, preferably one or more elemental noble metals such as platinum or palladium and a refractory support, preferably amorphous silica-alumina, alumina, silica or titania, or combinations thereof, with the associated benefit of such process conditions being suitable for hydrogenation of aromatics.
  • active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, preferably one or more elemental noble metals such as platinum or palladium and a refractory support, preferably amorphous silica-alumina, alumina, silica or titania, or
  • a hydrogen rich stream comprising at least 90% vol hydrogen is directed to contact the material catalytically active in hydrodearomatization, with the associated benefit of directing high purity hydrogen required by the overall process to the hydrodearomatization step contributing to shifting the equilibrium away from aromatics.
  • isomerization conditions involves a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8 and wherein the material catalytically active in isomerization comprises an active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, preferably one or more elemental noble metals such as platinum or palladium, an acidic support preferably a molecular sieve, more preferably having a topology taken from the group comprising MOR, FER, MRE, MVWV, AEL, TON and MTT and an amorphous refractory support comprising one or more oxides taken from the group comprising alumina, silica and titania, or combinations thereof, with the associated benefit of such conditions and materials being a cost effective and selective process for adjusting the cold flow properties of product.
  • active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten
  • a further aspect of the present disclosure relates to a process plant for production of a hydrocarbon fraction from a feedstock being a renewable feedstock or an oxygenate feedstock, said process plant comprising a hydrodeoxygenation section, a hydrocracking section, an isomerization section, a separation section and a fractionation section, said process plant being configured for directing the feedstock and a liquid diluent to the hydrodeoxygenation section to provide a hydrodeoxygenated intermediate product, configured for directing at least an amount of said hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions to provide the hydrocracked intermediate product, configured for separating said hydrocracked intermediate product in a vapor fraction and a liquid fraction, configured for directing at least an amount of said liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product and configured for fractionating said isomerized intermediate product to provide at least a hydrocarbon
  • the process plant further comprises a recycle connection being configured for providing an amount of said liquid hydrocracked product as liquid diluent with the associated benefit of controlling the temperature in the hydrodeoxygenation reactor, without adding a diluent, such as a fossil feedstock.
  • the processes described in the present disclosure receives a renewable feedstock and/or an oxygenate feedstock which comprises one or more oxygenates taken from the group consisting of triglycerides, fatty acids, resin acids, ketones, aldehydes, alcohols, phenols and aromatic carboxylic acids where said oxygenates originate from one or more of a biological source, a gasification process, a pyrolysis process, Fischer-Tropsch synthesis, methanol based synthesis or a further synthesis process, especially obtained from a raw material of renewable origin, such as originating from plants, algae, animals, fish, vegetable oil refining, domestic waste, used cooking oil, plastic waste, rubber waste or industrial organic waste like tall oil or black liquor.
  • a raw material of renewable origin such as originating from plants, algae, animals, fish, vegetable oil refining, domestic waste, used cooking oil, plastic waste, rubber waste or industrial organic waste like tall oil or black liquor.
  • feedstocks may contain aromatics; especially products derived by pyrolysis or other processes from e.g. lignin and wood or waste products from e.g. frying oil.
  • the oxygenate feedstock may comprise from 1 wt/wt % to 40 wt/wt %.
  • Biological sources will typically comprise around 10 wt/wt %, and derivation products from 1 wt/wt % to 20 wt/wt % or even 40 wt/wt %.
  • the feedstocks are together with hydrogen directed to contact a material catalytically active in hydrotreatment, especially hydrodeoxygenation.
  • the catalytic hydrodeoxygenation process may have side reactions forming a heavy product e.g. from olefinic molecules in the feedstock
  • a liquid hydrocarbon may be added, e.g. a liquid recycle stream or an external diluent feed. If the process is designed for co-processing of fossil feedstock and renewable feedstock, it is convenient to use the fossil feedstock as diluent, since less heat is released during processing of fossil feedstock, as fewer heteroatoms are released and less olefins are saturated.
  • the recycle or diluent also has the effect of reducing the potential of olefinic material to polymerize
  • the resulting product stream will be a hydrodeoxygenated intermediate product stream comprising hydrocarbons, typically n-paraffins, and sour gases such as CO, CO 2 , H 2 O, H 2 S, NH 3 as well as light hydrocarbons, especially C3 and methane.
  • hydrodeoxygenation involves directing the feedstock to contact a catalytically active material typically comprising one or more sulfided metals taken from the group of nickel, cobalt, molybdenum or tungsten, supported on a carrier comprising one or more refractory oxides, typically alumina, but possibly silica or titania.
  • the support is typically amorphous.
  • the catalytically active material may comprise further components, such as boron or phosphorous.
  • the conditions are typically a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.1-2.
  • Hydrodeoxygenation is typically exothermal, and with the presence of a high amount of oxygen, the process may involve intermediate cooling e.g. by quenching with cold hydrogen, feed or product.
  • the feedstock may preferably contain an amount of sulfur to ensure sulfidation of the metals, in order to maintain their activity. If the gas phase comprises less than 10, 50 or 100 ppm, sulfur, a sulfide donor, such as dimethyldisulfide (DMDS) may be added to the feed.
  • DMDS dimethyldisulfide
  • the boiling point range For the hydrodeoxygenated intermediate product stream to be used as a kerosene fraction, the boiling point range must be adjusted. A boiling point adjustment may also be required if an amount of heavy product is present in hydrodeoxygenated intermediate.
  • the boiling point is adjusted by hydrocracking of long paraffins to shorter paraffins, by directing the hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking.
  • Hydrocracking involves directing the intermediate hydrodeoxygenated feedstock to contact a material catalytically active in hydrocracking.
  • the material catalytically active in hydrocracking typically comprises an active metal (which in the present disclosure is one or more sulfided base metals such as nickel, cobalt, tungsten and/or molybdenum), an acidic support (typically a molecular sieve showing high cracking activity, and having a topology such as MFI, BEA and FAU, but amorphous acidic oxides such as silica-alumina may also be used) and a refractory support (such as alumina, silica or titania, or combinations thereof).
  • the catalytically active material may comprise further components, such as boron or phosphorous.
  • Preferred hydrocracking catalysts comprise molecular sieves such as ZSM-5, zeolite Y or beta zeolite.
  • the material catalytically active in hydrocracking is a base metal positioned downstream the material catalytically active in hydrodeoxygenation.
  • the conditions are typically a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-4.
  • the process may involve intermediate cooling e.g. by quenching with cold hydrogen, feed or product.
  • the active metal(s) on the material catalytically active in hydrocracking is a base metal, so the intermediate hydrodeoxygenated feedstock including the gas phase is typically directed to contact the material catalytically active in hydrocracking without further purification.
  • This gas phase of this mixture should preferably contain at least 50 ppm, sulfur.
  • Hydrodeoxygenation of unsaturated fatty acids may produce aromatics as a side reaction. Therefore, even for an oxygenate feedstock comprising less than 1% aromatics, it may be further necessary to direct the isomerized product to contact a material catalytically active in hydrodearomatization.
  • the hydrocracked intermediate product will mainly be linear hydrocarbons, like the feedstock, or if the feedstock comprises triglycerides, n-paraffins, but possibly of a shorter length than the fatty acids.
  • the hydrocracked intermediate product will be dominated by linear alkanes having boiling point range (250° C. to 320° C.) and a freezing point (0° C. to 30° C.) unsuited for use as jet fuel.
  • Some heavy components and aromatics may also be formed in the hydrodeoxygenation step if the unsaturated fatty acids polymerizes.
  • the freezing point For the hydrocracked intermediate product to be used as a fuel in practice, the freezing point must be adjusted. The freezing point is adjusted by isomerization of n-paraffins to i-paraffins, by directing the hydrocracked intermediate product to contact a material catalytically active in isomerization
  • the material catalytically active in isomerization typically comprises an active metal (which according to the present disclosure is one or more elemental noble metals such as platinum and/or palladium), an acidic support (typically a molecular sieve showing high shape selectivity, and having a topology such as MOR, FER, MRE, MWW, AEL, TON and MTT) and a typically amorphous refractory support (such as alumina, silica or titania, or combinations thereof).
  • the catalytically active material may comprise further components, such as boron or phosphorous.
  • Preferred isomerization catalysts comprise molecular sieves such as EU-2, ZSM-48, beta zeolite and combined beta zeolite and zeolite Y.
  • isomerization involves directing the intermediate hydrocracked feedstock to contact a material catalytically active in isomerization.
  • the conditions are typically a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8.
  • Isomerization is substantially thermally neutral and consumes only hydrogen in hydrocracking side reactions so only a moderate amount of hydrogen is added in the isomerization reactor.
  • the active metal on the most selective materials catalytically active in isomerization is a noble metal
  • the hydrocracked feedstock is typically purified by gas/liquid separation to reduce the content of potential catalyst poisons to low levels such as levels of sulfur, nitrogen and carbon oxides to below 1-10 ppm.
  • hydrodearomatization may be satisfactorily carried out in the presence of the material catalytically active in hydroisomerization, but it may also be necessary to have a separate reactor or reactor bed with material catalytically active in hydrodearomatization.
  • Such a material catalytically active in hydrodearomatization typically comprises an active metal (preferably sulfided base metals such as nickel, cobalt, tungsten and/or molybdenum but possibly—after purification, by removal of e.g. hydrogen sulfide—noble metals such as platinum and/or palladium) and a refractory support (such as amorphous silica-alumina, alumina, silica or titania, or combinations thereof).
  • Hydrodearomatization is equilibrium controlled, with high temperatures favoring aromatics, noble metals are preferred as the active metal, since they are active at lower temperatures, compared to base metals.
  • hydrodearomatization involves directing an intermediate product to contact a material catalytically active in hydrodearomatization.
  • a material catalytically active in hydrodearomatization As the equilibrium between aromatics and saturation molecules shifts towards aromatics at elevated temperatures, it is preferred that the temperature is moderate.
  • the conditions are typically a temperature in the interval 200-350° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8.
  • the preferred active metal(s) on the material catalytically active in hydrodearomatization is often preferred to be noble metal(s), since noble metal catalysts in general are active at lower temperatures than comparable base metal catalysts.
  • the isomerized product is typically sufficiently purified, as the active metal(s) in the material catalytically active in isomerization is a noble metal.
  • Base metal catalysts may also be used, and in this case the gas phase associated with the intermediate hydroisomerized feedstock preferably contains at least 50 ppm v sulfur.
  • a hydrocracking or hydroisomerization catalyst operating at temperatures below 350° C. will be able to catalyze moderate hydrodearomatization, e.g. reducing 10 wt/wt % aromatics to below 0.5 wt/wt % aromatics.
  • recycle may be used for three different purposes; gas recycle for efficient use of hydrogen, liquid recycle around the material catalytically active in hydrocracking to maximize the yield of the kerosene fraction and liquid recycle around the material catalytically active in hydrodeoxygenation to limit the temperature increase due to exothermal hydrodeoxygenation reactions.
  • sour gases including hydrogen sulfide, carbon dioxide and ammonia
  • An amount of the intermediate product of hydrocracking may also be recycled to the inlet of the hydrodeoxygenation reactor.
  • the second stage will saturate aromatics, it is not required for the first stage to meet any aromatics requirements, which allows the first stage to treat heavier and/or more aromatic, naphthenic or unsaturated feedstocks as well as feedstocks such as used cooking oil, pyrolysis products or tall oil pitch, which contain aromatics or unsaturated feedstock which may produce aromatics in small amounts in typical hydroprocessing conditions, since these aromatics will be saturated in the second stage.
  • One embodiment according to the present disclosure corresponds to a process in which a stream comprising oxygenates and recycled hydrocarbons, comprising an amount of sulfur is directed to a hydrodeoxygenation reactor containing a catalytically active material comprising one or more base metals and a refractory support, with low acidity.
  • a catalytically active material comprising one or more base metals and a refractory support, with low acidity.
  • the recycled hydrocarbons contribute as a heat sink, absorbing the released heat of reaction from the hydrodeoxygenation, thus maintaining a moderate temperature in the hydrodeoxygenation reactor.
  • This step provides a stream comprising a high amount of saturated linear alkanes, in combination with an amount of water, CO, CO 2 , methane, hydrogen sulfide and ammonia.
  • the hydrodeoxygenated hydrocarbon stream is directed to a hydrocracking reactor to contact a catalytically active material comprising one or more base metals and a refractory support with high acidity.
  • a catalytically active material comprising one or more base metals and a refractory support with high acidity.
  • Such a material is active in hydrocracking, and this step provides a stream in which higher boiling hydrocarbons are converted to lower boiling hydrocarbons.
  • the severity of the hydrocracking process will define the boiling point characteristics of the product, and the hydrocracking process will typically be operated with full conversion of the fraction boiling above the diesel range. If hydrocracking severity is selected for full conversion of the fraction boiling above the jet range the yield loss to gases and naphtha will typically be too high.
  • the hydrocracked stream is directed to a separation section, withdrawing water, hydrogen sulfide and ammonia, and providing a sweet hydrocarbon stream.
  • An amount of the sweet hydrocarbon stream is recycled as sweet recycled hydrocarbons and an amount is directed as feed to an isomerization reactor containing a material catalytically active in isomerization and optionally a material catalytically active in hydrodearomatization.
  • Both materials are based on a noble metal catalyst, such as platinum, palladium or a combination, in combination with an acidic support.
  • the acidic support is preferably shape selective, to provide a selective isomerization, rearranging linear alkanes to branched alkanes, with minimal production of lighter hydrocarbons.
  • an acidic support also contribute to the reaction, and in addition as the activity of noble metals is higher than that of base metals, the reaction will take place at lower temperatures.
  • noble metals provide the benefit that the lower temperature matches the equilibrium. Hydrodearomatization may even take place on the material catalytically active in isomerization, which often will have some hydrodearomatization activity.
  • both the noble metal function and the acidic function of the material catalytically active in isomerization are undisturbed, and a branched hydrocarbon stream is produced with high selectivity.
  • the isomerized stream is directed to a fractionator (after appropriate removal of the gas phase in a separator train), and at least a gas fraction, an intermediate fraction and a bottoms fraction are withdrawn.
  • One benefit of the layout according to the present disclosure is that start-up of such a unit is simple compared to processes where noble metals and base metals are used in the same stage, as the combined hydrotreatment/hydrocracking stage upstream the separation section may be activated by sulfidation, while the isomerization section downstream the separation section may be activated by reduction.
  • the layout provides a conversion of feedstock to diesel, jet range or lighter product, as some or even all heavy hydrodeoxygenated hydrocarbons may be hydrocracked to yield lighter products.
  • Jet/diesel co-production or only diesel production is possible, and the conversion of boiling point is mainly carried out in a hydrodeoxygenation section and hydrocracking section employing base metal catalysts only, and thus enabling addition of sulfur in the form of DMDS in a single process position.
  • the adjustment of freezing point is made selectively by isomerization on a noble metal catalyst, independently of hydrocracking conditions.
  • hydrocracking is not desired. In this case, it may be preferred to either by-pass the hydrocracking reactor or alternatively cool the product prior to this reactor, such that it is inactive.
  • the process plant may be configured for allowing such a configuration with short notice, e.g. by setting up appropriate equipment and control in the control room.
  • FIG. 1 shows a simplified illustration of a process according to the present disclosure.
  • FIG. 2 shows a simplified illustration of a process according to the prior art.
  • FIG. 3 shows a simplified illustration of a process according to the prior art.
  • FIG. 1 is a simplified figure showing a layout according to the present disclosure, omitting supply of gaseous streams and details of separation for simplicity.
  • a renewable feedstock ( 102 ) is combined with a recycle diluent stream ( 128 ) and directed as a hydrodeoxygenation feed stream ( 104 ) together with an amount of a hydrogen rich stream (not shown) to a hydrodeoxygenation reactor (HDO) where it contacts a material catalytically active in hydrogenation under hydrotreating conditions.
  • HDO hydrodeoxygenation reactor
  • This provides a hydrodeoxygenated intermediate product ( 106 ).
  • the hydrodeoxygenated intermediate product ( 106 ) is directed to a hydrocracking reactor (HDC) operating under hydrocracking conditions, providing a hydrocracked intermediate product ( 108 ).
  • HDC hydrocracking reactor
  • the hydrocracked intermediate product ( 108 ) is directed to separation section (SEP), shown for simplicity as a single unit, separating the hydrocracked intermediate product in a gas stream for recycle and a liquid intermediate product stream ( 110 ).
  • the liquid intermediate product stream ( 110 ) is split in a recycle diluent stream ( 128 ) and an isomerization reactor feed stream ( 112 ) directed as feed to an isomerization reactor (ISOM), where it contacts a material catalytically active in isomerization under isomerization conditions and optionally a further material catalytically active in hydrodearomatization under hydrodearomatization conditions, providing an isomerized product ( 116 ) which is directed to a fractionation section (FRAC) shown for simplicity as a single unit, separating the isomerized product in a light overhead stream ( 120 ), a naphtha product ( 122 ), a jet product ( 124 ) and a bottom diesel fraction ( 126 ).
  • FRAC fractionation section
  • FIG. 2 shows an example of the prior art, in a level of detail similar to FIG. 1 , omitting supply of gaseous streams and details of separation for simplicity.
  • a renewable feedstock ( 202 ) is combined with a recycle diluent stream ( 228 ) and directed as a hydrodeoxygenation feed stream ( 204 ) together with an amount of a hydrogen rich stream (not shown) to a hydrodeoxygenation reactor (HDO) where it contacts a material catalytically active in hydrogenation under hydrotreating conditions.
  • HDO hydrodeoxygenation reactor
  • This provides a hydrodeoxygenated intermediate product ( 214 ), which is directed to a hydroisomerization reactor (ISOM) where it contacts a material catalytically active in isomerization under isomerization conditions, providing a dewaxed intermediate product ( 216 ).
  • the dewaxed intermediate product ( 216 ) is directed to a fractionation section (FRAC) shown for simplicity as a single unit, separating the hydrocracked product in a light overhead stream ( 220 ), a naphtha stream ( 222 ), a jet product ( 224 ) and a bottom diesel fraction which is split in a recycle diluent stream ( 228 ) and a diesel product stream ( 226 ).
  • FRAC fractionation section
  • FIG. 3 shows a further example of the prior art, omitting supply of gaseous streams and details of separation for simplicity.
  • a renewable feedstock ( 302 ) is combined with a recycle diluent stream ( 328 ) and directed as a hydrodeoxygenation feed stream ( 304 ) together with an amount of a hydrogen rich stream (not shown) to a hydrodeoxygenation reactor (HDO) where it contacts a material catalytically active in hydrogenation under hydrotreating conditions.
  • HDO hydrodeoxygenation reactor
  • This provides a hydrodeoxygenated intermediate product ( 306 ), which is directed to a separation section (SEP), from which a purified hydrodeoxygenated intermediate product ( 308 ) is retrieved, and split in a recycle diluent stream ( 328 ) and an isomerization feed stream ( 310 ), which is combined with a sulfur free hydrogen stream (not shown) and to a hydroisomerization reactor (ISOM).
  • SEP separation section
  • IOM hydroisomerization reactor
  • the combined feed stream contacts a noble metal based material catalytically active in isomerization under isomerization conditions, providing a dewaxed intermediate product ( 312 ).
  • the dewaxed intermediate product ( 312 ) is directed to a fractionation section (FRAC) shown for simplicity as a single unit, separating the hydrocracked product in a light overhead stream ( 320 ), a naphtha stream ( 322 ), a jet product ( 324 ) and a bottom diesel fraction ( 326 ).
  • FRAC fractionation section
  • Table 1 shows the characteristics of a renewable feedstock which is a combination of animal fat and cooking oil and the intermediate products after hydrotreatment.
  • the intermediate product is dominated by C16 and C18 alkanes, has a high freezing point (24° C.) and contains more than 1.5 wt/wt % aromatics.
  • the feedstock was treated in two processes in accordance with FIGS. 1 and 3 respectively, and the results of this treatment are shown in Table 2, where “Example 1” corresponds to FIG. 1 and “Example 2” corresponds to FIG. 2 .
  • Example 1 has a jet yield of 51 wt/wt %, whereas Example 2 has a jet yield of 43 wt/wt %, assuming a cut point between jet and diesel of 300° C. In the optimization of a process under the assumption of a higher value of jet fuel, this difference is evidently a highly attractive benefit of Example 1.
  • Example 1 provides a jet yield of 52 wt/wt %
  • Example 2 provides a much lower yield of 43 wt/wt %.
  • milder reaction conditions may be chosen, reducing the over-conversion to naphtha compared to a once-through conversion.
  • the resulting difference is evidently a highly attractive benefit of Example 1.
  • Feedstock Feedstock A Animal fat/used cooking oil C16 fatty acids 20 wt/wt% C18 fatty acids 74 wt/wt% Properties of hydrodeoxygenated intermediate product Property Method of Analysis Freezing point ASTM D 5972 24° C. Aromatics ASTM D 6591 1.5 wt/wt% Boiling point (° C.) ASTM D 7213 C IBP 200 10 wt/wt% 290 30 wt/wt% 317 50 wt/wt% 321 70 wt/wt% 323 90 wt/wt% 324 FBP 482 Native jet, wt/wt% 17 110-300° C.
  • Example 1 Example 2 P 70 barg 70 barg T(HDO) 320° C. 320° C. T(ISOM) 315° C. 330° C. LHSV (ISOM) 2 2 T(HDC) 350° C. — LHSV (HDC) 0.6 — Net jet make 35 wt/wt% 26 wt/wt% Freezing pt Jet ⁇ 40° C. ⁇ 40° C. Aromatics Jet ⁇ 0.5 wt/wt% ⁇ 0.5 wt/wt% Naphtha Yield 8 wt/wt% 5 wt/wt% (bp. 60° C.-110° C.) Jet yield 52 wt/wt% 43 wt/wt% (bp. 110° C.-300° C.) Diesel yield 20 wt/wt% 35 wt/wt% (bp. 300° C.-370°C.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A process plant and a process for production of a hydrocarbon suitable for use as jet fuel from a feedstock being a renewable feedstock or an oxygenate feedstock, including combining the feedstock with an amount of a liquid diluent, directing it to contact a material catalytically active in hydrodeoxygenation under hydrotreating conditions to provide a hydrodeoxygenated intermediate product, directing at least an amount of the hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions providing the hydrocracked intermediate product, separating the hydrocracked intermediate product in a vapor fraction and a liquid fraction, directing at least an amount of the liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product, and fractionating the isomerized intermediate product to provide at least a hydrocarbon suitable for use as jet fuel.

Description

  • Conversion of oxygenates such as renewables in hydroprocessing has so far been focused on making diesel, since the paraffins corresponding to the typical fatty acids of biological materials such as vegetable oils and animal fats (C14, C16 and C18) typical boil from 250° C. to 320° C., corresponding well with typical diesel products boiling from 150° C. to 380° C. Jet fuel products require a boiling range of 120° C. to 300° C., which means that an amount of the heavy part of paraffins from renewable feedstocks needs to be converted into lighter materials to produce only jet fuel. The present disclosure relates to a process having a high yield of a mix of liquid transportation fuels, especially renewable diesel and renewable jet fuel meeting typical product requirements by selectively converting the heavy material to lighter material.
  • During hydrotreatment of renewable feedstocks in a unit designed for making diesel, an amount of jet fuel is often also produced. However, there is an interest in making a flexible and well controlled conversion from the intermediate products of renewable feedstocks boiling mainly in the diesel range to jet fuel products, which requires significant conversion.
  • The standard controlling the quality of jet fuel originating from hydroprocessed esters and fatty acids is ASTM D7566, A2.1, which inter alia specifies the boiling point curve and composition. Most of these properties can be easily met by hydrotreating and fractionation. However, special care need to be taken to meet the freezing point (FP) requirement of max −40° C. and the total aromatics content of max 0.5 wt/wt %. In addition, the standard requires an amount of low boiling product by requiring T10, i.e. the temperatures below which 10% boils, to be below 205° C. The final boiling point (FBP) is specified as 300° C., according to ASTM D86, which means that all material boiling above 300° C. needs to be converted into lighter components to fall into the jet fuel range.
  • Now according to the present disclosure it is proposed to carry out combined production of diesel and jet fuel in a two-stage configuration, where the feed is hydrodeoxygenated and hydrocracked in the first stage, and after removal of sour gases the product is isomerized and possibly hydrodearomatized and finally fractionated. By this process, hydrocracking may be carried out with a less expensive base metal catalyst in the first stage, whereas isomerization may be carried out on a selective noble metal catalyst, resulting in specific reduction of freezing point. If the amount of aromatics is too high, the conditions for isomerization may be optimized for simultaneous removal of aromatics, or a specific hydrodearomatization catalyst may be provided for this purpose.
  • In the following the term stage shall be used for a section of the process, in which no separation is performed.
  • In the following the abbreviation ppm, shall be used to signify volumetric parts per million, e.g. molar gas concentration.
  • In the following the abbreviation ppmmolar shall be used to signify atomic parts per million.
  • In the following the abbreviation wt/wt % shall be used to signify weight percentage.
  • In the following the abbreviation vol/vol % shall be used to signify volume percentage for a gas.
  • In the following the term renewable feedstock or hydrocarbon shall be used to indicate a feedstock or hydrocarbon originating from biological sources or waste recycle. Recycled waste of fossil origin such as plastic shall also be construed as renewable.
  • In the following the term hydrodeoxygenation shall be used to signify removal of oxygen from oxygenates by formation of water in the presence of hydrogen, as well as removal of oxygen from oxygenates by formation of carbon oxides in the presence of hydrogen.
  • In the following, the term topology of a molecular sieve is used in the sense described in the “Atlas of Zeolite Framework Types,” Sixth Revised Edition, Elsevier, 2007, and three letter framework type codes are used in accordance herewith.
  • A broad aspect of the present disclosure relates to a process for production of a hydrocarbon fraction suitable for use as jet fuel from a feedstock being an oxygenate feedstock, comprising the steps of combining the feedstock with an amount of a liquid diluent, to form a combined feedstock, directing said combined feedstock to contact a material catalytically active in hydrodeoxygenation under hydrotreating conditions to provide a hydrodeoxygenated intermediate product, directing at least an amount of said hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions to provide the hydrocracked intermediate product, separating said hydrocracked intermediate product in at least two fractions including a vapor fraction and a liquid fraction, optionally providing at least an amount of said liquid hydrocracked product as said liquid diluent, directing at least an amount of said liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product, and fractionating said isomerized intermediate product to provide at least said fraction hydrocarbon suitable for use as jet fuel, with the associated benefit of such a process being well suited for efficiently converting the upper-boiling point of a renewable feedstocks to a lower boiling product, such as non-fossil kerosene. In addition to said hydrocarbon suitable for use as jet fuel, diesel and other hydrocarbons may also be produced.
  • In a further embodiment said hydrocarbon fraction suitable for use as jet fuel has a final boiling point according to ASTM D86 being less than 300° C., with the associated benefit of the product of such a process fulfilling boiling point specifications of the renewable jet fuel specification ASTM D7566.
  • In a further embodiment the total volume of hydrogen sulfide relative to the volume of molecular hydrogen in the gas phase of the combined feedstock directed to contact the material catalytically active in hydrodeoxygenation is at least 50 ppmv, 100 ppmv or 200 ppmv, optionally by adding a stream comprising one or more sulfur compounds, such as dimethyl disulfide or fossil fuels, with the associated benefit of such a process operating efficiently with a low cost material catalytically active in hydrodeoxygenation comprising sulfided base metal.
  • In a further embodiment said feedstock comprises at least 50 wt/wt % triglycerides or fatty acids, with the associated benefit of such a feedstock being highly suited for providing a jet fuel with excellent properties.
  • In a further embodiment hydrodeoxygenation conditions involve a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.1-2 and wherein the material catalytically active in hydrodeoxygenation comprises one or more sulfided metals taken from the group of nickel, cobalt, molybdenum or tungsten nickel, molybdenum or tungsten, supported on a carrier comprising one or more refractory oxides, such as alumina, silica or titania, with the associated benefit of such process conditions being well suited for cost effective removal of heteroatoms, especially oxygen from a renewable feedstock.
  • In a further embodiment hydrocracking conditions involve a temperature in the interval 250-425° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-4, optionally together with intermediate cooling by quenching with cold hydrogen, feed or product and wherein the material catalytically active in hydrocracking comprises (a) one or more active metals taken from the group platinum, palladium, nickel, cobalt, tungsten and molybdenum, (b) an acidic support taken from the group of a molecular sieve showing high cracking activity, and having a topology such as MFI, BEA and FAU and amorphous acidic oxides such as silica-alumina and (c) a refractory support such as alumina, silica or titania, or combinations thereof, with the associated benefit of such process conditions being highly suited for reducing the boiling point of a product to match the kerosene boiling point range.
  • In a further embodiment the amount of material boiling above 300° C. in said hydrocracked intermediate product is reduced by at least 20 wt/wt %, 50 wt/wt % or 80 wt/wt % or more compared to said hydrodeoxygenated intermediate product, with the associated benefit of the high conversion being a minimization of product boiling above 300° C., as a result of a high process severity.
  • In a further embodiment at least an amount of said isomerized intermediate product is directed to contact a material catalytically active in hydrodearomatization under hydrodearomatization conditions to provide a hydrodearomatized product comprising less than 1 wt/wt %, 0.5 wt/wt % or 0.1 wt/wt %, calculated by total mass of the aromatic molecules relative to all hydrocarbons in the stream, where said hydrodearomatized product is fractionated in place of said isomerized intermediate product, with the associated benefit of the product of such a process fulfilling jet fuel specification ASTM D7566. Said material catalytically active in hydrodearomatization under hydrodearomatization conditions may be the material catalytically active in hydrocracking or material catalytically active isomerization operating at moderate temperatures favoring hydrodearomatization. Hydrodearomatization conditions preferably involve at least 50% or 80% conversion of aromatics.
  • In a further embodiment hydrodearomatization conditions involve a temperature in the interval 200-350° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8 and wherein said material catalytically active in hydrodearomatization comprises an active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, preferably one or more elemental noble metals such as platinum or palladium and a refractory support, preferably amorphous silica-alumina, alumina, silica or titania, or combinations thereof, with the associated benefit of such process conditions being suitable for hydrogenation of aromatics.
  • In a further embodiment a hydrogen rich stream comprising at least 90% vol hydrogen is directed to contact the material catalytically active in hydrodearomatization, with the associated benefit of directing high purity hydrogen required by the overall process to the hydrodearomatization step contributing to shifting the equilibrium away from aromatics.
  • In a further embodiment isomerization conditions involves a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8 and wherein the material catalytically active in isomerization comprises an active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, preferably one or more elemental noble metals such as platinum or palladium, an acidic support preferably a molecular sieve, more preferably having a topology taken from the group comprising MOR, FER, MRE, MVWV, AEL, TON and MTT and an amorphous refractory support comprising one or more oxides taken from the group comprising alumina, silica and titania, or combinations thereof, with the associated benefit of such conditions and materials being a cost effective and selective process for adjusting the cold flow properties of product.
  • A further aspect of the present disclosure relates to a process plant for production of a hydrocarbon fraction from a feedstock being a renewable feedstock or an oxygenate feedstock, said process plant comprising a hydrodeoxygenation section, a hydrocracking section, an isomerization section, a separation section and a fractionation section, said process plant being configured for directing the feedstock and a liquid diluent to the hydrodeoxygenation section to provide a hydrodeoxygenated intermediate product, configured for directing at least an amount of said hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions to provide the hydrocracked intermediate product, configured for separating said hydrocracked intermediate product in a vapor fraction and a liquid fraction, configured for directing at least an amount of said liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product and configured for fractionating said isomerized intermediate product to provide at least a hydrocarbon suitable for use as jet fuel, with the associated benefit of such a process plant being suited for carrying out the disclosed process for cost effective and selective production of jet fuel.
  • In a further embodiment the process plant further comprises a recycle connection being configured for providing an amount of said liquid hydrocracked product as liquid diluent with the associated benefit of controlling the temperature in the hydrodeoxygenation reactor, without adding a diluent, such as a fossil feedstock.
  • The processes described in the present disclosure receives a renewable feedstock and/or an oxygenate feedstock which comprises one or more oxygenates taken from the group consisting of triglycerides, fatty acids, resin acids, ketones, aldehydes, alcohols, phenols and aromatic carboxylic acids where said oxygenates originate from one or more of a biological source, a gasification process, a pyrolysis process, Fischer-Tropsch synthesis, methanol based synthesis or a further synthesis process, especially obtained from a raw material of renewable origin, such as originating from plants, algae, animals, fish, vegetable oil refining, domestic waste, used cooking oil, plastic waste, rubber waste or industrial organic waste like tall oil or black liquor. Some of these feedstocks may contain aromatics; especially products derived by pyrolysis or other processes from e.g. lignin and wood or waste products from e.g. frying oil. Depending on source, the oxygenate feedstock may comprise from 1 wt/wt % to 40 wt/wt %. Biological sources will typically comprise around 10 wt/wt %, and derivation products from 1 wt/wt % to 20 wt/wt % or even 40 wt/wt %.
  • For the conversion of renewable feedstocks and/or oxygenate feedstocks into hydrocarbon transportation fuels, the feedstocks are together with hydrogen directed to contact a material catalytically active in hydrotreatment, especially hydrodeoxygenation.
  • Especially at elevated temperatures the catalytic hydrodeoxygenation process may have side reactions forming a heavy product e.g. from olefinic molecules in the feedstock To moderate the release of heat, a liquid hydrocarbon may be added, e.g. a liquid recycle stream or an external diluent feed. If the process is designed for co-processing of fossil feedstock and renewable feedstock, it is convenient to use the fossil feedstock as diluent, since less heat is released during processing of fossil feedstock, as fewer heteroatoms are released and less olefins are saturated. In addition to moderating the temperature, the recycle or diluent also has the effect of reducing the potential of olefinic material to polymerize The resulting product stream will be a hydrodeoxygenated intermediate product stream comprising hydrocarbons, typically n-paraffins, and sour gases such as CO, CO2, H2O, H2S, NH3 as well as light hydrocarbons, especially C3 and methane.
  • Typically hydrodeoxygenation involves directing the feedstock to contact a catalytically active material typically comprising one or more sulfided metals taken from the group of nickel, cobalt, molybdenum or tungsten, supported on a carrier comprising one or more refractory oxides, typically alumina, but possibly silica or titania. The support is typically amorphous. The catalytically active material may comprise further components, such as boron or phosphorous. The conditions are typically a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.1-2. Hydrodeoxygenation is typically exothermal, and with the presence of a high amount of oxygen, the process may involve intermediate cooling e.g. by quenching with cold hydrogen, feed or product. The feedstock may preferably contain an amount of sulfur to ensure sulfidation of the metals, in order to maintain their activity. If the gas phase comprises less than 10, 50 or 100 ppm, sulfur, a sulfide donor, such as dimethyldisulfide (DMDS) may be added to the feed.
  • For the hydrodeoxygenated intermediate product stream to be used as a kerosene fraction, the boiling point range must be adjusted. A boiling point adjustment may also be required if an amount of heavy product is present in hydrodeoxygenated intermediate. The boiling point is adjusted by hydrocracking of long paraffins to shorter paraffins, by directing the hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking.
  • Hydrocracking involves directing the intermediate hydrodeoxygenated feedstock to contact a material catalytically active in hydrocracking. The material catalytically active in hydrocracking typically comprises an active metal (which in the present disclosure is one or more sulfided base metals such as nickel, cobalt, tungsten and/or molybdenum), an acidic support (typically a molecular sieve showing high cracking activity, and having a topology such as MFI, BEA and FAU, but amorphous acidic oxides such as silica-alumina may also be used) and a refractory support (such as alumina, silica or titania, or combinations thereof). The catalytically active material may comprise further components, such as boron or phosphorous. Preferred hydrocracking catalysts comprise molecular sieves such as ZSM-5, zeolite Y or beta zeolite.
  • According to the present disclosure, the material catalytically active in hydrocracking is a base metal positioned downstream the material catalytically active in hydrodeoxygenation.
  • The conditions are typically a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-4. As hydrocracking is exothermal, the process may involve intermediate cooling e.g. by quenching with cold hydrogen, feed or product. The active metal(s) on the material catalytically active in hydrocracking is a base metal, so the intermediate hydrodeoxygenated feedstock including the gas phase is typically directed to contact the material catalytically active in hydrocracking without further purification. This gas phase of this mixture should preferably contain at least 50 ppm, sulfur.
  • Hydrodeoxygenation of unsaturated fatty acids may produce aromatics as a side reaction. Therefore, even for an oxygenate feedstock comprising less than 1% aromatics, it may be further necessary to direct the isomerized product to contact a material catalytically active in hydrodearomatization.
  • The hydrocracked intermediate product will mainly be linear hydrocarbons, like the feedstock, or if the feedstock comprises triglycerides, n-paraffins, but possibly of a shorter length than the fatty acids. Typically, the hydrocracked intermediate product will be dominated by linear alkanes having boiling point range (250° C. to 320° C.) and a freezing point (0° C. to 30° C.) unsuited for use as jet fuel. Some heavy components and aromatics may also be formed in the hydrodeoxygenation step if the unsaturated fatty acids polymerizes.
  • For the hydrocracked intermediate product to be used as a fuel in practice, the freezing point must be adjusted. The freezing point is adjusted by isomerization of n-paraffins to i-paraffins, by directing the hydrocracked intermediate product to contact a material catalytically active in isomerization
  • The material catalytically active in isomerization typically comprises an active metal (which according to the present disclosure is one or more elemental noble metals such as platinum and/or palladium), an acidic support (typically a molecular sieve showing high shape selectivity, and having a topology such as MOR, FER, MRE, MWW, AEL, TON and MTT) and a typically amorphous refractory support (such as alumina, silica or titania, or combinations thereof). The catalytically active material may comprise further components, such as boron or phosphorous. Preferred isomerization catalysts comprise molecular sieves such as EU-2, ZSM-48, beta zeolite and combined beta zeolite and zeolite Y.
  • Typically, isomerization involves directing the intermediate hydrocracked feedstock to contact a material catalytically active in isomerization. The conditions are typically a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8. Isomerization is substantially thermally neutral and consumes only hydrogen in hydrocracking side reactions so only a moderate amount of hydrogen is added in the isomerization reactor. As the active metal on the most selective materials catalytically active in isomerization is a noble metal, the hydrocracked feedstock is typically purified by gas/liquid separation to reduce the content of potential catalyst poisons to low levels such as levels of sulfur, nitrogen and carbon oxides to below 1-10 ppm.
  • In some instances, hydrodearomatization may be satisfactorily carried out in the presence of the material catalytically active in hydroisomerization, but it may also be necessary to have a separate reactor or reactor bed with material catalytically active in hydrodearomatization.
  • Such a material catalytically active in hydrodearomatization typically comprises an active metal (preferably sulfided base metals such as nickel, cobalt, tungsten and/or molybdenum but possibly—after purification, by removal of e.g. hydrogen sulfide—noble metals such as platinum and/or palladium) and a refractory support (such as amorphous silica-alumina, alumina, silica or titania, or combinations thereof). Hydrodearomatization is equilibrium controlled, with high temperatures favoring aromatics, noble metals are preferred as the active metal, since they are active at lower temperatures, compared to base metals.
  • Typically, hydrodearomatization involves directing an intermediate product to contact a material catalytically active in hydrodearomatization. As the equilibrium between aromatics and saturation molecules shifts towards aromatics at elevated temperatures, it is preferred that the temperature is moderate. The conditions are typically a temperature in the interval 200-350° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity (LHSV) in the interval 0.5-8. The preferred active metal(s) on the material catalytically active in hydrodearomatization is often preferred to be noble metal(s), since noble metal catalysts in general are active at lower temperatures than comparable base metal catalysts. According to the present disclosure, the isomerized product is typically sufficiently purified, as the active metal(s) in the material catalytically active in isomerization is a noble metal. Base metal catalysts may also be used, and in this case the gas phase associated with the intermediate hydroisomerized feedstock preferably contains at least 50 ppmv sulfur. Often a hydrocracking or hydroisomerization catalyst operating at temperatures below 350° C. will be able to catalyze moderate hydrodearomatization, e.g. reducing 10 wt/wt % aromatics to below 0.5 wt/wt % aromatics.
  • This necessity to combine 3 or 4 catalytically active materials for conversion of renewable feedstocks into jet fuel naturally complicates the process layout, and the sequence of the materials must be considered carefully. In addition, recycle may be used for three different purposes; gas recycle for efficient use of hydrogen, liquid recycle around the material catalytically active in hydrocracking to maximize the yield of the kerosene fraction and liquid recycle around the material catalytically active in hydrodeoxygenation to limit the temperature increase due to exothermal hydrodeoxygenation reactions.
  • As isomerization and hydrodearomatization are carried out using a catalytically active material comprising noble metals, “sour gases”, including hydrogen sulfide, carbon dioxide and ammonia, are removed prior to this reaction. An amount of the intermediate product of hydrocracking may also be recycled to the inlet of the hydrodeoxygenation reactor.
  • Operating according to the current disclosure, with recycle around the hydrodeoxygenation and hydrocracking reactors, has the benefit of allowing high hydrocracking conversion by multiple passes, rather than by severe condition, thus allowing for full conversion at moderate temperatures, and thus moderate yield loss, thus maintaining a high yield of kerosene and minimized over-cracking to naphtha and lighter. The use of an isomerization catalyst to improve freezing point of the jet fuel, allows increasing the distillation endpoint of the jet fuel while still meeting freezing point requirement. Finally, since the second stage will saturate aromatics, it is not required for the first stage to meet any aromatics requirements, which allows the first stage to treat heavier and/or more aromatic, naphthenic or unsaturated feedstocks as well as feedstocks such as used cooking oil, pyrolysis products or tall oil pitch, which contain aromatics or unsaturated feedstock which may produce aromatics in small amounts in typical hydroprocessing conditions, since these aromatics will be saturated in the second stage.
  • One embodiment according to the present disclosure corresponds to a process in which a stream comprising oxygenates and recycled hydrocarbons, comprising an amount of sulfur is directed to a hydrodeoxygenation reactor containing a catalytically active material comprising one or more base metals and a refractory support, with low acidity. Such a material is active in hydrodeoxygenation and other hydrotreatment reactions for removing heteroatoms and double bonds. The recycled hydrocarbons contribute as a heat sink, absorbing the released heat of reaction from the hydrodeoxygenation, thus maintaining a moderate temperature in the hydrodeoxygenation reactor. This step provides a stream comprising a high amount of saturated linear alkanes, in combination with an amount of water, CO, CO2, methane, hydrogen sulfide and ammonia.
  • The hydrodeoxygenated hydrocarbon stream is directed to a hydrocracking reactor to contact a catalytically active material comprising one or more base metals and a refractory support with high acidity. Such a material is active in hydrocracking, and this step provides a stream in which higher boiling hydrocarbons are converted to lower boiling hydrocarbons. The severity of the hydrocracking process will define the boiling point characteristics of the product, and the hydrocracking process will typically be operated with full conversion of the fraction boiling above the diesel range. If hydrocracking severity is selected for full conversion of the fraction boiling above the jet range the yield loss to gases and naphtha will typically be too high.
  • The hydrocracked stream is directed to a separation section, withdrawing water, hydrogen sulfide and ammonia, and providing a sweet hydrocarbon stream. An amount of the sweet hydrocarbon stream is recycled as sweet recycled hydrocarbons and an amount is directed as feed to an isomerization reactor containing a material catalytically active in isomerization and optionally a material catalytically active in hydrodearomatization. Both materials are based on a noble metal catalyst, such as platinum, palladium or a combination, in combination with an acidic support. For isomerization the acidic support is preferably shape selective, to provide a selective isomerization, rearranging linear alkanes to branched alkanes, with minimal production of lighter hydrocarbons. For hydrodearomatization, an acidic support also contribute to the reaction, and in addition as the activity of noble metals is higher than that of base metals, the reaction will take place at lower temperatures. As the equilibrium between aromatic and non-aromatic compounds is shifted away from aromatics at low temperatures, noble metals provide the benefit that the lower temperature matches the equilibrium. Hydrodearomatization may even take place on the material catalytically active in isomerization, which often will have some hydrodearomatization activity.
  • As the sweet hydrocarbon stream does not contain hydrogen sulfide or ammonia, both the noble metal function and the acidic function of the material catalytically active in isomerization are undisturbed, and a branched hydrocarbon stream is produced with high selectivity.
  • The isomerized stream is directed to a fractionator (after appropriate removal of the gas phase in a separator train), and at least a gas fraction, an intermediate fraction and a bottoms fraction are withdrawn.
  • One benefit of the layout according to the present disclosure is that start-up of such a unit is simple compared to processes where noble metals and base metals are used in the same stage, as the combined hydrotreatment/hydrocracking stage upstream the separation section may be activated by sulfidation, while the isomerization section downstream the separation section may be activated by reduction.
  • The layout provides a conversion of feedstock to diesel, jet range or lighter product, as some or even all heavy hydrodeoxygenated hydrocarbons may be hydrocracked to yield lighter products. Jet/diesel co-production or only diesel production is possible, and the conversion of boiling point is mainly carried out in a hydrodeoxygenation section and hydrocracking section employing base metal catalysts only, and thus enabling addition of sulfur in the form of DMDS in a single process position. Furthermore, the adjustment of freezing point is made selectively by isomerization on a noble metal catalyst, independently of hydrocracking conditions.
  • Should it be desired to produce only diesel and no jet fuel, hydrocracking is not desired. In this case, it may be preferred to either by-pass the hydrocracking reactor or alternatively cool the product prior to this reactor, such that it is inactive. The process plant may be configured for allowing such a configuration with short notice, e.g. by setting up appropriate equipment and control in the control room.
  • FIGURES
  • FIG. 1 shows a simplified illustration of a process according to the present disclosure.
  • FIG. 2 shows a simplified illustration of a process according to the prior art.
  • FIG. 3 shows a simplified illustration of a process according to the prior art.
  • FIG. 1 is a simplified figure showing a layout according to the present disclosure, omitting supply of gaseous streams and details of separation for simplicity. A renewable feedstock (102) is combined with a recycle diluent stream (128) and directed as a hydrodeoxygenation feed stream (104) together with an amount of a hydrogen rich stream (not shown) to a hydrodeoxygenation reactor (HDO) where it contacts a material catalytically active in hydrogenation under hydrotreating conditions. This provides a hydrodeoxygenated intermediate product (106). The hydrodeoxygenated intermediate product (106) is directed to a hydrocracking reactor (HDC) operating under hydrocracking conditions, providing a hydrocracked intermediate product (108). The hydrocracked intermediate product (108) is directed to separation section (SEP), shown for simplicity as a single unit, separating the hydrocracked intermediate product in a gas stream for recycle and a liquid intermediate product stream (110). The liquid intermediate product stream (110) is split in a recycle diluent stream (128) and an isomerization reactor feed stream (112) directed as feed to an isomerization reactor (ISOM), where it contacts a material catalytically active in isomerization under isomerization conditions and optionally a further material catalytically active in hydrodearomatization under hydrodearomatization conditions, providing an isomerized product (116) which is directed to a fractionation section (FRAC) shown for simplicity as a single unit, separating the isomerized product in a light overhead stream (120), a naphtha product (122), a jet product (124) and a bottom diesel fraction (126).
  • FIG. 2 shows an example of the prior art, in a level of detail similar to FIG. 1, omitting supply of gaseous streams and details of separation for simplicity. A renewable feedstock (202) is combined with a recycle diluent stream (228) and directed as a hydrodeoxygenation feed stream (204) together with an amount of a hydrogen rich stream (not shown) to a hydrodeoxygenation reactor (HDO) where it contacts a material catalytically active in hydrogenation under hydrotreating conditions. This provides a hydrodeoxygenated intermediate product (214), which is directed to a hydroisomerization reactor (ISOM) where it contacts a material catalytically active in isomerization under isomerization conditions, providing a dewaxed intermediate product (216). The dewaxed intermediate product (216) is directed to a fractionation section (FRAC) shown for simplicity as a single unit, separating the hydrocracked product in a light overhead stream (220), a naphtha stream (222), a jet product (224) and a bottom diesel fraction which is split in a recycle diluent stream (228) and a diesel product stream (226).
  • FIG. 3 shows a further example of the prior art, omitting supply of gaseous streams and details of separation for simplicity. A renewable feedstock (302) is combined with a recycle diluent stream (328) and directed as a hydrodeoxygenation feed stream (304) together with an amount of a hydrogen rich stream (not shown) to a hydrodeoxygenation reactor (HDO) where it contacts a material catalytically active in hydrogenation under hydrotreating conditions. This provides a hydrodeoxygenated intermediate product (306), which is directed to a separation section (SEP), from which a purified hydrodeoxygenated intermediate product (308) is retrieved, and split in a recycle diluent stream (328) and an isomerization feed stream (310), which is combined with a sulfur free hydrogen stream (not shown) and to a hydroisomerization reactor (ISOM). In this reactor the combined feed stream contacts a noble metal based material catalytically active in isomerization under isomerization conditions, providing a dewaxed intermediate product (312). The dewaxed intermediate product (312) is directed to a fractionation section (FRAC) shown for simplicity as a single unit, separating the hydrocracked product in a light overhead stream (320), a naphtha stream (322), a jet product (324) and a bottom diesel fraction (326).
  • EXAMPLES
  • The performance of the process layouts shown in FIGS. 1 and 3 have been compared.
  • Table 1 shows the characteristics of a renewable feedstock which is a combination of animal fat and cooking oil and the intermediate products after hydrotreatment. The intermediate product is dominated by C16 and C18 alkanes, has a high freezing point (24° C.) and contains more than 1.5 wt/wt % aromatics. The feedstock was treated in two processes in accordance with FIGS. 1 and 3 respectively, and the results of this treatment are shown in Table 2, where “Example 1” corresponds to FIG. 1 and “Example 2” corresponds to FIG. 2. The values for “net jet make” are calculated as the amount of jet produced in the process, subtracting the amount of jet already present in the feedstock by the formula net jet make=[total jet product]−[native jet present in the feed]. Yields are presented in this table as wt/wt % of feed to the unit. Eg. a Jet yield of 51 wt/wt % indicate that 51 kg of jet fuel is produced for each 100 kg of feed that is processed in the unit.
  • The results of both examples show a production of a jet fuel with excellent properties, a low freezing point (−40° C.) and a low aromatics content (<0.5 wt/wt %). Example 1 according to the present disclosure has a jet yield of 51 wt/wt %, whereas Example 2 has a jet yield of 43 wt/wt %, assuming a cut point between jet and diesel of 300° C. In the optimization of a process under the assumption of a higher value of jet fuel, this difference is evidently a highly attractive benefit of Example 1.
  • The key difference between the performance in the two cases is that Example 1 provides a jet yield of 52 wt/wt %, whereas Example 2 provides a much lower yield of 43 wt/wt %. As the conversion takes place in a recycle configuration, milder reaction conditions may be chosen, reducing the over-conversion to naphtha compared to a once-through conversion. In the optimization of a process under the assumption of a higher value of jet fuel, the resulting difference is evidently a highly attractive benefit of Example 1.
  • TABLE 1
    Feedstock
    Feedstock A
    Source Animal fat/used cooking oil
    C16 fatty acids 20 wt/wt%
    C18 fatty acids 74 wt/wt%
    Properties of hydrodeoxygenated intermediate product
    Property Method of Analysis
    Freezing point ASTM D 5972 24° C.
    Aromatics ASTM D 6591 1.5 wt/wt%
    Boiling point (° C.) ASTM D 7213 C
    IBP 200
    10 wt/wt% 290
    30 wt/wt% 317
    50 wt/wt% 321
    70 wt/wt% 323
    90 wt/wt% 324
    FBP 482
    Native jet, wt/wt%  17
    110-300° C.
    Example 1 Example 2
    P 70 barg 70 barg
    T(HDO) 320° C. 320° C.
    T(ISOM) 315° C. 330° C.
    LHSV (ISOM) 2 2
    T(HDC) 350° C.
    LHSV (HDC) 0.6
    Net jet make 35 wt/wt% 26 wt/wt%
    Freezing pt Jet −40° C. −40° C.
    Aromatics Jet <0.5 wt/wt% <0.5 wt/wt%
    Naphtha Yield 8 wt/wt% 5 wt/wt%
    (bp. 60° C.-110° C.)
    Jet yield 52 wt/wt% 43 wt/wt%
    (bp. 110° C.-300° C.)
    Diesel yield 20 wt/wt% 35 wt/wt%
    (bp. 300° C.-370°C.)

Claims (12)

1. A process for production of a hydrocarbon fraction suitable for use as jet fuel from an oxygenate feedstock, comprising the steps of
a. combining the feedstock with an amount of a liquid diluent, to form a combined feedstock, directing said combined feedstock to contact a material catalytically active in hydrodeoxygenation under hydrotreating conditions to provide a hydrodeoxygenated intermediate product,
b. directing at least an amount of said hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions to provide the hydrocracked intermediate product,
c. separating said hydrocracked intermediate product in at least two fractions including a vapor fraction and a liquid fraction,
d. optionally providing at least an amount of said liquid hydrocracked product as said liquid diluent,
e. directing at least an amount of said liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product, and
f. fractionating said isomerized intermediate product to provide at least said hydrocarbon fraction suitable for use as jet fuel.
2. The process according to claim 1, wherein said hydrocarbon fraction suitable for use as jet fuel has a final boiling point according to ASTM D86 being less than 300° C.
3. The process according to claim 1, wherein the volume of hydrogen sulfide relative to the volume of molecular hydrogen in the gas phase of the combined feedstock directed to contact the material catalytically active in hydrodeoxygenation is at least 50 ppmv, optionally by adding a stream comprising one or more sulfur compounds.
4. The process according to claim 1, wherein said feedstock comprises at least 50 wt/wt % triglycerides or fatty acids.
5. The process according to claim 1, wherein hydrodeoxygenation conditions involve a temperature in the interval 250-400° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity in the interval 0.1-2 and wherein the material catalytically active in hydrodeoxygenation comprises one or more sulfided metals taken from the group of nickel, cobalt, molybdenum or tungsten, supported on a carrier comprising one or more refractory oxides.
6. The process according to claim 1, wherein hydrocracking conditions involve a temperature in the interval 250-425° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity in the interval 0.5-4, optionally together with intermediate cooling by quenching with cold hydrogen, feed or product and wherein the material catalytically active in hydrocracking comprises (a) one or more active metals taken from the group platinum, palladium, nickel, cobalt, tungsten and molybdenum, (b) an acidic support taken from the group of a molecular sieve showing high cracking activity, and amorphous acidic oxides and (c) a refractory support.
7. The process according to claim 1, wherein the amount of material boiling above 300° C. in said hydrocracked intermediate product is reduced by at least 20 wt/wt %, compared to said hydrodeoxygenated intermediate product.
8. The process according to claim 1, wherein at least an amount of said isomerized intermediate product is directed to contact a material catalytically active in hydrodearomatization under hydrodearomatization conditions to provide a hydrodearomatized product comprising less than 1 wt/wt %, calculated by total mass of the aromatic molecules relative to all hydrocarbons in the stream, where said hydrodearomatized product is fractionated in place of said isomerized intermediate product in step (f).
9. The process according to claim 8, wherein hydrodearomatization conditions involve a temperature in the interval 200-350° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity in the interval 0.5-8 and wherein said material catalytically active in hydrodearomatization comprises an active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, and a refractory support.
10. The process according to claim 1, wherein isomerization conditions involves a temperature in the interval 250-350° C., a pressure in the interval 30-150 Bar, and a liquid hourly space velocity in the interval 0.5-8 and wherein the material catalytically active in isomerization comprises an active metal taken from the group comprising platinum, palladium, nickel, cobalt, tungsten and molybdenum, an acidic and an amorphous refractory support comprising one or more oxides taken from the group comprising alumina, silica and titania or combinations thereof.
11. A process plant for production of a hydrocarbon fraction suitable for use as jet fuel from a feedstock being a renewable feedstock or an oxygenate feedstock, said process plant comprising a hydrodeoxygenation section, a hydrocracking section, a separation section, an isomerization section, and a fractionation section, said process plant being configured for
a. directing the feedstock and a liquid diluent to the hydrodeoxygenation section to provide a hydrodeoxygenated intermediate product,
b. directing at least an amount of said hydrodeoxygenated intermediate product to contact a material catalytically active in hydrocracking under hydrocracking conditions to provide the hydrocracked intermediate product,
c. separating said hydrocracked intermediate product in a vapor fraction and a liquid fraction,
d. directing at least an amount of said liquid hydrocracked product to contact a material catalytically active in isomerization under isomerization conditions to provide an isomerized intermediate product, and
e. fractionating said isomerized intermediate product in said fractionation section (FRAC) to provide at least a hydrocarbon suitable for use as jet fuel.
12. A process plant according to claim 11, further comprising a recycle connection being configured for providing an amount of said liquid hydrocracked product as liquid diluent.
US17/287,711 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel Abandoned US20210395621A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DKPA201800767 2018-10-24
DKPA201800767 2018-10-24
DKPA201900851 2019-07-09
DKPA201900852 2019-07-09
DKPA201900851 2019-07-09
DKPA201900852 2019-07-09
PCT/EP2019/078901 WO2020083997A1 (en) 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel

Publications (1)

Publication Number Publication Date
US20210395621A1 true US20210395621A1 (en) 2021-12-23

Family

ID=68342923

Family Applications (5)

Application Number Title Priority Date Filing Date
US17/287,676 Abandoned US20210395620A1 (en) 2018-10-24 2019-10-23 Method for production of aviation fuel
US17/287,693 Abandoned US20210371761A1 (en) 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel
US17/287,809 Pending US20210395622A1 (en) 2018-10-24 2019-10-23 Method for production of aviation fuel
US17/287,711 Abandoned US20210395621A1 (en) 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel
US17/287,729 Pending US20210395615A1 (en) 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US17/287,676 Abandoned US20210395620A1 (en) 2018-10-24 2019-10-23 Method for production of aviation fuel
US17/287,693 Abandoned US20210371761A1 (en) 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel
US17/287,809 Pending US20210395622A1 (en) 2018-10-24 2019-10-23 Method for production of aviation fuel

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/287,729 Pending US20210395615A1 (en) 2018-10-24 2019-10-23 Method for co-production of aviation fuel and diesel

Country Status (8)

Country Link
US (5) US20210395620A1 (en)
EP (5) EP3870682A1 (en)
KR (5) KR20210084498A (en)
CN (5) CN112912473A (en)
AU (5) AU2019363697A1 (en)
CA (5) CA3117513A1 (en)
SG (5) SG11202103331WA (en)
WO (5) WO2020083994A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202103331WA (en) * 2018-10-24 2021-05-28 Haldor Topsoe As Method for production of aviation fuel
BR112022026662A2 (en) * 2020-06-26 2023-01-24 Topsoe As METHOD FOR SELECTIVE DECARBOXYLATION OF OXYGENATES
EP4192929A1 (en) * 2020-08-07 2023-06-14 Totalenergies Onetech Process for the production of fluids
BR102020017281A2 (en) * 2020-08-24 2022-03-08 Petróleo Brasileiro S.A. - Petrobras CATALYSTS AND SELECTIVE PROCESS FOR PRODUCTION OF RENEWABLE AVIATION FUELS AND PRODUCED BIOFUEL
AU2021353043A1 (en) 2020-09-30 2023-04-20 Neste Oyj Method for producing renewable fuel
BR102021015852A2 (en) 2021-08-11 2023-02-14 Petróleo Brasileiro S.A. - Petrobras PROCESS FOR INTEGRATED PRODUCTION OF H2 AND AVIATION KEROSENE FROM RENEWABLE RAW MATERIAL
US20230103331A1 (en) * 2021-10-01 2023-04-06 ExxonMobil Technology and Engineering Company Catalyst configuration for renewable jet production
AU2022375041A1 (en) * 2021-10-26 2024-05-02 Topsoe A/S A process for hydrotreatment of aromatic nitrogen compounds
WO2023084092A1 (en) * 2021-11-12 2023-05-19 Compañía Española De Petróleos, S.A.U. Process for upgrading an oxygenate feedstook into hydrocarbon fractions and other applications
US20230193143A1 (en) * 2021-12-22 2023-06-22 Uop Llc Process for producing jet fuel from isomerizing a biorenewable feed
WO2023154701A1 (en) * 2022-02-09 2023-08-17 ExxonMobil Technology and Engineering Company Renewable jet production
WO2023187072A1 (en) * 2022-03-31 2023-10-05 Topsoe A/S Process for production of transportation fuel
WO2023249890A1 (en) * 2022-06-20 2023-12-28 ExxonMobil Technology and Engineering Company Systems and methods for renewable fuels
US20240002737A1 (en) 2022-06-29 2024-01-04 ExxonMobil Technology and Engineering Company Single stage renewable jet production
WO2024003469A1 (en) * 2022-06-30 2024-01-04 Neste Oyj A process for producing a liquid transportation fuel component
WO2024003468A1 (en) * 2022-06-30 2024-01-04 Neste Oyj A process for producing liquid transportation fuel components
WO2024006886A1 (en) * 2022-07-01 2024-01-04 Shell Usa, Inc. Process for producing kerosene and/or diesel from renewable sources
CN115418246B (en) * 2022-08-15 2024-06-14 天津大学 Cycloparaffin fuel and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057474A1 (en) * 2012-04-18 2015-02-26 Upm-Kymmene Corporation Process for producing biofuel and biofuel components
US20160243537A1 (en) * 2013-03-15 2016-08-25 Reactor Resources, Llc In-situ Catalyst Sulfiding, Passivating and Coking Systems and Methods
US20190185758A1 (en) * 2016-06-01 2019-06-20 Revo International Inc. Method for producing hydrocarbon liquid fuel
US20200017775A1 (en) * 2018-07-16 2020-01-16 Upm-Kymmene Corporation Process for producing hydrocarbons

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20070522A1 (en) * 2007-03-16 2008-09-17 Eni Spa USEFUL HYDROCARBURIC COMPOSITION AS FUEL AND FUEL CONTAINING A OIL COMPONENT AND A COMPONENT OF BIOLOGICAL ORIGIN
US7846323B2 (en) * 2007-04-06 2010-12-07 Syntroleum Corporation Process for co-producing jet fuel and LPG from renewable sources
US8742183B2 (en) * 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
AU2008353358B2 (en) * 2007-12-21 2013-08-22 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8193399B2 (en) * 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8058492B2 (en) * 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8324438B2 (en) * 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
PT2141217E (en) * 2008-07-01 2015-07-30 Neste Oil Oyj Process for the manufacture of aviation fuel or blending stocks for aviation fuel of biological origin
US8283506B2 (en) * 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US9039790B2 (en) * 2010-12-15 2015-05-26 Uop Llc Hydroprocessing of fats, oils, and waxes to produce low carbon footprint distillate fuels
US9315736B2 (en) * 2010-12-16 2016-04-19 Energia Technologies, Inc. Methods of fuel production
FR2969648B1 (en) * 2010-12-24 2014-04-11 Total Raffinage Marketing HYDROCARBONATE CHARGING CONVERSION PROCESS COMPRISING SCHIST OIL BY BOILING BED HYDROCONVERSION, ATMOSPHERIC DISTILLATION FRACTIONATION, AND HYDROCRACKING
FI126674B (en) * 2013-07-12 2017-03-31 Upm Kymmene Corp Hydrocarbon production process
US9567264B2 (en) * 2015-03-31 2017-02-14 Uop Llc Process for producing diesel fuel and aviation fuel from renewable feedstocks having improving yields
FR3036705B1 (en) * 2015-06-01 2017-06-02 Ifp Energies Now METHOD FOR CONVERTING LOADS COMPRISING A HYDROTREATING STEP, A HYDROCRACKING STEP, A PRECIPITATION STEP AND A SEDIMENT SEPARATION STEP FOR FIELD PRODUCTION
CN109462988B (en) * 2016-05-11 2022-01-28 Reg合成燃料有限责任公司 Biorenewable kerosene, jet fuel blendstock, and methods of manufacture
SG11202103331WA (en) * 2018-10-24 2021-05-28 Haldor Topsoe As Method for production of aviation fuel
US11655424B2 (en) * 2020-10-24 2023-05-23 Uop Llc Process for producing jet fuel from a biorenewable feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057474A1 (en) * 2012-04-18 2015-02-26 Upm-Kymmene Corporation Process for producing biofuel and biofuel components
US20160243537A1 (en) * 2013-03-15 2016-08-25 Reactor Resources, Llc In-situ Catalyst Sulfiding, Passivating and Coking Systems and Methods
US20190185758A1 (en) * 2016-06-01 2019-06-20 Revo International Inc. Method for producing hydrocarbon liquid fuel
US20200017775A1 (en) * 2018-07-16 2020-01-16 Upm-Kymmene Corporation Process for producing hydrocarbons

Also Published As

Publication number Publication date
CN112888766A (en) 2021-06-01
EP3870675A1 (en) 2021-09-01
AU2019368665A1 (en) 2021-04-29
WO2020084000A1 (en) 2020-04-30
CN112912472A (en) 2021-06-04
US20210395615A1 (en) 2021-12-23
US20210395620A1 (en) 2021-12-23
SG11202103300UA (en) 2021-05-28
AU2019364684A1 (en) 2021-04-22
EP3870683A1 (en) 2021-09-01
WO2020083994A1 (en) 2020-04-30
SG11202103331WA (en) 2021-05-28
US20210371761A1 (en) 2021-12-02
CA3117513A1 (en) 2020-04-30
AU2019365393A1 (en) 2021-05-20
WO2020083997A1 (en) 2020-04-30
EP3870674A1 (en) 2021-09-01
AU2019363697A1 (en) 2021-05-20
CN112888764A (en) 2021-06-01
KR20210080430A (en) 2021-06-30
SG11202103129TA (en) 2021-05-28
EP3870682A1 (en) 2021-09-01
AU2019368666A1 (en) 2021-04-22
KR20210079303A (en) 2021-06-29
CN112912472B (en) 2023-07-25
CA3116920A1 (en) 2020-04-30
CA3117161A1 (en) 2020-04-30
KR20210079322A (en) 2021-06-29
SG11202103288VA (en) 2021-05-28
US20210395622A1 (en) 2021-12-23
CA3116922A1 (en) 2020-04-30
CN112912471B (en) 2023-10-20
KR20210084498A (en) 2021-07-07
WO2020083989A1 (en) 2020-04-30
WO2020083998A1 (en) 2020-04-30
CA3117075A1 (en) 2020-04-30
EP3870679A1 (en) 2021-09-01
CN112912471A (en) 2021-06-04
KR20210080447A (en) 2021-06-30
SG11202103321RA (en) 2021-05-28
CN112912473A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
US20210395621A1 (en) Method for co-production of aviation fuel and diesel
US20230348791A1 (en) Method for selective decarboxylation of oxygenates
US20240067890A1 (en) Process for upgrading an oxygenate feedstook into hydrocarbon fractions and other applications
EA042103B1 (en) METHOD OF JOINT PRODUCTION OF AVIATION AND DIESEL FUEL
EA043450B1 (en) METHOD FOR JOINT PRODUCTION OF AVIATION AND DIESEL FUEL
WO2023099658A1 (en) Method for production of a transportation fuel
EA044141B1 (en) METHOD FOR OBTAINING HYDROCARBON FRACTION SUITABLE FOR USE AS FUEL FOR JET ENGINES, AND TECHNOLOGICAL INSTALLATION
DK202101149A1 (en) Method for production of a transportation fuel
EA044039B1 (en) METHOD FOR PRODUCING AVIATION FUEL

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALDOR TOPSOEE A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSSON, ASBJOERN SUNE;ALKILDE, OLE FREJ;DUONG, THI HONG DIEP;SIGNING DATES FROM 20210427 TO 20210525;REEL/FRAME:056413/0237

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION