US20210369375A1 - Input device handle for robotic surgical systems capable of large rotations about a roll axis - Google Patents

Input device handle for robotic surgical systems capable of large rotations about a roll axis Download PDF

Info

Publication number
US20210369375A1
US20210369375A1 US17/399,224 US202117399224A US2021369375A1 US 20210369375 A1 US20210369375 A1 US 20210369375A1 US 202117399224 A US202117399224 A US 202117399224A US 2021369375 A1 US2021369375 A1 US 2021369375A1
Authority
US
United States
Prior art keywords
tool
axis
cylinder
input device
roll axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/399,224
Inventor
William Peine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US17/399,224 priority Critical patent/US20210369375A1/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEINE, WILLIAM
Publication of US20210369375A1 publication Critical patent/US20210369375A1/en
Priority to US18/428,314 priority patent/US20240164860A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00389Button or wheel for performing multiple functions, e.g. rotation of shaft and end effector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/742Joysticks

Definitions

  • Robotic surgical systems have been used in minimally invasive medical procedures.
  • the robotic surgical system is controlled by a surgeon interfacing with a user interface.
  • the user interface allows the surgeon to manipulate an end effector that acts on a patient.
  • the user interface includes an input controller or handle that is moveable by the surgeon to control the robotic surgical system.
  • Robotic surgical systems typically used a scaling factor to scale down the motions of the surgeon's hands to determine the desired position of the end effector within the patient so that the surgeon could more precisely move the end effector inside the patient.
  • the larger the scaling factor the farther the surgeon had to move the input device handle to move the end effector the same distance. Since the input device handle has a fixed range of motion, this meant that for larger scaling factors the surgeon may have reached an end of the range of motion of an input handle more often.
  • a surgeon may need to rotate the end effector about a roll axis.
  • large rotations of an end effector may be required.
  • Such large rotations typically require multiple clutching events of an input device handle or unnatural rotations of the input device handle.
  • This disclosure generally relates to an input device handle including a body and a cylinder that is rotatable relative to the body. Rotation of the cylinder is configured to affect rotation of the tool such that the tool can be rotating without rolling of the arm of the clinician. By allowing the tool to be rotated without rolling the arm of the clinician, the tool can be continuously rolled without clutching of the user interface or being limited by anatomical limits of the clinician.
  • an input device handle for controlling a robot includes a body and a cylinder.
  • the body defines an opening that rotatably receives the cylinder.
  • the cylinder defines a roll axis such that rotation of the cylinder relative to the body about the roll axis is configured to rotate a tool of the robot about a first axis that is defined by the tool.
  • the rotation of the cylinder about the roll axis may be scaled to rotation of the tool about the first axis.
  • the cylinder frictionally engages the body such that as the body is rotated about the roll axis, the cylinder is rotated about the roll axis.
  • Rotation of the body about the roll axis may be configured to rotate the tool of the robot about the first axis.
  • rotation of the body about the roll axis may be configured to rotate a shaft supporting the tool about a second axis that is defined by the shaft.
  • the first and second axis may be coincident with one another.
  • the body may include a connection portion that defines the opening.
  • the connection portion may be configured to couple to an input shaft of a gimbal of a user interface.
  • the input device handle includes an actuation control that is pivotally coupled to the body and that is configured to actuate jaws of the tool.
  • the body may include a button that is configured to control a function of the tool.
  • the cylinder includes an engagement feature.
  • the engagement feature may be alternating ribs and recesses. Additionally or alternatively, the engagement feature may be a textured surface.
  • a robotic system in another aspect of the present disclosure, includes a robot and a user interface.
  • the robot includes an arm and a tool that is support at the end of the arm.
  • the tool defines a first axis.
  • the user interface is in operable communication with the robot to control the tool.
  • the user interface includes a control arm, a gimbal, and an input shaft.
  • the gimbal is supported by the control arm and has an input shaft.
  • the input device handle is coupled to the input shaft and defines a roll axis.
  • the input device handle includes a body and a cylinder.
  • the body defines an opening that rotatably receives the cylinder.
  • the cylinder is disposed within the opening defined in the body and is rotatable about a roll axis such that rotation of the cylinder relative to the body about the roll axis rotates the tool about the first axis.
  • rotation of the cylinder about the roll axis rotates the tool about the first axis.
  • Rotation of the body about the roll axis may rotate the tool about the first axis.
  • the robot includes a shaft that supports the tool and defines a second axis. Rotation of the body about the tool axis may rotate the shaft about the second axis.
  • the gimbal includes a first sensor that is configured to detect rotation of the input shaft relative to the gimbal.
  • the first sensor can be disposed within the input shaft.
  • the input device handle can include a second sensor that is configured to detect rotation of the cylinder relative to the body.
  • a method of manipulating a tool of a robot using an input device handle of a user interface includes rotating a cylinder of the input device handle relative to a body of the input device handle about a roll axis that is defined by an input shaft of the user interface to rotate a tool of the robot about a first axis which is defined by the tool.
  • the method further includes rotating the body about the roll axis to rotate the tool about the first axis.
  • the method may include rotating the body about the roll axis to rotate a shaft that supports the tool about a second axis defined by the shaft.
  • the method may include articulating the tool relative to the shaft before rotating the cylinder. Articulating the tool relative to the shaft may include articulating the first axis relative to the second axis.
  • FIG. 1 is a schematic illustration of a user interface and a robotic system in accordance with the present disclosure
  • FIG. 2 is a perspective view of a input device handle supported on an end of a control arm of the user interface of FIG. 1 ;
  • FIG. 3 is a cutaway view of a body cavity of a patient showing a tool of the robotic surgical system of FIG. 1 inserted in the body cavity;
  • FIG. 4 is a side perspective view of the input device handle of FIG. 2 ;
  • FIG. 5 is a perspective view of the tool of FIG. 3 .
  • the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel.
  • proximal refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician.
  • neutral is understood to mean non-scaled.
  • the input device handle includes a rotation control that is associated with one or more roll axes of a tool of the robotic system.
  • the rotation control includes a cylinder capable of rotation about a roll axis of a gimbal of the user interface relative to a body of the input device handle.
  • the cylinder may be associated with rotation of the tool about a tool axis defined between jaws of the tool.
  • rotation of the body of the input device handle about the roll axis of the gimbal may be associated with rotation about the tool axis.
  • the tool may be articulated relative to a shaft supporting the tool and rotation of the body of the input device handle about the roll axis of the gimbal may be associated with rotation about a shaft axis defined by the shaft.
  • a robotic surgical system 1 in accordance with the present disclosure is shown generally as a robotic system 10 , a processing unit 30 , and a user interface 40 .
  • the robotic system 10 generally includes linkages 12 and a robot base 18 .
  • the linkages 12 moveably support an end effector or tool 20 which is configured to act on tissue.
  • the linkages 12 may be in the form of arms each having an end 14 that supports an end effector or tool 20 which is configured to act on tissue.
  • the ends 14 of the arms 12 may include an imaging device 16 for imaging a surgical site “S”.
  • the user interface 40 is in communication with robot base 18 through the processing unit 30 .
  • the user interface 40 includes a display device 44 which is configured to display three-dimensional images.
  • the display device 44 displays three-dimensional images of the surgical site “S” which may include data captured by imaging devices 16 positioned on the ends 14 of the arms 12 and/or include data captured by imaging devices that are positioned about the surgical theater (e.g., an imaging device positioned within the surgical site “5”, an imaging device positioned adjacent the patient “P”, imaging device 56 positioned at a distal end of an imaging arm 52 ).
  • the imaging devices e.g., imaging devices 16 , 56
  • the imaging devices may capture visual images, infra-red images, ultrasound images, X-ray images, thermal images, and/or any other known real-time images of the surgical site “5”.
  • the imaging devices transmit captured imaging data to the processing unit 30 which creates three-dimensional images of the surgical site “5” in real-time from the imaging data and transmits the three-dimensional images to the display device 44 for display.
  • the user interface 40 also includes gimbals 42 which are supported on control arms 43 which allow a clinician to manipulate the robotic system 10 (e.g., move the arms 12 , the ends 14 of the arms 12 , and/or the tools 20 ).
  • Each of the gimbals 42 is in communication with the processing unit 30 to transmit control signals thereto and to receive feedback signals therefrom.
  • each of the gimbals 42 may include input devices handles 100 ( FIG. 2 ) which allow the surgeon to manipulate (e.g., clamp, grasp, fire, open, close, rotate, thrust, slice, etc.) the tools 20 supported at the ends 14 of the arms 12 .
  • each of the input devices handles 100 is moveable through a predefined workspace to move the ends 14 of the arms 12 within a surgical site “5”.
  • the three-dimensional images on the display device 44 are orientated such that the movement of the input handle 42 , as a result of the movement of the input device handles 100 , moves the ends 14 of the arms 12 as viewed on the display device 44 .
  • the orientation of the three-dimensional images on the display device 44 may be mirrored or rotated relative to view from above the patient “P”.
  • the size of the three-dimensional images on the display device 44 may be scaled to be larger or smaller than the actual structures of the surgical site permitting a clinician to have a better view of structures within the surgical site “S”.
  • the tools 20 are moved within the surgical site “S” as detailed below.
  • movement of the tools 20 may also include movement of the ends 14 of the arms 12 which support the tools 20 .
  • connection arm 46 of the gimbal 42 .
  • the connection arm 46 defines a roll axis “R” of the user interface 40 . It will be appreciated that rotation of the connection arm 46 about the roll axis “R” rotates the tool 20 about tool roll axis “R T ” as shown in FIG. 3 .
  • the input device handle 100 in accordance with the present disclosure includes a body 110 , an actuation control 120 , one or more control buttons 132 - 136 , and a rotation control 140 .
  • the body 110 includes a connection portion 112 and a handle 116 extending proximally from the connection portion 112 .
  • the connection portion 112 that defines an opening 114 which rotatably receives the rotation control 140 .
  • the actuation control 120 may be in the form of a trigger that is pivotally coupled to the body 110 . Pivoting the actuation control 120 between a first position and a second position may actuate jaws 22 , 24 ( FIG. 3 ) of the tool 20 between a first or open configuration and a second or closed configuration.
  • buttons 132 - 136 are in operable communication with the processing unit 30 ( FIG. 1 ) to selectively control functions of the tool 20 .
  • button 132 may fix the configuration of the jaws 22 , 24 relative to one another
  • button 134 may fire a fastener (not shown) from one of jaws 22 , 24
  • button 136 may actuate a knife (not shown) through the jaws 22 , 24 .
  • one of the buttons 132 - 136 may activate a source of electrosurgical energy such that electrosurgical energy is delivered to tissue via the tool 20 .
  • the rotation control 140 includes a coupling neck 142 , an end cap 144 , and a cylinder 146 .
  • the coupling neck 142 is disposed about the connection arm 46 of the gimbal 42 to couple the input device handle 100 to the connection arm 46 .
  • the coupling neck 142 is rotatably fixed to the connection arm 46 and the cylinder 146 such that rotation of the cylinder 146 rotates the connection arm 46 about the roll axis “R” of the gimbal 42 .
  • the cylinder 146 is rotatably disposed within the opening 114 of the body 110 such that the cylinder 146 may be rotated relative to the body 110 .
  • the cylinder 146 may be frictionally engaged with the body 110 such that the cylinder 146 rotates with the body 110 in response to the body 110 being rotated about the roll axis “R” of the gimbal 42 .
  • the cylinder 146 may include engagement features 148 that are engagable by a clinician to rotate the cylinder 146 relative to the body 110 . It is envisioned that the cylinder 146 may be engaged by the thumb of a clinician gripping the handle 114 .
  • the engagement features 148 may be alternating ribs and recesses as shown in FIG. 4 . Additionally or alternatively, the engagement features 148 may include a textured surface or any known surface or feature that enhances engagement of a finger of a clinician with the cylinder 146 .
  • Rotation of the cylinder 146 is measured by a rotation sensor, such as a rotary encoder 152 , in the connection arm 46 supporting the input device handle 100 .
  • a rotation sensor such as a rotary encoder 152
  • the rotatory encoder 152 can be disposed within the connection arm 46 and/or within the gimbal 42 to detect rotation of the connection arm 46 about the roll axis “R”.
  • the rotational position of the cylinder 146 relative to the input device handle 100 could also be measured using a second sensor or encoder 154 in the body 110 , which may allow improved gravity compensation of the input device handle 100 and other more advanced control functions.
  • rotation of the cylinder 146 can be accomplished by rotating the entire input device handle 100 and allowing the friction between the cylinder 146 and the input device handle 100 to rotate the cylinder 146 , or the input device handle 100 can be held fixed and the cylinder 146 can be rotated relative to the input device handle 100 by a thumb of a clinician. In both cases, rotation of the cylinder 146 about the roll axis “R” of the gimbal 42 is measured and is used to control rolling motion of the instrument 20 .
  • the dexterity of the clinician can be increased by allowing large rotations of the tool 20 about the tool roll axis “R T ” ( FIG. 5 ) with minimal or no rotation of the handle 116 about the roll axis “R” of the gimbal 42 .
  • a tool 20 may include first and second jaws 22 , 24 that are pivotally supported at an end of a tool shaft 26 .
  • the first and second jaws 22 , 24 define the tool roll axis “R T ” that passes through a center line between the first and second jaws 22 , 24 and the tool shaft 26 defines a shaft roll axis “R S ”.
  • rotation of the cylinder 146 and/or the handle 116 about the roll axis “R” of the gimbal 42 rotates the first and second jaws 22 , 24 about the tool roll axis “R T ”.
  • rotation of the cylinder 146 about the roll axis “R” of the gimbal 42 may rotate the first and second jaws 22 , 24 about the tool roll axis “R T ” and rotation of the handle 116 about the roll axis “R” of the gimbal 42 may rotate the tool 20 about the shaft roll axis “R S ”.
  • rotation of the cylinder 146 and/or the handle 116 about the roll axis “R” may be scaled in a positive, neutral, or negative manner to rotation of the tool roll axis “R T ” and/or the shaft roll axis “R S ”.
  • rotation reference may be made to U.S. Provisional Patent Application Ser. No. 62/265,457, filed Dec. 10, 2015, entitled “ROBOTIC SURGICAL SYSTEMS WITH INDEPENDENT ROLL, PITCH, AND YAW SCALING” (now U.S. Pat. No. 10,893,913), the entire contents of which are hereby incorporated by reference.
  • the cylinder 146 can be used to control functions or features of the system other than rolling the tool 20 about the tool roll axis “R T ”.
  • the cylinder 146 could be used to roll a camera associated with the cylinder, navigate through a graphical user interface (GUI) on the display 44 , actuate a function of the tool 20 (e.g., fire staples from one of the first or second jaw 22 , 24 ), etc.
  • GUI graphical user interface
  • the user interface 40 is in operable communication with the robot system 10 to perform a surgical procedure on a patient “P”; however, it is envisioned that the user interface 40 may be in operable communication with a surgical simulator (not shown) to virtually actuate a robot system and/or tool in a simulated environment.
  • the surgical robot system 1 may have a first mode where the user interface 40 is coupled to actuate the robot system 10 and a second mode where the user interface 40 is coupled to the surgical simulator to virtually actuate a robot system.
  • the surgical simulator may be a standalone unit or be integrated into the processing unit 30 .
  • the surgical simulator virtually responds to a clinician interfacing with the user interface 40 by providing visual, audible, force, and/or haptic feedback to a clinician through the user interface 40 .
  • the surgical simulator moves representative tools that are virtually acting on tissue at a simulated surgical site.
  • the surgical simulator may allow a clinician to practice a surgical procedure before performing the surgical procedure on a patient.
  • the surgical simulator may be used to train a clinician on a surgical procedure.
  • the surgical simulator may simulate “complications” during a proposed surgical procedure to permit a clinician to plan a surgical procedure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manipulator (AREA)

Abstract

An input device handle for controlling a robotic system includes a body and a cylinder. The body defines an opening that rotatably receives the cylinder. The cylinder defines a roll axis such that rotation of the cylinder relative to the body about the roll axis is configured to rotate a tool of a robot about a first axis defined by the tool.

Description

    BACKGROUND
  • Robotic surgical systems have been used in minimally invasive medical procedures. During a medical procedure, the robotic surgical system is controlled by a surgeon interfacing with a user interface. The user interface allows the surgeon to manipulate an end effector that acts on a patient. The user interface includes an input controller or handle that is moveable by the surgeon to control the robotic surgical system.
  • Robotic surgical systems typically used a scaling factor to scale down the motions of the surgeon's hands to determine the desired position of the end effector within the patient so that the surgeon could more precisely move the end effector inside the patient. However, the larger the scaling factor, the farther the surgeon had to move the input device handle to move the end effector the same distance. Since the input device handle has a fixed range of motion, this meant that for larger scaling factors the surgeon may have reached an end of the range of motion of an input handle more often.
  • In addition, during a medical procedure a surgeon may need to rotate the end effector about a roll axis. For example, during a suturing procedure, large rotations of an end effector may be required. Such large rotations typically require multiple clutching events of an input device handle or unnatural rotations of the input device handle.
  • There is a need for an input device handle for a robotic surgical system that is able to handle large rotations about the roll axis.
  • SUMMARY
  • This disclosure generally relates to an input device handle including a body and a cylinder that is rotatable relative to the body. Rotation of the cylinder is configured to affect rotation of the tool such that the tool can be rotating without rolling of the arm of the clinician. By allowing the tool to be rotated without rolling the arm of the clinician, the tool can be continuously rolled without clutching of the user interface or being limited by anatomical limits of the clinician.
  • In an aspect of the present disclosure, an input device handle for controlling a robot includes a body and a cylinder. The body defines an opening that rotatably receives the cylinder. The cylinder defines a roll axis such that rotation of the cylinder relative to the body about the roll axis is configured to rotate a tool of the robot about a first axis that is defined by the tool. The rotation of the cylinder about the roll axis may be scaled to rotation of the tool about the first axis.
  • In aspects, the cylinder frictionally engages the body such that as the body is rotated about the roll axis, the cylinder is rotated about the roll axis. Rotation of the body about the roll axis may be configured to rotate the tool of the robot about the first axis. Alternatively, rotation of the body about the roll axis may be configured to rotate a shaft supporting the tool about a second axis that is defined by the shaft. The first and second axis may be coincident with one another.
  • In some aspects, the body may include a connection portion that defines the opening. The connection portion may be configured to couple to an input shaft of a gimbal of a user interface.
  • In certain aspects, the input device handle includes an actuation control that is pivotally coupled to the body and that is configured to actuate jaws of the tool. The body may include a button that is configured to control a function of the tool.
  • In particular aspects, the cylinder includes an engagement feature. The engagement feature may be alternating ribs and recesses. Additionally or alternatively, the engagement feature may be a textured surface.
  • In another aspect of the present disclosure, a robotic system includes a robot and a user interface. The robot includes an arm and a tool that is support at the end of the arm. The tool defines a first axis. The user interface is in operable communication with the robot to control the tool. The user interface includes a control arm, a gimbal, and an input shaft. The gimbal is supported by the control arm and has an input shaft. The input device handle is coupled to the input shaft and defines a roll axis. The input device handle includes a body and a cylinder. The body defines an opening that rotatably receives the cylinder. The cylinder is disposed within the opening defined in the body and is rotatable about a roll axis such that rotation of the cylinder relative to the body about the roll axis rotates the tool about the first axis.
  • In aspects, rotation of the cylinder about the roll axis rotates the tool about the first axis. Rotation of the body about the roll axis may rotate the tool about the first axis.
  • In some aspects, the robot includes a shaft that supports the tool and defines a second axis. Rotation of the body about the tool axis may rotate the shaft about the second axis.
  • In particular aspects, the gimbal includes a first sensor that is configured to detect rotation of the input shaft relative to the gimbal. The first sensor can be disposed within the input shaft. The input device handle can include a second sensor that is configured to detect rotation of the cylinder relative to the body.
  • In another aspect of the present disclosure, a method of manipulating a tool of a robot using an input device handle of a user interface includes rotating a cylinder of the input device handle relative to a body of the input device handle about a roll axis that is defined by an input shaft of the user interface to rotate a tool of the robot about a first axis which is defined by the tool.
  • In aspects, the method further includes rotating the body about the roll axis to rotate the tool about the first axis. The method may include rotating the body about the roll axis to rotate a shaft that supports the tool about a second axis defined by the shaft. The method may include articulating the tool relative to the shaft before rotating the cylinder. Articulating the tool relative to the shaft may include articulating the first axis relative to the second axis.
  • Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various aspects of the present disclosure are described herein below with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:
  • FIG. 1 is a schematic illustration of a user interface and a robotic system in accordance with the present disclosure;
  • FIG. 2 is a perspective view of a input device handle supported on an end of a control arm of the user interface of FIG. 1;
  • FIG. 3 is a cutaway view of a body cavity of a patient showing a tool of the robotic surgical system of FIG. 1 inserted in the body cavity;
  • FIG. 4 is a side perspective view of the input device handle of FIG. 2; and
  • FIG. 5 is a perspective view of the tool of FIG. 3.
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician. In addition, as used herein the term “neutral” is understood to mean non-scaled.
  • This disclosure generally relates to an input device handle for use with a user interface to control a robotic system. The input device handle includes a rotation control that is associated with one or more roll axes of a tool of the robotic system. The rotation control includes a cylinder capable of rotation about a roll axis of a gimbal of the user interface relative to a body of the input device handle. The cylinder may be associated with rotation of the tool about a tool axis defined between jaws of the tool. In addition, rotation of the body of the input device handle about the roll axis of the gimbal may be associated with rotation about the tool axis. Alternatively, the tool may be articulated relative to a shaft supporting the tool and rotation of the body of the input device handle about the roll axis of the gimbal may be associated with rotation about a shaft axis defined by the shaft.
  • Referring to FIG. 1, a robotic surgical system 1 in accordance with the present disclosure is shown generally as a robotic system 10, a processing unit 30, and a user interface 40. The robotic system 10 generally includes linkages 12 and a robot base 18. The linkages 12 moveably support an end effector or tool 20 which is configured to act on tissue. The linkages 12 may be in the form of arms each having an end 14 that supports an end effector or tool 20 which is configured to act on tissue. In addition, the ends 14 of the arms 12 may include an imaging device 16 for imaging a surgical site “S”. The user interface 40 is in communication with robot base 18 through the processing unit 30.
  • The user interface 40 includes a display device 44 which is configured to display three-dimensional images. The display device 44 displays three-dimensional images of the surgical site “S” which may include data captured by imaging devices 16 positioned on the ends 14 of the arms 12 and/or include data captured by imaging devices that are positioned about the surgical theater (e.g., an imaging device positioned within the surgical site “5”, an imaging device positioned adjacent the patient “P”, imaging device 56 positioned at a distal end of an imaging arm 52). The imaging devices (e.g., imaging devices 16, 56) may capture visual images, infra-red images, ultrasound images, X-ray images, thermal images, and/or any other known real-time images of the surgical site “5”. The imaging devices transmit captured imaging data to the processing unit 30 which creates three-dimensional images of the surgical site “5” in real-time from the imaging data and transmits the three-dimensional images to the display device 44 for display.
  • The user interface 40 also includes gimbals 42 which are supported on control arms 43 which allow a clinician to manipulate the robotic system 10 (e.g., move the arms 12, the ends 14 of the arms 12, and/or the tools 20). Each of the gimbals 42 is in communication with the processing unit 30 to transmit control signals thereto and to receive feedback signals therefrom. Additionally or alternatively, each of the gimbals 42 may include input devices handles 100 (FIG. 2) which allow the surgeon to manipulate (e.g., clamp, grasp, fire, open, close, rotate, thrust, slice, etc.) the tools 20 supported at the ends 14 of the arms 12.
  • With additional reference to FIG. 2, each of the input devices handles 100 is moveable through a predefined workspace to move the ends 14 of the arms 12 within a surgical site “5”. The three-dimensional images on the display device 44 are orientated such that the movement of the input handle 42, as a result of the movement of the input device handles 100, moves the ends 14 of the arms 12 as viewed on the display device 44. It will be appreciated that the orientation of the three-dimensional images on the display device 44 may be mirrored or rotated relative to view from above the patient “P”. In addition, it will be appreciated that the size of the three-dimensional images on the display device 44 may be scaled to be larger or smaller than the actual structures of the surgical site permitting a clinician to have a better view of structures within the surgical site “S”. As the input devices handles 100 are moved, the tools 20 are moved within the surgical site “S” as detailed below. As detailed herein, movement of the tools 20 may also include movement of the ends 14 of the arms 12 which support the tools 20.
  • For a detailed discussion of the construction and operation of a robotic surgical system 1, reference may be made to U.S. Pat. No. 8,828,023, the entire contents of which are incorporated herein by reference.
  • Referring to FIGS. 2 and 3, the input device handle 100 is supported on a connection arm 46 of the gimbal 42. The connection arm 46 defines a roll axis “R” of the user interface 40. It will be appreciated that rotation of the connection arm 46 about the roll axis “R” rotates the tool 20 about tool roll axis “RT” as shown in FIG. 3.
  • With reference to FIG. 4, the input device handle 100 in accordance with the present disclosure includes a body 110, an actuation control 120, one or more control buttons 132-136, and a rotation control 140. The body 110 includes a connection portion 112 and a handle 116 extending proximally from the connection portion 112. The connection portion 112 that defines an opening 114 which rotatably receives the rotation control 140. The actuation control 120 may be in the form of a trigger that is pivotally coupled to the body 110. Pivoting the actuation control 120 between a first position and a second position may actuate jaws 22, 24 (FIG. 3) of the tool 20 between a first or open configuration and a second or closed configuration. The buttons 132-136 are in operable communication with the processing unit 30 (FIG. 1) to selectively control functions of the tool 20. For example, button 132 may fix the configuration of the jaws 22, 24 relative to one another, button 134 may fire a fastener (not shown) from one of jaws 22, 24, and button 136 may actuate a knife (not shown) through the jaws 22, 24. Additionally or alternatively, one of the buttons 132-136 may activate a source of electrosurgical energy such that electrosurgical energy is delivered to tissue via the tool 20.
  • The rotation control 140 includes a coupling neck 142, an end cap 144, and a cylinder 146. The coupling neck 142 is disposed about the connection arm 46 of the gimbal 42 to couple the input device handle 100 to the connection arm 46. The coupling neck 142 is rotatably fixed to the connection arm 46 and the cylinder 146 such that rotation of the cylinder 146 rotates the connection arm 46 about the roll axis “R” of the gimbal 42. The cylinder 146 is rotatably disposed within the opening 114 of the body 110 such that the cylinder 146 may be rotated relative to the body 110. The cylinder 146 may be frictionally engaged with the body 110 such that the cylinder 146 rotates with the body 110 in response to the body 110 being rotated about the roll axis “R” of the gimbal 42. The cylinder 146 may include engagement features 148 that are engagable by a clinician to rotate the cylinder 146 relative to the body 110. It is envisioned that the cylinder 146 may be engaged by the thumb of a clinician gripping the handle 114. The engagement features 148 may be alternating ribs and recesses as shown in FIG. 4. Additionally or alternatively, the engagement features 148 may include a textured surface or any known surface or feature that enhances engagement of a finger of a clinician with the cylinder 146.
  • Rotation of the cylinder 146 is measured by a rotation sensor, such as a rotary encoder 152, in the connection arm 46 supporting the input device handle 100. It is envisioned that the rotatory encoder 152 can be disposed within the connection arm 46 and/or within the gimbal 42 to detect rotation of the connection arm 46 about the roll axis “R”. In addition, the rotational position of the cylinder 146 relative to the input device handle 100 could also be measured using a second sensor or encoder 154 in the body 110, which may allow improved gravity compensation of the input device handle 100 and other more advanced control functions. As described above, rotation of the cylinder 146 can be accomplished by rotating the entire input device handle 100 and allowing the friction between the cylinder 146 and the input device handle 100 to rotate the cylinder 146, or the input device handle 100 can be held fixed and the cylinder 146 can be rotated relative to the input device handle 100 by a thumb of a clinician. In both cases, rotation of the cylinder 146 about the roll axis “R” of the gimbal 42 is measured and is used to control rolling motion of the instrument 20.
  • By providing a cylinder 146 that is rotatable relative to the body 110 of the input device handle 100, the dexterity of the clinician can be increased by allowing large rotations of the tool 20 about the tool roll axis “RT” (FIG. 5) with minimal or no rotation of the handle 116 about the roll axis “R” of the gimbal 42.
  • With additional reference to FIG. 5, a tool 20 may include first and second jaws 22, 24 that are pivotally supported at an end of a tool shaft 26. The first and second jaws 22, 24 define the tool roll axis “RT” that passes through a center line between the first and second jaws 22, 24 and the tool shaft 26 defines a shaft roll axis “RS”. In such embodiments, rotation of the cylinder 146 and/or the handle 116 about the roll axis “R” of the gimbal 42, rotates the first and second jaws 22, 24 about the tool roll axis “RT”. Alternatively, rotation of the cylinder 146 about the roll axis “R” of the gimbal 42 may rotate the first and second jaws 22, 24 about the tool roll axis “RT” and rotation of the handle 116 about the roll axis “R” of the gimbal 42 may rotate the tool 20 about the shaft roll axis “RS”.
  • It is contemplated that the rotation of the cylinder 146 and/or the handle 116 about the roll axis “R” may be scaled in a positive, neutral, or negative manner to rotation of the tool roll axis “RT” and/or the shaft roll axis “RS”. For a detailed discussion of scaling of rotation reference may be made to U.S. Provisional Patent Application Ser. No. 62/265,457, filed Dec. 10, 2015, entitled “ROBOTIC SURGICAL SYSTEMS WITH INDEPENDENT ROLL, PITCH, AND YAW SCALING” (now U.S. Pat. No. 10,893,913), the entire contents of which are hereby incorporated by reference.
  • It will be appreciated that during a surgical procedure that the pitch and yaw motions of the input device handle 100 remain correctly mapped to the tool pitch axis “PT” and the tool yaw axis “YT” as viewed on the display 44. For example, if the clinician rotates the first and second jaws 22, 24 about the tool roll axis “RT” using the cylinder 146, pitching the input device handle 100 down will continue to pitch the tool 20 down relative to the tool pitch axis “PT”.
  • It is envisioned that the cylinder 146 can be used to control functions or features of the system other than rolling the tool 20 about the tool roll axis “RT”. For example, the cylinder 146 could be used to roll a camera associated with the cylinder, navigate through a graphical user interface (GUI) on the display 44, actuate a function of the tool 20 (e.g., fire staples from one of the first or second jaw 22, 24), etc.
  • As detailed above and shown in FIG. 1, the user interface 40 is in operable communication with the robot system 10 to perform a surgical procedure on a patient “P”; however, it is envisioned that the user interface 40 may be in operable communication with a surgical simulator (not shown) to virtually actuate a robot system and/or tool in a simulated environment. For example, the surgical robot system 1 may have a first mode where the user interface 40 is coupled to actuate the robot system 10 and a second mode where the user interface 40 is coupled to the surgical simulator to virtually actuate a robot system. The surgical simulator may be a standalone unit or be integrated into the processing unit 30. The surgical simulator virtually responds to a clinician interfacing with the user interface 40 by providing visual, audible, force, and/or haptic feedback to a clinician through the user interface 40. For example, as a clinician interfaces with the input device handles 100, the surgical simulator moves representative tools that are virtually acting on tissue at a simulated surgical site. It is envisioned that the surgical simulator may allow a clinician to practice a surgical procedure before performing the surgical procedure on a patient. In addition, the surgical simulator may be used to train a clinician on a surgical procedure. Further, the surgical simulator may simulate “complications” during a proposed surgical procedure to permit a clinician to plan a surgical procedure.
  • While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope of the claims appended hereto.

Claims (21)

1. (canceled)
2. A robotic system comprising:
a robot including an arm and a tool supported at the end of the arm, the tool defining a first axis; and
a user interface in operable communication with the robot to control the tool, the user interface including a control arm, a gimbal supported by the control arm and having an input shaft, and an input device handle coupled to the input shaft, the input shaft defining a roll axis, the input device handle including:
a body defining an opening; and
a cylinder rotatably disposed within the opening and rotatable about the roll axis, wherein rotation of the cylinder relative to the body about the roll axis rotates the tool about the first axis.
3. The robotic system according to claim 2, wherein the rotation of the cylinder about the roll axis rotates the tool about the first axis.
4. The robotic system according to claim 2, wherein rotation of the body about the roll axis rotates the tool about the first axis.
5. The robotic system according to claim 2, wherein the robot includes a shaft supports the tool and defines a second axis.
6. The robotic system according to claim 5, wherein rotation of the body about the roll axis rotates the shaft about the second axis.
7. The robotic system according to claim 2, wherein the gimbal includes a first sensor to detect rotation of the input shaft relative to the gimbal.
8. The robotic system according to claim 7, wherein the first sensor is disposed within the input shaft.
9. The robotic system according to claim 7, wherein the input device handle includes a second sensor to detect rotation of the cylinder relative to the body.
10. The robotic system according to claim 2, wherein the tool of the robot is physically remote and disconnected from the input device handle, and wherein the roll axis of the cylinder is separated from the longitudinal axis of the tool of the robot.
11. The robotic system according to claim 10, wherein rotation of the cylinder about the roll axis is configured to rotate a shaft pivotally supporting the tool about a second axis defined by the shaft.
12. A method of manipulating a tool of a robot using an input device handle of a user interface, the method comprising:
rotating a cylinder of the input device handle relative to a body of the input device handle about a roll axis defined by an input shaft of the user interface to rotate a tool of the robot about a first axis defined by the tool.
13. The method according to claim 12, further comprising rotating the body about the roll axis to rotate the tool about the first axis.
14. The method according to claim 12, further comprising rotating the body about the roll axis to rotate a shaft that supports the tool about a second axis defined by the shaft.
15. The method according to claim 13, further comprising articulating the tool relative to the shaft before rotating the cylinder.
16. An input device handle for controlling a tool of a robot that is physically remote and disconnected from the input device handle, the input device handle comprising:
a body defining a body axis; and
a cylinder rotatably disposed within the body, the cylinder defining a roll axis which is coincident with the body axis, wherein:
rotation of the cylinder about the roll axis is configured to rotate the tool about a first axis defined by a longitudinal axis of the tool, wherein the roll axis of the cylinder is separated from the longitudinal axis of the tool of the robot; and
rotation of the body about the body axis is configured to rotate a shaft, pivotally supporting the tool, about a second axis defined by the shaft.
17. The input device handle according to claim 16, wherein the cylinder frictionally engages the body such that as the body is rotated about the roll axis, the cylinder is rotated about the roll axis.
18. The input device handle according to claim 16, wherein the body includes a connection portion that defines an opening for rotatable receipt of the cylinder, the connection portion configured to couple to an input shaft of a gimbal of a user interface.
19. The input device handle according to claim 16, further comprising an actuation control pivotally coupled to the body and configured to actuate jaws of the tool.
20. The input device handle according to claim 16, wherein the body includes a button configured to control a function of the tool.
21. The input device handle according to claim 16, wherein the rotation of the cylinder about the roll axis is scaled to rotation of the tool about the first axis.
US17/399,224 2016-03-03 2021-08-11 Input device handle for robotic surgical systems capable of large rotations about a roll axis Pending US20210369375A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/399,224 US20210369375A1 (en) 2016-03-03 2021-08-11 Input device handle for robotic surgical systems capable of large rotations about a roll axis
US18/428,314 US20240164860A1 (en) 2016-03-03 2024-01-31 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662302866P 2016-03-03 2016-03-03
PCT/US2017/020341 WO2017151850A1 (en) 2016-03-03 2017-03-02 Input device handle for robotic surgical systems capable of large rotations about a roll axis
US201816081728A 2018-08-31 2018-08-31
US17/399,224 US20210369375A1 (en) 2016-03-03 2021-08-11 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2017/020341 Continuation WO2017151850A1 (en) 2016-03-03 2017-03-02 Input device handle for robotic surgical systems capable of large rotations about a roll axis
US16/081,728 Continuation US11090126B2 (en) 2016-03-03 2017-03-02 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/428,314 Continuation US20240164860A1 (en) 2016-03-03 2024-01-31 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Publications (1)

Publication Number Publication Date
US20210369375A1 true US20210369375A1 (en) 2021-12-02

Family

ID=59743227

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/081,728 Active 2037-09-26 US11090126B2 (en) 2016-03-03 2017-03-02 Input device handle for robotic surgical systems capable of large rotations about a roll axis
US17/399,224 Pending US20210369375A1 (en) 2016-03-03 2021-08-11 Input device handle for robotic surgical systems capable of large rotations about a roll axis
US18/428,314 Pending US20240164860A1 (en) 2016-03-03 2024-01-31 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/081,728 Active 2037-09-26 US11090126B2 (en) 2016-03-03 2017-03-02 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/428,314 Pending US20240164860A1 (en) 2016-03-03 2024-01-31 Input device handle for robotic surgical systems capable of large rotations about a roll axis

Country Status (4)

Country Link
US (3) US11090126B2 (en)
EP (1) EP3422987A4 (en)
CN (1) CN108697475B (en)
WO (1) WO2017151850A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697475B (en) 2016-03-03 2021-10-15 柯惠Lp公司 Input device handle for a robotic surgical system capable of substantial rotation about a roll axis
SG10202005706YA (en) * 2019-06-20 2021-01-28 Ss Innovations China Co Ltd Surgeon input device for minimally invasive surgery
EP4188267A1 (en) * 2020-07-27 2023-06-07 Covidien LP Methods and applications for flipping an instrument in a teleoperated surgical robotic system
US11806107B2 (en) * 2020-12-07 2023-11-07 Virtuoso Surgical, Inc. Physician input device for a concentric tube surgical robot

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659939B2 (en) * 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US8004229B2 (en) * 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US8271130B2 (en) * 2009-03-09 2012-09-18 Intuitive Surgical Operations, Inc. Master controller having redundant degrees of freedom and added forces to create internal motion
US7942868B2 (en) * 2006-06-13 2011-05-17 Intuitive Surgical Operations, Inc. Surgical instrument with parallel motion mechanism
US8641663B2 (en) 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system input device
US8918207B2 (en) 2009-03-09 2014-12-23 Intuitive Surgical Operations, Inc. Operator input device for a robotic surgical system
ES2387255T3 (en) * 2010-04-14 2012-09-19 Tuebingen Scientific Medical Gmbh Surgical instrument with elastically movable instrument head
US9456839B2 (en) * 2010-06-18 2016-10-04 Intuitive Surgical Operations, Inc. Scissor bias for direct pull surgical instrument
EP2595558A2 (en) * 2010-07-23 2013-05-29 Board of Regents of the University of Texas System Surgical cooling device
DE102010043584A1 (en) 2010-11-08 2012-05-10 Kuka Laboratories Gmbh Medical workstation
CN102028548B (en) * 2011-01-14 2012-03-07 哈尔滨工业大学 Clamp-type surgical instrument for abdominal cavity minimally invasive surgery robot
CN102028549B (en) * 2011-01-17 2012-06-06 哈尔滨工业大学 Catheter robot system for minimally invasive interventional operation in blood vessel
WO2013063675A1 (en) * 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
US9161760B2 (en) * 2011-12-29 2015-10-20 Mako Surgical Corporation Surgical tool for robotic arm with rotating handle
CN117398193A (en) * 2012-06-01 2024-01-16 直观外科手术操作公司 Redundant axes and degrees of freedom of a hardware-constrained remote center robotic manipulator
US9358074B2 (en) * 2012-06-01 2016-06-07 Intuitive Surgical Operations, Inc. Multi-port surgical robotic system architecture
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
KR102218243B1 (en) * 2013-03-15 2021-02-22 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Software configurable manipulator degrees of freedom
US9445865B2 (en) 2013-09-16 2016-09-20 Covidien Lp Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue
AU2015259635B2 (en) * 2014-05-15 2019-04-18 Covidien Lp Systems and methods for controlling a camera position in a surgical robotic system
US20170100197A1 (en) * 2014-06-05 2017-04-13 Medrobotics Corporation Articulating robotic probes, systesm and methods incorporating the same, and methods for performing surgical procedures
WO2016015233A1 (en) 2014-07-30 2016-02-04 Covidien Lp Surgical instruments capable of being selectively disassembled to facilitate replacement of disposable components and/or sterilization of reusable components
CN108697475B (en) 2016-03-03 2021-10-15 柯惠Lp公司 Input device handle for a robotic surgical system capable of substantial rotation about a roll axis

Also Published As

Publication number Publication date
US20190090971A1 (en) 2019-03-28
CN108697475A (en) 2018-10-23
EP3422987A4 (en) 2019-10-23
CN108697475B (en) 2021-10-15
EP3422987A1 (en) 2019-01-09
US11090126B2 (en) 2021-08-17
US20240164860A1 (en) 2024-05-23
WO2017151850A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
US11653991B2 (en) Control arm assemblies for robotic surgical systems
US10500003B2 (en) Control of device including mechanical arms
US20230082915A1 (en) Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
US20210369375A1 (en) Input device handle for robotic surgical systems capable of large rotations about a roll axis
JP2020022770A (en) Systems and methods for positioning manipulator arm by clutching within null-perpendicular space concurrent with null-space movement
US20230372040A1 (en) Robotic surgical systems with roll, pitch, and yaw realignment including trim and flip algorithms

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PEINE, WILLIAM;REEL/FRAME:057372/0372

Effective date: 20180831

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED