US20210341228A1 - Plate forming part of a heat exchanger, and heat exchanger comprising at least one such plate - Google Patents

Plate forming part of a heat exchanger, and heat exchanger comprising at least one such plate Download PDF

Info

Publication number
US20210341228A1
US20210341228A1 US17/279,909 US201917279909A US2021341228A1 US 20210341228 A1 US20210341228 A1 US 20210341228A1 US 201917279909 A US201917279909 A US 201917279909A US 2021341228 A1 US2021341228 A1 US 2021341228A1
Authority
US
United States
Prior art keywords
plate
opening
heat exchanger
distribution means
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/279,909
Inventor
Julien Tissot
Kamel Azzouz
Michael Lissner
Cédric De Vaulx
Patrick Leblay
Sébastien Garnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Assigned to VALEO SYSTEMES THERMIQUES reassignment VALEO SYSTEMES THERMIQUES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Azzouz, Kamel, LISSNER, Michael, DE VAULX, Cédric, Garnier, Sébastien, LEBLAY, Patrick, TISSOT, JULIEN
Publication of US20210341228A1 publication Critical patent/US20210341228A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels

Definitions

  • the present invention relates to plates forming part of a heat exchanger.
  • the subject matter concerns such a plate, a tube comprising such a plate, and a heat exchanger having at least one such tube.
  • the motor vehicle is equipped with an installation which comprises a refrigerant circuit within which a refrigerant circulates, and a heat-transfer liquid circuit within which a heat-transfer liquid circulates.
  • the refrigerant circuit comprises a compressor for compressing the refrigerant, a thermal exchanger for cooling the refrigerant at constant pressure, an expansion member to permit expansion of the refrigerant, and a heat exchanger which is arranged to permit a thermal transfer between the refrigerant and the heat-transfer liquid.
  • the heat exchanger is an exchanger formed of plates that are stacked and joined together in order to form tubes delimiting a circulation channel for the refrigerant or for the heat-transfer liquid and inlet and outlet manifolds for the refrigerant or for the heat-transfer liquid.
  • the plate comprises openings for supplying the circulation channel with heat-transfer liquid or refrigerant.
  • the plate also comprises openings arranged to form the manifolds.
  • the circulation channel provides the heat-transfer liquid or the refrigerant with a passage section which is a surface taken perpendicularly to a plane in which the plate extends and perpendicularly to an axis of longitudinal extent of the plate.
  • the tubes are parallel to one another and extend in a horizontal direction orthogonal to the direction of the manifolds.
  • the manifolds are preferably aligned according to a vertical, parallel to a direction of gravity.
  • the heat exchanger comprises upper circulation channels which overhang lower circulation channels.
  • a first problem lies in a poor distribution of the refrigerant and/or of the heat-transfer liquid inside the circulation channel. Poor distribution of this kind lessens the efficacy of the thermal transfer between the refrigerant and the heat-transfer liquid.
  • a second problem lies in too great a speed of circulation of the refrigerant and/or of the heat-transfer liquid inside the circulation channel, which also minimizes the thermal transfer between the refrigerant and the heat-transfer liquid.
  • a third problem lies in the fact that, in the position of use of the exchanger, the refrigerant and/or the heat-transfer liquid flows into the manifolds in such a way as to supply the lower circulation channels with more refrigerant and/or heat-transfer liquid than the upper circulation channels, because of the gravitational attraction of the refrigerant and/or of the heat-transfer liquid.
  • An object of the present invention is to make available a plate forming part of a heat exchanger which permits optimization of a distribution of the refrigerant and/or of the heat-transfer liquid inside the circulation channel that the plate partially delimits.
  • An object of the present invention is to make available a plate forming part of a heat exchanger which permits optimization of a supply of refrigerant and/or of heat-transfer liquid to the inside of the circulation channel that the plate partially delimits.
  • Another object of the present invention is to make available a plate forming part of a heat exchanger which reduces a speed of circulation of the refrigerant and/or of the heat-transfer liquid inside the circulation channel, in a particular zone where the distribution is usually non-uniform and/or inside the manifold.
  • Another object of the present invention is to make available a plate which is arranged to homogenize a circulation of the refrigerant and/or of the heat-transfer liquid in all of the channels, whether lower or upper, of the heat exchanger.
  • Another object of the present invention is to make available a particular arrangement of the plate, the latter being either part of a heat exchanger of which a circulation path is arranged in a U shape, either for a heat exchanger between a refrigerant and a heat-transfer liquid and for a heat exchanger between a refrigerant and an air flow, or else a heat exchanger of which a circulation path is arranged in an I shape, in particular for a heat exchanger between a refrigerant and an air flow.
  • Another object of the present invention is to make available a heat exchanger comprising at least one such plate, the heat exchanger being either a heat exchanger between a refrigerant and a heat-transfer liquid, such as a heat exchanger interposed between a refrigerant circuit and a heat-transfer liquid circuit, or a heat exchanger between a refrigerant and an air flow.
  • a plate of the present invention is a plate forming part of a heat exchanger and intended to delimit at least one channel for circulation of a fluid.
  • the plate comprises a bottom, and at least one raised edge which surrounds the bottom.
  • the plate comprises at least one opening configured to supply the channel with fluid.
  • the opening is shaped according to an opening profile.
  • the plate is equipped with a fluid distribution means shaped according to a distribution means profile which is homothetic with the opening profile of the opening.
  • the plate advantageously comprises any one at least of the following technical features, alone or in combination:
  • the present invention also relates to a tube formed of at least two plates that are joined together, of which at least one plate is as described.
  • the tube advantageously comprises any one at least of the following features, alone or in combination:
  • FIG. 1 is a schematic view of an installation comprising at least one heat exchanger according to the invention
  • FIG. 2 is a schematic view of a first heat exchanger participating in the installation shown in FIG. 1 ,
  • FIG. 3 is a schematic front view of a plate forming part of the first heat exchanger illustrated in FIG. 2 , in a first design variant of the plate,
  • FIG. 4 is a schematic front view of a plate forming part of the first heat exchanger illustrated in FIG. 2 , in a second design variant of the plate,
  • FIG. 5 is a schematic front view of a distribution means with which plate illustrated in FIG. 3 is equipped, in a first embodiment of the distribution means,
  • FIG. 6 is a schematic front view of a distribution means with which the plate illustrated in FIG. 3 is equipped, in a second embodiment of the distribution means,
  • FIG. 7 is a schematic view, along a curvilinear section, of the distribution means illustrated in FIG. 5 or 6 , in a particular design variant of the distribution means,
  • FIG. 8 is a schematic front view of a distribution means with which the plate illustrated in FIG. 4 is equipped
  • FIG. 9 is a schematic view, in partial cross section, of the first heat exchanger illustrated in FIG. 2 .
  • FIG. 10 is a schematic view of a second heat exchanger participating in the installation shown in FIG. 1 .
  • FIG. 11 is a schematic front view of a plate forming part of the second heat exchanger illustrated in FIG. 10 , in a first design variant of the plate,
  • FIG. 12 is a schematic front view of a plate forming part of the second heat exchanger illustrated in FIG. 10 , in a second design variant of the plate.
  • a motor vehicle is equipped with an element 1 which has to be cooled or heated, for example in order to optimize its functioning.
  • an element 1 is in particular an electric motor or combustion engine intended to at least partially propel the motor vehicle, a battery provided to store electrical energy, a heat and/or cold storage device, or similar.
  • the motor vehicle is equipped with an installation 2 which comprises a refrigerant circuit 3 within which a refrigerant 4 circulates, for example carbon dioxide or the like, and a heat-transfer liquid circuit within which a heat-transfer liquid 6 circulates, in particular glycol water or the like.
  • the installation 2 comprises at least one heat exchanger 11 , 12 according to the present invention.
  • the installation 2 is described below in order to better understand the present invention, but the features of the described installation 2 are not limiting for the heat exchanger 11 , 12 of the present invention. In other words, the installation 2 is able to have distinct structural features and/or operating modes different than those described, without the heat exchanger 11 , 12 departing from the rules of the present invention.
  • the refrigerant circuit 3 comprises a compressor 7 for compressing the refrigerant 4 , a refrigerant/external air exchanger 8 for cooling the refrigerant 4 at constant pressure, for example placed at the front of the motor vehicle, an expansion member 9 to permit expansion of the refrigerant 4 , and a first heat exchanger 11 which is arranged to permit thermal transfer between the refrigerant 4 and the heat-transfer liquid 6 .
  • the refrigerant circuit 3 comprises a second heat exchanger 12 which is arranged to permit a thermal transfer between the refrigerant 4 and an air flow 10 , the air flow 10 circulating for example inside a conduit 13 of a ventilating, heating and/or air-conditioning system, before being delivered to the interior of a passenger compartment of the motor vehicle.
  • the element 1 is in communication with a thermal exchanger 14 , the thermal exchanger 14 being able to modify a temperature of the element 1 , in particular by direct contact between the element 1 and the thermal exchanger 14 , the thermal exchanger 14 being part of the heat-transfer liquid circuit 5 .
  • the heat-transfer liquid circuit 5 comprises a pump 15 for making the heat-transfer liquid 6 circulate within the heat-transfer liquid circuit 5 .
  • the heat-transfer liquid circuit 5 comprises the first heat exchanger 11 , which is also part of the refrigerant circuit 3 .
  • the first heat exchanger 11 comprises at least one first circulation path 21 for the refrigerant 4 and at least one second circulation path 22 for the heat-transfer liquid 6 , the first circulation path 21 and the second circulation path 22 being arranged to permit a heat exchange between the refrigerant 4 present inside the first circulation path 21 and the heat-transfer liquid 6 present inside the second circulation path 22 .
  • the first heat exchanger 11 has several first circulation paths 21 and several second circulation paths 22 .
  • a first circulation path 21 is interposed between two second circulation paths 22
  • a second circulation path 22 is interposed between two first circulation paths 21 .
  • the first heat exchanger 11 thus has an alternating arrangement of first circulation paths 21 and second circulation paths 22 .
  • the heat-transfer liquid 6 flows from the pump 15 to the first heat exchanger 11 , then flows inside the first heat exchanger 11 , using the second circulation paths 22 to exchange heat energy with the refrigerant 4 present inside the first circulation paths 21 , then returns to the pump 15 .
  • the refrigerant 4 flows from the compressor 7 to the refrigerant/external air exchanger 8 , then to the expansion member 9 .
  • the refrigerant 4 then flows inside the first heat exchanger 11 , using the first circulation paths 21 inside which the refrigerant 4 exchanges heat energy with the heat-transfer liquid 6 present inside the second circulation paths 22 , then returns to the compressor 7 .
  • the refrigerant 4 flows inside the second heat exchanger 12 , using circulation paths inside which the refrigerant 4 exchanges heat energy with the air flow 10 , then returns to the compressor 7 .
  • the first heat exchanger 11 is parallelepipedal overall and comprises an end-plate 100 which is provided with a heat-transfer liquid admission 101 by way of which the heat-transfer liquid 6 accesses the interior of the first heat exchanger 11 .
  • the end-plate 100 is also provided with a heat-transfer liquid evacuation point 102 by way of which the heat-transfer liquid 6 is evacuated from the first heat exchanger 11 .
  • the second circulation paths 22 extend between the heat-transfer liquid admission point 101 and the heat-transfer liquid evacuation point 102 .
  • the end-plate 100 also has a refrigerant admission point 103 by way of which the refrigerant 4 accesses the interior of the first heat exchanger 11 , and a refrigerant evacuation point 104 by way of which the refrigerant 4 is evacuated from the first heat exchanger 11 .
  • the first circulation paths 21 extend between the refrigerant admission point 103 and the refrigerant evacuation point 104 .
  • the first heat exchanger 11 is a plate-type exchanger which comprises a plurality of plates 105 , such as the plate 105 illustrated in FIG. 3 or 4 .
  • the plate 105 extends principally along an axis of longitudinal extent A 1 .
  • the plate 105 comprises a bottom 106 , and at least one raised edge 107 which surrounds the bottom 106 .
  • the raised edge 107 is formed at the periphery of the bottom 106 , and the raised edge 107 surrounds the bottom 106 .
  • the plate 105 is arranged in a generally rectangular tub, the bottom of the tub being formed by the bottom 106 , and the edges of the tub being formed by the raised edge 107 .
  • the raised edge 107 comprises two longitudinal raised edges 108 a , 108 b which are formed opposite each other, and two lateral raised edges 109 a , 109 b which are formed opposite each other.
  • the plate 105 comprises four openings 110 , especially circular openings, which are distributed in pairs at each longitudinal end of the plate 105 , more particularly at each of the corners of the bottom 106 of the plate 105 . Two of these openings 110 are configured to communicate with one of the first circulation paths 21 formed at one side of the bottom 106 , and the two other openings 110 are configured to communicate with one of the second circulation paths 22 formed at another side of the bottom 106 .
  • Two of the openings 110 formed at the same longitudinal end of the plate 105 are each surrounded by a collar 120 , such that these openings 110 , encircled by this collar 120 , extend in a plane that is offset with respect to a bottom plane P 4 in which the bottom 106 is inscribed.
  • the two other openings 110 situated at the other longitudinal end of the plate 105 , extend in the bottom plane P 4 .
  • Two plates 105 are engaged one inside the other and are in contact with each other at least by way of their raised edges 107 .
  • two plates 105 are stacked one above the other and provide between them a space which forms a channel 111 a , 111 b for circulation of the refrigerant 4 or of the heat-transfer liquid 6 .
  • the plate 105 borders, by way of one of its faces, called the first face 118 a , a first channel ilia for circulation of one of the refrigerant 4 and the heat-transfer liquid 6 , and it borders, by way of the other of its faces, called the second face 118 b , a second channel nib for circulation of the other of the refrigerant 4 and of heat-transfer liquid 6 .
  • the bottom 106 is provided with a plurality of protuberances 112 which are, for example, of frustoconical shape.
  • the bottom 106 comprises a rib 113 , which is arranged such that the channel in has a U-shaped profile.
  • the rib 113 is parallel to a direction D of extent of the longitudinal raised edges 108 , the direction D of extent of the longitudinal raised edges 108 being preferably parallel to the axis of longitudinal extent A 1 of the plate 105 .
  • the rib 113 extends between a first longitudinal end 114 and a second longitudinal end 115 , the first longitudinal end 114 being in contact with the raised edge 107 , and preferably in contact with a first lateral raised edge 109 a that the raised edge 107 comprises.
  • the second longitudinal end 115 is situated at a first non-zero distance D 1 from the raised edge 107 , the first distance D 1 being taken between the second longitudinal end 115 and the raised edge 107 , measured along the axis of longitudinal extent A 1 of the plate 105 .
  • the channel 111 a , 111 b is shaped as a U whose branches are parallel to the longitudinal raised edges 108 a , 108 b of the plate 105 and are separated by the rib 113 , while the base of the U lies next to a second lateral raised edge 109 which is formed longitudinally opposite the first lateral raised edge 109 a .
  • the rib 113 is formed at an equal second distance D 2 from the two longitudinal edges 108 of the plate 105 , the second distance D 2 being measured between the rib 113 , taken at its center, and one of the longitudinal raised edges 108 a , 108 b , perpendicularly to the axis of longitudinal extent A 1 of the plate 105 .
  • the rib 113 is offset by a non-zero distance with respect to a median plane P 1 of the plate 105 , the median plane P 1 being orthogonal to the bottom 106 and parallel to the axis of longitudinal extent A 1 of the plate 105 , the distance being measured between the rib 113 , taken at its center, and the median plane P 1 , perpendicularly to the latter.
  • the raised edge 107 extends in an edge plane P 3 which is transverse to the bottom plane P 4 in which the bottom 106 extends.
  • the lateral raised edges 109 a , 109 b and the longitudinal raised edges 108 a , 108 b extend within respective edge planes P 3 which each form, with the bottom plane P 4 , an angle of between 91° and 140°, preferably of between 910 and 95°.
  • the plate 105 is made of a metallic material able to be stamped in order to form in particular the protuberances 112 and the rib 113 by stamping of the plate 105 , the metallic material being chosen from among the thermally conductive metallic materials, in particular aluminum or aluminum alloy.
  • the openings 110 are shaped according to an opening profile X 1 which is circular, seen in a plane parallel to the bottom plane P 4 .
  • the opening 110 is arranged according to a first circle T 1 formed around a first center C 1 and of first radius R 1 .
  • the plate 105 is advantageously equipped with a distribution means 300 , 400 for distributing the refrigerant 4 and/or the heat-transfer liquid 6 .
  • the distribution means 300 , 400 is shaped according to a distribution means profile X 2 which is homothetic with the opening profile X 1 of the opening 110 .
  • the distribution means 300 , 400 is intended to disturb a flow of the refrigerant 4 and/or of the heat-transfer liquid 6 inside channels 111 a , 111 b that are occupied by the refrigerant 4 and the heat-transfer liquid 6 , respectively.
  • the distribution means is also intended to form an obstacle to the flow of the refrigerant 4 and/or of the heat-transfer liquid 6 directly at the outlet of the opening, in particular inside lower channels 111 a , 111 b of the first heat exchanger 11 with respect to upper channels 111 a , 111 b of the first heat exchanger 11 , in the position of use of the latter.
  • the distribution means 300 is formed integrally with the plate. It will be understood that the distribution means 300 is formed by at least one deformation of the plate 105 , obtained in particular by stamping of the plate, for example formed simultaneously with the protuberances 112 and with the rib 113 .
  • the distribution means 300 comprises at least one protrusion 301 which emerges from the bottom 106 toward the first channel 111 a and which is formed on an arc of a circle Y 1 .
  • the are of a circle Y 1 is formed around a second center C 2 which is for example coincident with the first center C 1 around which the opening 110 is formed.
  • the are of a circle Y 1 is of a second radius R 2 .
  • the protrusions 301 are in a plurality, two immediately adjacent protrusions 301 being separated by a circulation passage 302 .
  • the circulation passage 302 is a passage formed in order to permit a circulation of the refrigerant 4 or of the heat-transfer liquid 6 between two protrusions 301 .
  • the protrusions 301 are distributed at uniform angles around the second center C 2 .
  • the protrusions 301 are distributed on the are of a circle Y 1 in such a way that, on the are of a circle Y 1 , the protrusions 301 are formed in pairs with the same angular sector V from each other, the angular sector V being taken between two respective planes of symmetry Z of the two protrusions 301 .
  • the protrusions 301 are of a respective protrusion length W taken between two radial ends 303 of protrusions 301 in a plane parallel to the bottom plane P 4 , the protrusion lengths W being equal to each other.
  • the protrusions 301 are distributed on the are of a circle Y 1 in such a way that, on the are of a circle Y 1 , the protrusions 301 are formed in pairs with a variable distance V between each couple of protrusions 301 , the distance V being taken between two respective planes of symmetry Z of the two protrusions 301 .
  • the protrusions 301 are of a respective protrusion length W taken between two radial ends 303 of protrusions 301 in a plane parallel to the bottom plane P 4 , at least two protrusion lengths W being different from each other.
  • the protrusions 301 are different from each other in height.
  • a height H 1 , H 2 of a protrusion 301 is taken between a protrusion base 304 , which is formed in the bottom plane P 4 of the plate 105 , and a protrusion summit 305 , which is formed opposite the protrusion base 304 .
  • the protrusion summit 305 is formed within a plane which is parallel to the bottom plane P 4 in which the bottom 106 is inscribed.
  • the first height H 1 of a protrusion 301 is less than a second height H 2 of another protrusion 301 .
  • the distribution means 400 comprises a ring 401 which is intended to come into abutment against the collar 102 arranged around the opening 110 .
  • the ring 401 is an add-on component which is intended to be interposed axially between two couples of successive plates 105 , each couple of successive plates 105 comprising a plate 105 provided with a collar 120 and a plate 105 free of a collar, in line with the same opening.
  • the ring 401 and the plate 105 are connected by a solder.
  • the ring 401 is circular, seen in a plane parallel to the bottom plane P 4 , and is arranged along a second circle T 2 formed around a third center C 3 and of third radius R 3 .
  • the ring 401 comprises an annulus 402 which is arranged along the second circle T 2 .
  • the annulus 402 is intended to come into abutment against the collar 120 of a plate 105 .
  • the annulus 402 is provided with a plurality of crests 404 which extend from the annulus 402 toward the channel 111 a , 111 b and preferably from the annulus 402 toward the bottom 106 of the immediately succeeding plate, by bearing against this bottom 106 .
  • Two immediately adjacent crests 404 are separated by a circulation corridor 405 for the refrigerant 4 or for the heat-transfer liquid 6 .
  • the circulation corridor 405 is a passage formed in order to permit a circulation of the refrigerant 4 or of the heat-transfer liquid 6 between two crests 404 .
  • the crests 404 are distributed at uniform angles around the third center C 3 .
  • the crests 404 are distributed on the second circle T 2 in such a way that, on the second circle T 2 , the crests 404 are formed in pairs with the same angular sector V from each other, the angular sector V being taken between two respective planes of symmetry Z of the two crests 404 .
  • the crests 404 are of a respective crest length W taken between two radial ends 406 of crests 404 in a plane parallel to an annulus plane P 5 in which the annulus is inscribed, the crest lengths W being equal to each other.
  • the crests are distributed on the second circle in such a way that, on the second circle, the crests are formed in pairs with a variable distance between each couple of crests, the distance being taken between two respective planes of symmetry of the two crests.
  • the crests being of a respective length taken between two radial ends of crests in a plane parallel to the bottom plane, at least two crest lengths are different from each other.
  • the crests 404 are of identical height.
  • a height H of a crest 404 is taken between a crest base 407 , integral with the annulus 402 , and a crest summit 408 formed opposite the crest base 407 .
  • the crest summit 408 is formed within a plane which is parallel to the annulus plane P 5 .
  • the ring 401 comprises a first annular surface S 1 formed by an axial edge 409 of the ring 401 , and a second annular surface S 2 formed by a terminal edge 410 of each of the crests 404 .
  • the collar 120 delimits a seat which receives the annulus 402 of the ring 401 , the ring 401 being intended to be joined to the plate 105 by soldering the annulus 402 to the collar 120 . More particularly, the first annular surface S 1 is in contact with the collar 120 of the first plate 105 , while the second annular surface S 2 is in contact with the bottom 106 of the second plate 105 .
  • the first heat exchanger 11 is represented partially and in the position of use in which a manifold 30 , formed by the openings 110 provided one above the other, extends vertically along an axis of extent A 2 of the manifold 30 .
  • the manifold 30 is formed parallel to an axis of gravity G.
  • the third center C 3 of each of the rings 401 and the first center C 1 of each of the openings 110 provided with a ring 401 are aligned along the axis of extent A 3 of the manifold 30 .
  • the first heat exchanger 11 here comprises, as shown schematically, four first tubes 123 a which are provided with the distribution means 400 and four second tubes 123 b which have no distribution means 400 .
  • the second tubes 123 b are upper tubes which overhang the first, lower tubes 123 a .
  • the distribution means 400 form a plug countering a rapid flow of the refrigerant 4 or of the heat-transfer liquid 6 inside the manifold 3 , then inside the first tubes 123 a which are preferably supplied with refrigerant 4 or with heat-transfer liquid 6 in a first heat exchanger of the prior art.
  • the second heat exchanger 12 is parallelepipedal overall and comprises an end-plate 100 which is provided with a refrigerant admission point 103 by way of which the refrigerant 4 accesses the interior of the second heat exchanger 12 , and a refrigerant evacuation point 104 by way of which the refrigerant 4 is evacuated from the second heat exchanger 12 .
  • the circulation paths extend between the refrigerant admission point 103 and the refrigerant evacuation point 104 .
  • the second heat exchanger 12 is intended to modify a temperature of the air flow 10 .
  • the second heat exchanger 12 is a plate-type exchanger which comprises a plurality of plates 205 , such as the plate 205 illustrated in FIG. 11 or 12 .
  • the plate 205 extends principally along an axis of longitudinal extent A 1 .
  • the plate 205 comprises a bottom 206 , and at least one raised edge 207 which surrounds the bottom 206 .
  • the raised edge 207 is formed at the periphery of the bottom 206 , and the raised edge 207 surrounds the bottom 206 .
  • the plate 205 is arranged in a generally rectangular tub, the bottom of the tub being formed by the bottom 206 , and the edges of the tub being formed by the raised edge 207 .
  • the raised edge 207 comprises two longitudinal raised edges 208 a , 208 b which are formed opposite each other, and two lateral raised edges 209 a , 209 b which are formed opposite each other.
  • the plate 205 comprises two openings 210 , especially circular openings, which are distributed at each longitudinal end of the plate 205 .
  • One of these openings 110 is configured to communicate with a first circulation path provided at one side of the bottom 206 .
  • One of these openings 210 is surrounded by a collar 220 , such that this opening 210 , encircled by this collar 220 , extends in a plane that is offset with respect to a bottom plane P 4 in which the bottom 206 is inscribed.
  • the other opening 210 situated at the other longitudinal end of the plate 205 , extends in the bottom plane P 4 .
  • Two plates 205 are engaged one inside the other and are in contact with each other at least by way of their raised edges 207 .
  • two plates 205 are stacked one inside the other and provide between them a space which forms a first channel 111 a for circulation of the refrigerant 4 .
  • the plate 205 borders, by way of one of its faces, called the first face 218 a , a first channel 211 a for circulation of the refrigerant 4 , and it borders, by way of the other of its faces, called the second face 218 b , a second channel 111 b inside which the air flow 10 circulates.
  • the bottom 206 is provided with a plurality of protuberances 212 which are, for example, of frustoconical shape.
  • the raised edge 207 extends in an edge plane P 3 which is transverse to the bottom plane P 4 in which the bottom 206 extends.
  • the lateral raised edges 209 a , 209 b and the longitudinal raised edges 208 a , 208 b extend within respective edge planes P 3 which each form, with the bottom plane P 4 , an angle of between 91° and 140°, preferably of between 91° and 95°.
  • the plate 205 is made of a metallic material able to be stamped in order to form in particular the protuberances 212 by stamping of the plate 205 , the metallic material being chosen from among the thermally conductive metallic materials, in particular aluminum or aluminum alloy.
  • the openings 210 are shaped according to an opening profile X 1 which is circular, seen in a plane parallel to the bottom plane P 4 .
  • the opening 210 is arranged according to a first circle T 1 formed around a first center C 1 and of first radius R 1 .
  • the plate 205 is advantageously equipped with a distribution means 300 , 400 for distributing the refrigerant 4 .
  • the distribution means 300 , 400 is shaped according to a distribution means profile X 2 which is homothetic with the opening profile X 1 of the opening 210 .
  • the distribution means 300 , 400 is intended to disturb a flow of the refrigerant 4 inside the first channel 211 a that is occupied by the refrigerant 4 .
  • the distribution means 300 , 400 is also intended to form an obstacle to the flow of the refrigerant 4 directly at the outlet of the opening 210 , in particular inside first lower channels 211 a of the second heat exchanger 12 with respect to first upper channels 211 a of the second heat exchanger 12 , in the position of use of the latter.
  • the distribution means 300 is formed integrally with the plate. It will be understood that the distribution means 300 is formed by at least one deformation of the plate 205 , obtained in particular by stamping of the plate 205 , for example formed simultaneously with the protuberances 112 .
  • the distribution means 300 illustrated in FIG. 11 comprises the same features as the distribution means in FIGS. 5 to 7 . It will be understood that the features and advantages of the distribution means 300 with which the plate 105 shown in FIG. 3 is equipped are entirely transferable to the distribution means 300 with which the plate 205 shown in FIG. 11 is equipped, and they provide the same effects.
  • the distribution means 400 comprises a ring 401 which is intended to come into contact with the collar 102 arranged around the opening 210 .
  • the ring 401 is an add-on component which is interposed axially between two couples of successive plates 205 , each couple of successive plates 205 comprising a plate 205 provided with a collar 220 and a plate 205 free of a collar, along one and the same manifold.
  • the ring 401 and the plate 205 are connected by a solder.
  • the distribution means 400 illustrated in FIG. 12 comprises the same features as the distribution means in FIGS. 8 and 9 . It will be understood that the features and advantages of the distribution means 400 with which the plate 105 shown in FIG. 4 is equipped are entirely transferable to the distribution means 400 with which the plate 205 shown in FIG. 12 is equipped, and they provide the same effects.
  • the invention as has just been described does indeed achieve its set objectives, making it possible to homogenize the exchanges of heat along the entire length of the plate, thereby avoiding the zones of lesser exchange, for example at least inside a peripheral portion of the circulation channel 111 , 211 surrounding at least partially the openings 110 , 210 of the plate 105 , 205 .
  • the invention is not limited to the means and configurations exclusively described and illustrated, however, and also applies to all equivalent means or configurations and to any combination of such means or configurations.
  • the invention has been described here in its application to a heat exchanger involving refrigerant/heat-transfer liquid or air, it goes without saying that it applies to any shape and/or size of plate or to any type of fluid circulating along the plate according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a plate (105) forming part of a heat exchanger and intended to delimit at least one channel (111a, 111b) for circulation of a fluid. The plate (105) comprises a bottom (106), and at least one raised edge (107) which surrounds the bottom (106). The plate (105) comprises at least one opening (110) configured to supply the channel (111a, 111b) with fluid. The opening (110) is shaped according to an opening profile (X1). The plate (105) is equipped with a fluid distribution means (300) shaped according to a distribution means profile (X2) which is homothetic with the opening profile (X1) of the opening (110).

Description

  • The present invention relates to plates forming part of a heat exchanger. The subject matter concerns such a plate, a tube comprising such a plate, and a heat exchanger having at least one such tube.
  • In the automotive sector, it is common to have to modify a temperature of an element such as an electric motor, a battery, a heat and/or cold storage device or similar. To this end, the motor vehicle is equipped with an installation which comprises a refrigerant circuit within which a refrigerant circulates, and a heat-transfer liquid circuit within which a heat-transfer liquid circulates. The refrigerant circuit comprises a compressor for compressing the refrigerant, a thermal exchanger for cooling the refrigerant at constant pressure, an expansion member to permit expansion of the refrigerant, and a heat exchanger which is arranged to permit a thermal transfer between the refrigerant and the heat-transfer liquid.
  • The heat exchanger is an exchanger formed of plates that are stacked and joined together in order to form tubes delimiting a circulation channel for the refrigerant or for the heat-transfer liquid and inlet and outlet manifolds for the refrigerant or for the heat-transfer liquid. The plate comprises openings for supplying the circulation channel with heat-transfer liquid or refrigerant. The plate also comprises openings arranged to form the manifolds. The circulation channel provides the heat-transfer liquid or the refrigerant with a passage section which is a surface taken perpendicularly to a plane in which the plate extends and perpendicularly to an axis of longitudinal extent of the plate.
  • The tubes are parallel to one another and extend in a horizontal direction orthogonal to the direction of the manifolds. In the position of use of the heat exchanger, the manifolds are preferably aligned according to a vertical, parallel to a direction of gravity. Thus, the heat exchanger comprises upper circulation channels which overhang lower circulation channels.
  • A first problem lies in a poor distribution of the refrigerant and/or of the heat-transfer liquid inside the circulation channel. Poor distribution of this kind lessens the efficacy of the thermal transfer between the refrigerant and the heat-transfer liquid.
  • A second problem lies in too great a speed of circulation of the refrigerant and/or of the heat-transfer liquid inside the circulation channel, which also minimizes the thermal transfer between the refrigerant and the heat-transfer liquid.
  • A third problem lies in the fact that, in the position of use of the exchanger, the refrigerant and/or the heat-transfer liquid flows into the manifolds in such a way as to supply the lower circulation channels with more refrigerant and/or heat-transfer liquid than the upper circulation channels, because of the gravitational attraction of the refrigerant and/or of the heat-transfer liquid.
  • It is known to form protuberances inside the circulation channel in order to disturb a flow of the refrigerant and/or of the heat-transfer liquid inside the circulation channel.
  • However, there is still a poor distribution of the refrigerant and/or of the heat-transfer liquid inside the circulation channel and/or the manifold, and also too great a speed of circulation of the refrigerant and/or of the heat-transfer liquid inside the circulation channel and/or the manifold, especially at least inside a peripheral portion of the circulation channel that at least partially surrounds the openings of the plate. It is observed that a central zone of the heat exchanger and/or of the passage section sees its temperature modified to a lesser extent than peripheral zones of the heat exchanger and/or of the passage section, and this needs to be improved.
  • An object of the present invention is to make available a plate forming part of a heat exchanger which permits optimization of a distribution of the refrigerant and/or of the heat-transfer liquid inside the circulation channel that the plate partially delimits.
  • An object of the present invention is to make available a plate forming part of a heat exchanger which permits optimization of a supply of refrigerant and/or of heat-transfer liquid to the inside of the circulation channel that the plate partially delimits.
  • Another object of the present invention is to make available a plate forming part of a heat exchanger which reduces a speed of circulation of the refrigerant and/or of the heat-transfer liquid inside the circulation channel, in a particular zone where the distribution is usually non-uniform and/or inside the manifold.
  • Another object of the present invention is to make available a plate which is arranged to homogenize a circulation of the refrigerant and/or of the heat-transfer liquid in all of the channels, whether lower or upper, of the heat exchanger.
  • Another object of the present invention is to make available a particular arrangement of the plate, the latter being either part of a heat exchanger of which a circulation path is arranged in a U shape, either for a heat exchanger between a refrigerant and a heat-transfer liquid and for a heat exchanger between a refrigerant and an air flow, or else a heat exchanger of which a circulation path is arranged in an I shape, in particular for a heat exchanger between a refrigerant and an air flow.
  • Another object of the present invention is to make available a heat exchanger comprising at least one such plate, the heat exchanger being either a heat exchanger between a refrigerant and a heat-transfer liquid, such as a heat exchanger interposed between a refrigerant circuit and a heat-transfer liquid circuit, or a heat exchanger between a refrigerant and an air flow.
  • A plate of the present invention is a plate forming part of a heat exchanger and intended to delimit at least one channel for circulation of a fluid. The plate comprises a bottom, and at least one raised edge which surrounds the bottom. The plate comprises at least one opening configured to supply the channel with fluid. The opening is shaped according to an opening profile.
  • According to the present invention, the plate is equipped with a fluid distribution means shaped according to a distribution means profile which is homothetic with the opening profile of the opening.
  • The plate advantageously comprises any one at least of the following technical features, alone or in combination:
      • the opening profile is circular, the profile being seen in a plane parallel to a bottom plane in which the bottom is inscribed,
      • the plate extending longitudinally and comprising longitudinal ends, the plate comprises at least two openings, which are distributed at each of the longitudinal ends of the plate,
      • the plate comprises at least four openings, which are distributed in pairs at each longitudinal end of the plate. Two of these openings are configured to communicate with a branch of a first channel formed at one side of the bottom, and the two other openings are configured to communicate with a branch of a second channel formed at another side of the bottom,
      • the distribution means is formed integrally with the plate,
      • the distribution means is formed by a deformation of the plate, in particular obtained by stamping of the plate,
      • the distribution means and the plate form a one-piece assembly and are separable from each other only upon destruction of one and/or the other of the distribution means and the plate,
      • the distribution means comprises at least one protrusion which emerges from the bottom toward a first channel,
      • the opening being shaped as a first circle formed around a first center, the distribution means is shaped as an arc of a circle formed partially around a second center, the second center being coincident with the first center,
      • in the bottom plane, the second center is offset with respect to the first center by between 5% and 25% of a first radius of the first circle,
      • the protrusions being in a plurality, two immediately adjacent protrusions are separated by a circulation passage,
      • the circulation passage is a passage formed in order to permit a circulation of the refrigerant or of the heat-transfer liquid,
      • the protrusions are distributed at uniform angles around the second center,
      • it will be understood that the protrusions are distributed on the are of a circle in such a way that, on the are of a circle, the protrusions are formed in pairs at an equal distance from each other, the distance being taken between two respective planes of symmetry of the two protrusions,
      • the protrusions are of a respective protrusion length taken between two radial ends of the protrusions in a plane parallel to the bottom plane,
      • the protrusion lengths are equal to each other,
      • at least two protrusion lengths are different from each other,
      • two consecutive protrusions are spaced apart by an angular sector that varies from a first couple of consecutive protrusions to a second couple of consecutive protrusions,
      • the protrusions are identical in shape and in volume,
      • at least two protrusions are different from each other,
      • the protrusions are different from each other in shape and/or in volume,
      • the protrusions are different from each other in height, the height of one protrusion being taken between a protrusion base, which is formed in the bottom plane of the plate, and a protrusion summit, which is formed opposite the protrusion base,
      • the protrusion summit is formed within a plane which is parallel to the bottom plane in which the bottom is inscribed,
      • the plate comprising a collar formed around the opening, the distribution means comprises a ring which is in abutment against the collar,
      • the ring is circular,
      • the ring is an add-on component which is placed so as to bear against the plate,
      • the ring and the plate are connected by a solder,
      • the ring comprises an annulus which is in abutment against the collar, the annulus being provided with at least one crest which extends from the ring toward a first channel for the fluid,
      • the annulus is circular, seen in a plane parallel to the bottom plane,
      • the annulus is provided with a plurality of crests, two immediately adjacent crests being separated by a circulation corridor,
      • the crests are distributed at uniform angles around a third center,
      • in the bottom plane, the third center is offset with respect to the first center by between 5% and 25% of the first radius of the first circle,
      • the third center and the first center are coincident,
      • two consecutive crests are spaced apart by an angular section that varies from a first couple of consecutive crests to a second couple of consecutive crests,
      • the circulation passage is a passage formed in order to permit a circulation of the refrigerant or of the htl,
      • the crests are identical in shape and in volume,
      • at least two crests are different from each other,
      • the crests are different from each other in shape and/or in volume,
      • the crests are different from each other in length, the length of a crest being taken between two radial ends of the crest,
      • the crests are different from each other in height, the height of the crest being taken between a crest base, which is formed integrally with the ring, and a crest summit, which is formed opposite the crest base,
      • the crest summit is formed within a plane which is parallel to the bottom plane in which the bottom is inscribed,
      • the ring is made of a synthetic material,
      • the ring is arranged to be placed in abutment against the collar,
      • the ring is made of a metallic material,
      • the metallic material is chosen from among the thermally conductive metallic materials, in particular aluminum or aluminum alloy,
      • the ring is intended to be joined by soldering to the collar,
      • the bottom comprises a rib which is arranged such that the first channel has a U-shaped profile,
      • the rib is parallel to a direction of extent of the longitudinal raised edges,
      • the rib extends between a first longitudinal end and a second longitudinal end, the first longitudinal end being in contact with the raised edge, and preferably in contact with a first lateral raised edge that the raised edge comprises, the second longitudinal end being situated at a first non-zero distance from the raised edge,
      • the channel is shaped as a U whose branches are parallel to the longitudinal raised edges of the plate and whose base lies next to a second lateral raised edge which is formed longitudinally opposite the first lateral raised edge,
      • the first branch of the channel and the second branch of the channel are separated by the rib,
      • the rib is formed at an equal distance from the two longitudinal raised edges of the plate,
      • the rib is offset by a second non-zero distance with respect to a median plane of the plate, the median plane being orthogonal to the bottom and parallel to the axis of longitudinal extent of the plate,
      • the plate is provided with at least one protuberance, the distribution means being interposed between the opening and the protuberance,
      • the protuberance has a profile of frustoconical shape,
      • the plate comprises at least two protuberances which are aligned along an axis of lateral extent of the plate orthogonal to an axis of longitudinal extent of the plate.
  • The present invention also relates to a tube formed of at least two plates that are joined together, of which at least one plate is as described.
  • The tube advantageously comprises any one at least of the following features, alone or in combination:
      • two plates are engaged one inside the other, and between them a space is provided which forms the channel for circulation of the fluid,
      • the heat exchanger comprises at least one such tube,
      • the ring comprises a first annular surface formed by an axial edge of the ring, and a second annular surface formed by a terminal edge of each of the crests, the first annular surface being in contact with the collar of the first plate, while the second annular surface is in contact with the bottom of the second plate,
      • the heat exchanger comprises at least one first tube provided with the distribution means and a second tube free of the distribution means,
      • in the position of use of the heat exchanger, the second tube is an upper tube which overhangs the first tube,
      • according to a design variant, at least three plates are engaged one inside another and delimit in pairs a first channel and a second channel, the first channel being configured to be used by a heat-transfer liquid while the second channel is configured to be used by a refrigerant,
      • the heat exchanger comprises a first circulation path participating in a refrigerant circuit inside which a refrigerant circulates, and a second circulation path inside which a heat-transfer liquid circulates, the first circulation path and the second circulation path being arranged to permit a heat exchange between the refrigerant and the heat-transfer liquid. To this end, the bottom comprises a first face bordering the first circulation path and a second face bordering the second circulation path,
      • the first circulation path and the second circulation path are arranged in an I shape,
      • the first circulation path and the second circulation path are arranged in a U shape,
      • the heat-transfer liquid circuit comprises a thermal exchanger able to exchange heat energy with an element that is to be cooled and/or heated, such as an electric motor, a battery, a heat and/or cold storage device or similar.
  • Further features, details and advantages of the invention will become more clearly apparent from reading the following description, which is provided by way of illustration and in which reference is made to the drawings, in which:
  • FIG. 1 is a schematic view of an installation comprising at least one heat exchanger according to the invention,
  • FIG. 2 is a schematic view of a first heat exchanger participating in the installation shown in FIG. 1,
  • FIG. 3 is a schematic front view of a plate forming part of the first heat exchanger illustrated in FIG. 2, in a first design variant of the plate,
  • FIG. 4 is a schematic front view of a plate forming part of the first heat exchanger illustrated in FIG. 2, in a second design variant of the plate,
  • FIG. 5 is a schematic front view of a distribution means with which plate illustrated in FIG. 3 is equipped, in a first embodiment of the distribution means,
  • FIG. 6 is a schematic front view of a distribution means with which the plate illustrated in FIG. 3 is equipped, in a second embodiment of the distribution means,
  • FIG. 7 is a schematic view, along a curvilinear section, of the distribution means illustrated in FIG. 5 or 6, in a particular design variant of the distribution means,
  • FIG. 8 is a schematic front view of a distribution means with which the plate illustrated in FIG. 4 is equipped,
  • FIG. 9 is a schematic view, in partial cross section, of the first heat exchanger illustrated in FIG. 2,
  • FIG. 10 is a schematic view of a second heat exchanger participating in the installation shown in FIG. 1,
  • FIG. 11 is a schematic front view of a plate forming part of the second heat exchanger illustrated in FIG. 10, in a first design variant of the plate,
  • FIG. 12 is a schematic front view of a plate forming part of the second heat exchanger illustrated in FIG. 10, in a second design variant of the plate.
  • It should first of all be noted that the figures set out the invention in a detailed manner in order to implement the invention, it being, of course, possible for said figures to serve to better define the invention if necessary.
  • In FIG. 1, a motor vehicle is equipped with an element 1 which has to be cooled or heated, for example in order to optimize its functioning. Such an element 1 is in particular an electric motor or combustion engine intended to at least partially propel the motor vehicle, a battery provided to store electrical energy, a heat and/or cold storage device, or similar. To this end, the motor vehicle is equipped with an installation 2 which comprises a refrigerant circuit 3 within which a refrigerant 4 circulates, for example carbon dioxide or the like, and a heat-transfer liquid circuit within which a heat-transfer liquid 6 circulates, in particular glycol water or the like. The installation 2 comprises at least one heat exchanger 11, 12 according to the present invention. The installation 2 is described below in order to better understand the present invention, but the features of the described installation 2 are not limiting for the heat exchanger 11, 12 of the present invention. In other words, the installation 2 is able to have distinct structural features and/or operating modes different than those described, without the heat exchanger 11, 12 departing from the rules of the present invention.
  • The refrigerant circuit 3 comprises a compressor 7 for compressing the refrigerant 4, a refrigerant/external air exchanger 8 for cooling the refrigerant 4 at constant pressure, for example placed at the front of the motor vehicle, an expansion member 9 to permit expansion of the refrigerant 4, and a first heat exchanger 11 which is arranged to permit thermal transfer between the refrigerant 4 and the heat-transfer liquid 6. The refrigerant circuit 3 comprises a second heat exchanger 12 which is arranged to permit a thermal transfer between the refrigerant 4 and an air flow 10, the air flow 10 circulating for example inside a conduit 13 of a ventilating, heating and/or air-conditioning system, before being delivered to the interior of a passenger compartment of the motor vehicle.
  • To this end, the element 1 is in communication with a thermal exchanger 14, the thermal exchanger 14 being able to modify a temperature of the element 1, in particular by direct contact between the element 1 and the thermal exchanger 14, the thermal exchanger 14 being part of the heat-transfer liquid circuit 5.
  • The heat-transfer liquid circuit 5 comprises a pump 15 for making the heat-transfer liquid 6 circulate within the heat-transfer liquid circuit 5. The heat-transfer liquid circuit 5 comprises the first heat exchanger 11, which is also part of the refrigerant circuit 3. The first heat exchanger 11 comprises at least one first circulation path 21 for the refrigerant 4 and at least one second circulation path 22 for the heat-transfer liquid 6, the first circulation path 21 and the second circulation path 22 being arranged to permit a heat exchange between the refrigerant 4 present inside the first circulation path 21 and the heat-transfer liquid 6 present inside the second circulation path 22. Preferably, the first heat exchanger 11 has several first circulation paths 21 and several second circulation paths 22. A first circulation path 21 is interposed between two second circulation paths 22, and a second circulation path 22 is interposed between two first circulation paths 21. The first heat exchanger 11 thus has an alternating arrangement of first circulation paths 21 and second circulation paths 22.
  • Inside the heat-transfer liquid circuit 5, the heat-transfer liquid 6 flows from the pump 15 to the first heat exchanger 11, then flows inside the first heat exchanger 11, using the second circulation paths 22 to exchange heat energy with the refrigerant 4 present inside the first circulation paths 21, then returns to the pump 15.
  • Inside the refrigerant circuit 3, the refrigerant 4 flows from the compressor 7 to the refrigerant/external air exchanger 8, then to the expansion member 9.
  • According to a first operating mode of the refrigerant circuit 3, the refrigerant 4 then flows inside the first heat exchanger 11, using the first circulation paths 21 inside which the refrigerant 4 exchanges heat energy with the heat-transfer liquid 6 present inside the second circulation paths 22, then returns to the compressor 7.
  • According to a second operating mode of the refrigerant circuit 3, the refrigerant 4 flows inside the second heat exchanger 12, using circulation paths inside which the refrigerant 4 exchanges heat energy with the air flow 10, then returns to the compressor 7.
  • In FIG. 2, the first heat exchanger 11 is parallelepipedal overall and comprises an end-plate 100 which is provided with a heat-transfer liquid admission 101 by way of which the heat-transfer liquid 6 accesses the interior of the first heat exchanger 11. The end-plate 100 is also provided with a heat-transfer liquid evacuation point 102 by way of which the heat-transfer liquid 6 is evacuated from the first heat exchanger 11. The second circulation paths 22 extend between the heat-transfer liquid admission point 101 and the heat-transfer liquid evacuation point 102. The end-plate 100 also has a refrigerant admission point 103 by way of which the refrigerant 4 accesses the interior of the first heat exchanger 11, and a refrigerant evacuation point 104 by way of which the refrigerant 4 is evacuated from the first heat exchanger 11. The first circulation paths 21 extend between the refrigerant admission point 103 and the refrigerant evacuation point 104.
  • The first heat exchanger 11 is a plate-type exchanger which comprises a plurality of plates 105, such as the plate 105 illustrated in FIG. 3 or 4. The plate 105 extends principally along an axis of longitudinal extent A1. The plate 105 comprises a bottom 106, and at least one raised edge 107 which surrounds the bottom 106. In other words, the raised edge 107 is formed at the periphery of the bottom 106, and the raised edge 107 surrounds the bottom 106. It will be understood that the plate 105 is arranged in a generally rectangular tub, the bottom of the tub being formed by the bottom 106, and the edges of the tub being formed by the raised edge 107. More particularly, the raised edge 107 comprises two longitudinal raised edges 108 a,108 b which are formed opposite each other, and two lateral raised edges 109 a, 109 b which are formed opposite each other.
  • The plate 105 comprises four openings 110, especially circular openings, which are distributed in pairs at each longitudinal end of the plate 105, more particularly at each of the corners of the bottom 106 of the plate 105. Two of these openings 110 are configured to communicate with one of the first circulation paths 21 formed at one side of the bottom 106, and the two other openings 110 are configured to communicate with one of the second circulation paths 22 formed at another side of the bottom 106.
  • Two of the openings 110 formed at the same longitudinal end of the plate 105 are each surrounded by a collar 120, such that these openings 110, encircled by this collar 120, extend in a plane that is offset with respect to a bottom plane P4 in which the bottom 106 is inscribed. The two other openings 110, situated at the other longitudinal end of the plate 105, extend in the bottom plane P4.
  • Two plates 105 are engaged one inside the other and are in contact with each other at least by way of their raised edges 107. In other words, two plates 105 are stacked one above the other and provide between them a space which forms a channel 111 a, 111 b for circulation of the refrigerant 4 or of the heat-transfer liquid 6. More particularly, the plate 105 borders, by way of one of its faces, called the first face 118 a, a first channel ilia for circulation of one of the refrigerant 4 and the heat-transfer liquid 6, and it borders, by way of the other of its faces, called the second face 118 b, a second channel nib for circulation of the other of the refrigerant 4 and of heat-transfer liquid 6.
  • The bottom 106 is provided with a plurality of protuberances 112 which are, for example, of frustoconical shape.
  • The bottom 106 comprises a rib 113, which is arranged such that the channel in has a U-shaped profile. The rib 113 is parallel to a direction D of extent of the longitudinal raised edges 108, the direction D of extent of the longitudinal raised edges 108 being preferably parallel to the axis of longitudinal extent A1 of the plate 105. The rib 113 extends between a first longitudinal end 114 and a second longitudinal end 115, the first longitudinal end 114 being in contact with the raised edge 107, and preferably in contact with a first lateral raised edge 109 a that the raised edge 107 comprises. The second longitudinal end 115 is situated at a first non-zero distance D1 from the raised edge 107, the first distance D1 being taken between the second longitudinal end 115 and the raised edge 107, measured along the axis of longitudinal extent A1 of the plate 105.
  • These arrangements are such that the channel 111 a, 111 b is shaped as a U whose branches are parallel to the longitudinal raised edges 108 a, 108 b of the plate 105 and are separated by the rib 113, while the base of the U lies next to a second lateral raised edge 109 which is formed longitudinally opposite the first lateral raised edge 109 a. The rib 113 is formed at an equal second distance D2 from the two longitudinal edges 108 of the plate 105, the second distance D2 being measured between the rib 113, taken at its center, and one of the longitudinal raised edges 108 a, 108 b, perpendicularly to the axis of longitudinal extent A1 of the plate 105.
  • According to one design variant, the rib 113 is offset by a non-zero distance with respect to a median plane P1 of the plate 105, the median plane P1 being orthogonal to the bottom 106 and parallel to the axis of longitudinal extent A1 of the plate 105, the distance being measured between the rib 113, taken at its center, and the median plane P1, perpendicularly to the latter.
  • The raised edge 107 extends in an edge plane P3 which is transverse to the bottom plane P4 in which the bottom 106 extends. The lateral raised edges 109 a, 109 b and the longitudinal raised edges 108 a, 108 b extend within respective edge planes P3 which each form, with the bottom plane P4, an angle of between 91° and 140°, preferably of between 910 and 95°.
  • The plate 105 is made of a metallic material able to be stamped in order to form in particular the protuberances 112 and the rib 113 by stamping of the plate 105, the metallic material being chosen from among the thermally conductive metallic materials, in particular aluminum or aluminum alloy.
  • The openings 110 are shaped according to an opening profile X1 which is circular, seen in a plane parallel to the bottom plane P4. Thus, the opening 110 is arranged according to a first circle T1 formed around a first center C1 and of first radius R1.
  • The plate 105 is advantageously equipped with a distribution means 300, 400 for distributing the refrigerant 4 and/or the heat-transfer liquid 6. The distribution means 300, 400 is shaped according to a distribution means profile X2 which is homothetic with the opening profile X1 of the opening 110.
  • The distribution means 300, 400 is intended to disturb a flow of the refrigerant 4 and/or of the heat-transfer liquid 6 inside channels 111 a, 111 b that are occupied by the refrigerant 4 and the heat-transfer liquid 6, respectively. The distribution means is also intended to form an obstacle to the flow of the refrigerant 4 and/or of the heat-transfer liquid 6 directly at the outlet of the opening, in particular inside lower channels 111 a, 111 b of the first heat exchanger 11 with respect to upper channels 111 a, 111 b of the first heat exchanger 11, in the position of use of the latter.
  • In FIG. 3, the distribution means 300 is formed integrally with the plate. It will be understood that the distribution means 300 is formed by at least one deformation of the plate 105, obtained in particular by stamping of the plate, for example formed simultaneously with the protuberances 112 and with the rib 113.
  • The distribution means 300 comprises at least one protrusion 301 which emerges from the bottom 106 toward the first channel 111 a and which is formed on an arc of a circle Y1.
  • In FIGS. 5 and 6, the are of a circle Y1 is formed around a second center C2 which is for example coincident with the first center C1 around which the opening 110 is formed. The are of a circle Y1 is of a second radius R2.
  • The protrusions 301 are in a plurality, two immediately adjacent protrusions 301 being separated by a circulation passage 302. The circulation passage 302 is a passage formed in order to permit a circulation of the refrigerant 4 or of the heat-transfer liquid 6 between two protrusions 301.
  • In FIG. 5, the protrusions 301 are distributed at uniform angles around the second center C2. The protrusions 301 are distributed on the are of a circle Y1 in such a way that, on the are of a circle Y1, the protrusions 301 are formed in pairs with the same angular sector V from each other, the angular sector V being taken between two respective planes of symmetry Z of the two protrusions 301.
  • The protrusions 301 are of a respective protrusion length W taken between two radial ends 303 of protrusions 301 in a plane parallel to the bottom plane P4, the protrusion lengths W being equal to each other.
  • In FIG. 6, the protrusions 301 are distributed on the are of a circle Y1 in such a way that, on the are of a circle Y1, the protrusions 301 are formed in pairs with a variable distance V between each couple of protrusions 301, the distance V being taken between two respective planes of symmetry Z of the two protrusions 301.
  • The protrusions 301 are of a respective protrusion length W taken between two radial ends 303 of protrusions 301 in a plane parallel to the bottom plane P4, at least two protrusion lengths W being different from each other.
  • In FIG. 7, taken along the are of a circle Y1, the protrusions 301 are different from each other in height. A height H1, H2 of a protrusion 301 is taken between a protrusion base 304, which is formed in the bottom plane P4 of the plate 105, and a protrusion summit 305, which is formed opposite the protrusion base 304. The protrusion summit 305 is formed within a plane which is parallel to the bottom plane P4 in which the bottom 106 is inscribed. Thus, the first height H1 of a protrusion 301 is less than a second height H2 of another protrusion 301.
  • In FIGS. 8 and 9, the distribution means 400 comprises a ring 401 which is intended to come into abutment against the collar 102 arranged around the opening 110. The ring 401 is an add-on component which is intended to be interposed axially between two couples of successive plates 105, each couple of successive plates 105 comprising a plate 105 provided with a collar 120 and a plate 105 free of a collar, in line with the same opening. The ring 401 and the plate 105 are connected by a solder.
  • The ring 401 is circular, seen in a plane parallel to the bottom plane P4, and is arranged along a second circle T2 formed around a third center C3 and of third radius R3.
  • The ring 401 comprises an annulus 402 which is arranged along the second circle T2. The annulus 402 is intended to come into abutment against the collar 120 of a plate 105.
  • The annulus 402 is provided with a plurality of crests 404 which extend from the annulus 402 toward the channel 111 a, 111 b and preferably from the annulus 402 toward the bottom 106 of the immediately succeeding plate, by bearing against this bottom 106. Two immediately adjacent crests 404 are separated by a circulation corridor 405 for the refrigerant 4 or for the heat-transfer liquid 6. The circulation corridor 405 is a passage formed in order to permit a circulation of the refrigerant 4 or of the heat-transfer liquid 6 between two crests 404.
  • The crests 404 are distributed at uniform angles around the third center C3. The crests 404 are distributed on the second circle T2 in such a way that, on the second circle T2, the crests 404 are formed in pairs with the same angular sector V from each other, the angular sector V being taken between two respective planes of symmetry Z of the two crests 404.
  • The crests 404 are of a respective crest length W taken between two radial ends 406 of crests 404 in a plane parallel to an annulus plane P5 in which the annulus is inscribed, the crest lengths W being equal to each other.
  • According to another embodiment, the crests are distributed on the second circle in such a way that, on the second circle, the crests are formed in pairs with a variable distance between each couple of crests, the distance being taken between two respective planes of symmetry of the two crests. The crests being of a respective length taken between two radial ends of crests in a plane parallel to the bottom plane, at least two crest lengths are different from each other.
  • The crests 404 are of identical height. A height H of a crest 404 is taken between a crest base 407, integral with the annulus 402, and a crest summit 408 formed opposite the crest base 407. The crest summit 408 is formed within a plane which is parallel to the annulus plane P5.
  • The ring 401 comprises a first annular surface S1 formed by an axial edge 409 of the ring 401, and a second annular surface S2 formed by a terminal edge 410 of each of the crests 404.
  • In FIG. 9, the collar 120 delimits a seat which receives the annulus 402 of the ring 401, the ring 401 being intended to be joined to the plate 105 by soldering the annulus 402 to the collar 120. More particularly, the first annular surface S1 is in contact with the collar 120 of the first plate 105, while the second annular surface S2 is in contact with the bottom 106 of the second plate 105.
  • In FIG. 9, the first heat exchanger 11 is represented partially and in the position of use in which a manifold 30, formed by the openings 110 provided one above the other, extends vertically along an axis of extent A2 of the manifold 30. In other words, the manifold 30 is formed parallel to an axis of gravity G. In the position of use of the rings 401 with which the plates 105 are equipped, the third center C3 of each of the rings 401 and the first center C1 of each of the openings 110 provided with a ring 401 are aligned along the axis of extent A3 of the manifold 30.
  • The first heat exchanger 11 here comprises, as shown schematically, four first tubes 123 a which are provided with the distribution means 400 and four second tubes 123 b which have no distribution means 400. The second tubes 123 b are upper tubes which overhang the first, lower tubes 123 a. It will be understood that the distribution means 400 form a plug countering a rapid flow of the refrigerant 4 or of the heat-transfer liquid 6 inside the manifold 3, then inside the first tubes 123 a which are preferably supplied with refrigerant 4 or with heat-transfer liquid 6 in a first heat exchanger of the prior art.
  • This results in an optimization of the distribution of the refrigerant or of the heat-transfer liquid inside all of the tubes 123 a, 123 b of the first heat exchanger, which optimizes a thermal exchange between the refrigerant and the heat-transfer liquid.
  • In FIG. 10, the second heat exchanger 12 is parallelepipedal overall and comprises an end-plate 100 which is provided with a refrigerant admission point 103 by way of which the refrigerant 4 accesses the interior of the second heat exchanger 12, and a refrigerant evacuation point 104 by way of which the refrigerant 4 is evacuated from the second heat exchanger 12. The circulation paths extend between the refrigerant admission point 103 and the refrigerant evacuation point 104. The second heat exchanger 12 is intended to modify a temperature of the air flow 10.
  • The second heat exchanger 12 is a plate-type exchanger which comprises a plurality of plates 205, such as the plate 205 illustrated in FIG. 11 or 12. The plate 205 extends principally along an axis of longitudinal extent A1. The plate 205 comprises a bottom 206, and at least one raised edge 207 which surrounds the bottom 206. In other words, the raised edge 207 is formed at the periphery of the bottom 206, and the raised edge 207 surrounds the bottom 206. It will be understood that the plate 205 is arranged in a generally rectangular tub, the bottom of the tub being formed by the bottom 206, and the edges of the tub being formed by the raised edge 207. More particularly, the raised edge 207 comprises two longitudinal raised edges 208 a, 208 b which are formed opposite each other, and two lateral raised edges 209 a, 209 b which are formed opposite each other.
  • The plate 205 comprises two openings 210, especially circular openings, which are distributed at each longitudinal end of the plate 205. One of these openings 110 is configured to communicate with a first circulation path provided at one side of the bottom 206.
  • One of these openings 210 is surrounded by a collar 220, such that this opening 210, encircled by this collar 220, extends in a plane that is offset with respect to a bottom plane P4 in which the bottom 206 is inscribed. The other opening 210, situated at the other longitudinal end of the plate 205, extends in the bottom plane P4.
  • Two plates 205 are engaged one inside the other and are in contact with each other at least by way of their raised edges 207. In other words, two plates 205 are stacked one inside the other and provide between them a space which forms a first channel 111 a for circulation of the refrigerant 4. More particularly, the plate 205 borders, by way of one of its faces, called the first face 218 a, a first channel 211 a for circulation of the refrigerant 4, and it borders, by way of the other of its faces, called the second face 218 b, a second channel 111 b inside which the air flow 10 circulates.
  • The bottom 206 is provided with a plurality of protuberances 212 which are, for example, of frustoconical shape.
  • The raised edge 207 extends in an edge plane P3 which is transverse to the bottom plane P4 in which the bottom 206 extends. The lateral raised edges 209 a, 209 b and the longitudinal raised edges 208 a, 208 b extend within respective edge planes P3 which each form, with the bottom plane P4, an angle of between 91° and 140°, preferably of between 91° and 95°.
  • The plate 205 is made of a metallic material able to be stamped in order to form in particular the protuberances 212 by stamping of the plate 205, the metallic material being chosen from among the thermally conductive metallic materials, in particular aluminum or aluminum alloy.
  • The openings 210 are shaped according to an opening profile X1 which is circular, seen in a plane parallel to the bottom plane P4. Thus, the opening 210 is arranged according to a first circle T1 formed around a first center C1 and of first radius R1.
  • The plate 205 is advantageously equipped with a distribution means 300, 400 for distributing the refrigerant 4. The distribution means 300, 400 is shaped according to a distribution means profile X2 which is homothetic with the opening profile X1 of the opening 210.
  • The distribution means 300, 400 is intended to disturb a flow of the refrigerant 4 inside the first channel 211 a that is occupied by the refrigerant 4. The distribution means 300, 400 is also intended to form an obstacle to the flow of the refrigerant 4 directly at the outlet of the opening 210, in particular inside first lower channels 211 a of the second heat exchanger 12 with respect to first upper channels 211 a of the second heat exchanger 12, in the position of use of the latter.
  • In FIG. 11, the distribution means 300 is formed integrally with the plate. It will be understood that the distribution means 300 is formed by at least one deformation of the plate 205, obtained in particular by stamping of the plate 205, for example formed simultaneously with the protuberances 112.
  • The distribution means 300 illustrated in FIG. 11 comprises the same features as the distribution means in FIGS. 5 to 7. It will be understood that the features and advantages of the distribution means 300 with which the plate 105 shown in FIG. 3 is equipped are entirely transferable to the distribution means 300 with which the plate 205 shown in FIG. 11 is equipped, and they provide the same effects.
  • In FIG. 12, the distribution means 400 comprises a ring 401 which is intended to come into contact with the collar 102 arranged around the opening 210. The ring 401 is an add-on component which is interposed axially between two couples of successive plates 205, each couple of successive plates 205 comprising a plate 205 provided with a collar 220 and a plate 205 free of a collar, along one and the same manifold. The ring 401 and the plate 205 are connected by a solder.
  • The distribution means 400 illustrated in FIG. 12 comprises the same features as the distribution means in FIGS. 8 and 9. It will be understood that the features and advantages of the distribution means 400 with which the plate 105 shown in FIG. 4 is equipped are entirely transferable to the distribution means 400 with which the plate 205 shown in FIG. 12 is equipped, and they provide the same effects.
  • The invention as has just been described does indeed achieve its set objectives, making it possible to homogenize the exchanges of heat along the entire length of the plate, thereby avoiding the zones of lesser exchange, for example at least inside a peripheral portion of the circulation channel 111, 211 surrounding at least partially the openings 110, 210 of the plate 105, 205.
  • The invention is not limited to the means and configurations exclusively described and illustrated, however, and also applies to all equivalent means or configurations and to any combination of such means or configurations. In particular, whilst the invention has been described here in its application to a heat exchanger involving refrigerant/heat-transfer liquid or air, it goes without saying that it applies to any shape and/or size of plate or to any type of fluid circulating along the plate according to the invention.

Claims (10)

1. A plate forming part of a heat exchanger and configured to delimit at least one channel for circulation of a fluid, the plate comprising:
a bottom;
at least one raised edge which surrounds the bottom; and,
at least one opening configured to supply the channel with fluid, the opening being shaped according to an opening profile,
wherein the plate is equipped with a fluid distribution means shaped according to a distribution means profile which is homothetic with the opening profile of the opening.
2. The plate as claimed in claim 1, wherein the distribution means is formed integrally with the plate.
3. The plate as claimed in claim 2, wherein the distribution means comprises at least one protrusion which emerges from the bottom toward a first channel.
4. The plate as claimed in claim 1, the opening being shaped as a first circle formed around a first center, wherein the distribution means is shaped as an arc of a circle formed partially around a second center, the second center being coincident with the first center.
5. The plate as claimed in claim 3, wherein the protrusions are in a plurality, two immediately adjacent protrusions being separated by a circulation passage.
6. The plate as claimed in claim 1, further comprising a collar formed around the opening, the distribution means comprising a ring which is in abutment against the collar.
7. The plate as claimed in claim 6, wherein the ring comprises an annulus which is in abutment against the collar, the annulus being provided with at least one crest which extends from the ring toward a first channel (111 a, 211 a) for the fluid (4, 6).
8. A tube formed of at least two plates joined together, of which at least one plate configured to delimit at least one channel for circulation of a fluid, the at least one plate comprising:
a bottom;
at least one raised edge which surrounds the bottom;
at least one opening configured to supply the channel with fluid, the opening being shaped according to an opening profile,
the plate is equipped with a fluid distribution means shaped according to a distribution means profile which is homothetic with the opening profile of the opening.
9. A heat exchanger comprising at least one tube as claimed in claim 8.
10. The heat exchanger as claimed in claim 9, the at least one plate comprising a collar formed around the opening, the distribution means comprising a ring which is in abutment against the collar, wherein the ring comprises a first annular surface (S1) formed by an axial edge of the ring, and a second annular surface formed by a terminal edge of each of the crests, the first annular surface being in contact with the collar of the first plate, while the second annular surface is in contact with the bottom of the second plate.
US17/279,909 2018-09-25 2019-09-25 Plate forming part of a heat exchanger, and heat exchanger comprising at least one such plate Pending US20210341228A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1858763 2018-09-25
FR1858763A FR3086378B1 (en) 2018-09-25 2018-09-25 PLATE CONSTITUTING A HEAT EXCHANGER AND HEAT EXCHANGER INCLUDING AT LEAST ONE SUCH PLATE
PCT/FR2019/052268 WO2020065223A1 (en) 2018-09-25 2019-09-25 Constituent plate of a heat exchanger and heat exchanger comprising at least one such plate

Publications (1)

Publication Number Publication Date
US20210341228A1 true US20210341228A1 (en) 2021-11-04

Family

ID=66640997

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/279,909 Pending US20210341228A1 (en) 2018-09-25 2019-09-25 Plate forming part of a heat exchanger, and heat exchanger comprising at least one such plate

Country Status (5)

Country Link
US (1) US20210341228A1 (en)
EP (1) EP3857151A1 (en)
CN (1) CN217424074U (en)
FR (1) FR3086378B1 (en)
WO (1) WO2020065223A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021133073A1 (en) 2021-12-14 2023-06-15 Mahle International Gmbh Stacked plate heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249281A1 (en) * 2003-05-29 2006-11-09 Taeyoung Park Plate for heat exchanger
US20080196874A1 (en) * 2005-04-13 2008-08-21 Alfa Laval Corporate Ab Plate Heat Exchanger
US20110088882A1 (en) * 2008-03-13 2011-04-21 Danfoss A/S Double plate heat exchanger
US20160245591A1 (en) * 2013-10-14 2016-08-25 Airec Ab Plate for heat exchanger and heat exchanger
US20180363946A1 (en) * 2016-02-05 2018-12-20 Kyungdong Navien Co., Ltd. Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540271C1 (en) * 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plate heat exchanger with plates arranged in series
CN103759474B (en) * 2014-01-28 2018-01-02 丹佛斯微通道换热器(嘉兴)有限公司 Plate type heat exchanger
DE102016101677B4 (en) * 2016-01-29 2022-02-17 TTZ GmbH & Co. KG Plate heat transfer device and device for utilizing waste heat
FR3059400A1 (en) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques HEAT EXCHANGER BETWEEN A REFRIGERANT FLUID AND A COOLANT LIQUID
FR3059395B1 (en) * 2016-11-30 2020-09-25 Valeo Systemes Thermiques HOMOGENEIZATION DEVICE FOR THE DISTRIBUTION OF A REFRIGERANT FLUID INSIDE TUBES OF A HEAT EXCHANGER CONSTITUTING A REFRIGERANT FLUID CIRCUIT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249281A1 (en) * 2003-05-29 2006-11-09 Taeyoung Park Plate for heat exchanger
US20080196874A1 (en) * 2005-04-13 2008-08-21 Alfa Laval Corporate Ab Plate Heat Exchanger
US20110088882A1 (en) * 2008-03-13 2011-04-21 Danfoss A/S Double plate heat exchanger
US20160245591A1 (en) * 2013-10-14 2016-08-25 Airec Ab Plate for heat exchanger and heat exchanger
US20180363946A1 (en) * 2016-02-05 2018-12-20 Kyungdong Navien Co., Ltd. Heat exchanger

Also Published As

Publication number Publication date
FR3086378A1 (en) 2020-03-27
WO2020065223A1 (en) 2020-04-02
FR3086378B1 (en) 2021-01-22
CN217424074U (en) 2022-09-13
EP3857151A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
CN102597680B (en) Heat exchanger
US10443955B2 (en) Tube with a reservoir of phase-change material for a heat exchanger
US20180283796A1 (en) Counter spiral tube and shell heat exchanger
US9976816B2 (en) Connecting reinforcement for between the plates of a heat exchanger
KR102412560B1 (en) Electrical energy storage unit cooling device
WO2019155810A1 (en) Cooling device and battery temperature control system
JP6088708B2 (en) Connection module, heat exchanger, and corresponding heat exchange assembly
US20190120563A1 (en) Heat exchanger and thermal management facility for batteries of electric or hybrid vehicles
US20040206482A1 (en) Integrated heat exchanger for vehicle and method for manufacturing the same
US20140174099A1 (en) Heat exchanger having thermoelectric element
US20150345875A1 (en) Flat tube for a charge air heat exchanger and corresponding charge air heat exchanger
CN216432588U (en) Thermal conditioning device
US20210341228A1 (en) Plate forming part of a heat exchanger, and heat exchanger comprising at least one such plate
US11859925B2 (en) Plate forming part of a heat exchanger, and heat exchanger comprising at least one such plate
CN113825966A (en) Temperature control device, in particular cooling device for a motor vehicle
KR20200090775A (en) Falling film heat exchanger
US20220093993A1 (en) Device for regulating the temperature of an electronic component
JP2019507942A (en) Device for cooling a battery and associated manufacturing method
US11768036B2 (en) Heat exchanger and system for cooling a fluid comprising such a heat exchanger
US20220236017A1 (en) Refrigerant/heat transfer liquid heat exchanger
CN111504111B (en) Evaporator and method of manufacture
EP3832785B1 (en) Cooler
WO2018229234A1 (en) Evaporator having two layers, in particular for a motor vehicle air conditioning circuit, comprising u-shaped tubes and a corresponding air conditioning circuit
US20180372426A1 (en) Heat transfer tube for heat exchanger
CN219037682U (en) Heat exchange device, heat exchange system and vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALEO SYSTEMES THERMIQUES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TISSOT, JULIEN;AZZOUZ, KAMEL;LISSNER, MICHAEL;AND OTHERS;SIGNING DATES FROM 20210407 TO 20210421;REEL/FRAME:056144/0503

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION