US20210332505A1 - Fiber having both thermal-insulating and cool-feeling functions, and fabric having both thermal-insulating and cool-feeling functions - Google Patents

Fiber having both thermal-insulating and cool-feeling functions, and fabric having both thermal-insulating and cool-feeling functions Download PDF

Info

Publication number
US20210332505A1
US20210332505A1 US17/191,877 US202117191877A US2021332505A1 US 20210332505 A1 US20210332505 A1 US 20210332505A1 US 202117191877 A US202117191877 A US 202117191877A US 2021332505 A1 US2021332505 A1 US 2021332505A1
Authority
US
United States
Prior art keywords
cool
feeling
thermal
insulating
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/191,877
Inventor
Te-Chao Liao
Sen-Huang Hsu
Chun-Hao FANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nan Ya Plastics Corp
Original Assignee
Nan Ya Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan Ya Plastics Corp filed Critical Nan Ya Plastics Corp
Assigned to NAN YA PLASTICS CORPORATION reassignment NAN YA PLASTICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FANG, Chun-hao, HSU, SEN-HUANG, LIAO, TE-CHAO
Publication of US20210332505A1 publication Critical patent/US20210332505A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/52Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads thermal insulating, e.g. heating or cooling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes

Definitions

  • the present disclosure relates to a fiber and a fabric, and more particularly to a fiber having both thermal-insulating and cool-feeling functions and a fabric having both thermal-insulating and cool-feeling functions.
  • thermal-insulating fiber To meet the public demand for thermal-insulating and cool-feeling functions, a thermal-insulating fiber has been developed.
  • a thermal-insulating material is added during a manufacturing process of the thermal-insulating fiber.
  • the thermal-insulating material can reflect partial infrared ray radiated by heat sources. Therefore, the thermal-insulating fiber can prevent partial heat energy of the sunlight from transferring to the skin, so that discomfort caused by high temperature can be reduced.
  • a cool-feeling fiber has also been developed. A cool-feeling material is added during a manufacturing process of the cool-feeling fiber.
  • the thermal-insulating fiber and the cool-feeling fiber enhance the comfort of the functional cloth in use. Accordingly, a single fiber (i.e., the thermal-insulating fiber or the cool-feeling fiber) cannot easily meet the demand in the market for the functional cloth.
  • a fabric woven by blending the thermal-insulating fiber and the cool-feeling fiber is conventionally provided.
  • simultaneous use of two kinds of fibers i.e., the thermal-insulating fiber and the cool-feeling fiber
  • the blended fabric having both thermal-insulating and cool-feeling effects which has the disadvantage of involving a complicated manufacturing process.
  • the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions and a fabric having both thermal-insulating and cool-feeling functions.
  • the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions.
  • the fiber having both thermal-insulating and cool-feeling functions includes a thermal-insulating part and a cool-feeling part encapsulating the thermal-insulating part.
  • a material of the thermal-insulating part includes a first base material and a near infrared reflective material dispersed in the first base material.
  • the near infrared reflective material is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof.
  • a material of the cool-feeling part includes a second base material and a cool-feeling material dispersed in the second base material.
  • the cool-feeling material is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum.
  • the thermal-insulating part is in a form of a core and the cool-feeling part is in a form of a sheath.
  • a weight ratio of the thermal-insulating part to the cool-feeling part ranges from 3:7 to 7:3.
  • the near infrared reflective material is present in an amount ranging from 0.5 wt % to 5 wt %.
  • the cool-feeling material is present in an amount ranging from 0.5 wt % to 5 wt %.
  • the near infrared reflective material is dispersed in the first base material in a form of nanoparticles.
  • An average diameter of the near infrared reflective material ranges from 100 nm to 1500 nm.
  • the cool-feeling material is dispersed in the second base material in a form of particles.
  • An average diameter of the cool-feeling material ranges from 100 nm to 1500 nm.
  • the first base material is polyethylene terephthalate, polybutylene terephthalate, or a combination thereof.
  • the second base material is polyethylene terephthalate, polybutylene terephthalate, or a combination thereof.
  • the first base material and the second base material are the same or different.
  • a quantity of the thermal-insulating part is plural, and the thermal-insulating parts are encapsulated by the cool-feeling part.
  • the present disclosure provides a fabric having both thermal-insulating and cool-feeling functions.
  • the fabric having both thermal-insulating and cool-feeling functions is woven from the above-mentioned fiber having both thermal-insulating and cool-feeling functions, and the fiber having both thermal-insulating and cool-feeling functions includes a thermal-insulating part and a cool-feeling part encapsulating the thermal-insulating part.
  • a material of the thermal-insulating part includes a first base material and a near infrared reflective material dispersed in the first base material.
  • the near infrared reflective material is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof.
  • a material of the cool-feeling part includes a second base material and a cool-feeling material dispersed in the second base material.
  • the cool-feeling material is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum.
  • a heat flux of the fabric having both thermal-insulating and cool-feeling functions is higher than or equal to 0.145 W/cm 2 .
  • a near infrared reflectivity of the fabric having both thermal-insulating and cool-feeling functions is higher than or equal to 58%.
  • the fabric having both thermal-insulating and cool-feeling functions is capable of providing comfort in use.
  • FIG. 1 is a cross-sectional schematic view of a fiber having both thermal-insulating and cool-feeling functions according to a first embodiment of the present disclosure
  • FIG. 2 is a cross-sectional schematic view of the fiber having both thermal-insulating and cool-feeling functions according to a second embodiment of the present disclosure
  • FIG. 3 is a cross-sectional schematic view of the fiber having both thermal-insulating and cool-feeling functions according to a third embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional schematic view of the fiber having both thermal-insulating and cool-feeling functions according to a fourth embodiment of the present disclosure.
  • Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
  • the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions and a fabric manufactured therefrom.
  • the fiber and the fabric provide both thermal-insulating and cool-feeling effects.
  • a first embodiment of the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions 1 .
  • the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure includes a thermal-insulating part 10 and a cool-feeling part 20 .
  • the thermal-insulating part 10 is completely encapsulated by the cool-feeling part 20 , so that the thermal-insulating part 10 is not exposed from the cool-feeling part 20 . Therefore, there is a larger contact area between the skin and the cool-feeling part 20 .
  • the fiber having both thermal-insulating and cool-feeling functions 1 has a core-sheath structure.
  • the thermal-insulating part 10 is in a form of a core.
  • the cool-feeling part 20 is in a form of a sheath.
  • a sectional shape of the thermal-insulating part 10 is circular, and the thermal-insulating part 10 is located at a center of the fiber having both thermal-insulating and cool-feeling functions 1 .
  • the sectional shape of the thermal-insulating part 10 and a sectional shape of the cool-feeling part 20 are coaxial.
  • the sectional shape of the cool-feeling part 20 is annular, and an outer surface of the thermal-insulating part 10 is covered by the cool-feeling part 20 .
  • structures of the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure are not limited thereto.
  • a weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 can be adjusted according to requirements.
  • the weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 ranges from 3:7 to 7:3.
  • a density of the thermal-insulating part 10 is close to a density of the cool-feeling part 20 , so that a volume ratio of the thermal-insulating part 10 to the cool-feeling part 20 is close to the weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 .
  • the volume ratio of the thermal-insulating part 10 to the cool-feeling part 20 ranges from 3:7 to 7:3.
  • a content ratio of the thermal-insulating part 10 can be adjusted to be higher than a content ratio of the cool-feeling part 20 .
  • the content ratio of the cool-feeling part 20 can be adjusted to be higher than the content ratio of the thermal-insulating part 10 .
  • the weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 ranges from 3:7 to 5:5.
  • the content ratio of the cool-feeling part 20 is higher than the content ratio of the thermal-insulating part 10 .
  • a quantity of the thermal-insulating part 10 is not limited to one.
  • the fiber having both thermal-insulating and cool-feeling functions 1 can have one or more thermal insulating parts 10 .
  • the quantity of the thermal-insulating part 10 is plural, and the thermal-insulating parts 10 are completely encapsulated by the cool-feeling part 20 .
  • the thermal-insulating parts 10 are independent from and do not contact with each other. However, according to practical requirements, the thermal-insulating parts 10 can contact with each other or partially contact with each other.
  • a sectional shape of the fiber having both thermal-insulating and cool-feeling functions 1 is not limited to being circular.
  • the fiber having both thermal-insulating and cool-feeling functions 1 can be a profiled fiber.
  • the sectional shape of the fiber having both thermal-insulating and cool-feeling functions 1 can be triangular, pentagonal, Y-shaped, X-shaped, W-shaped, U-shaped, or cruciform.
  • the sectional shape of a fourth embodiment of the fiber having both thermal-insulating and cool-feeling functions 1 is cruciform.
  • Porosity of the fiber having both thermal-insulating and cool-feeling functions 1 can be adjusted by changing the sectional shape of the fiber having both thermal-insulating and cool-feeling functions 1 , so as to achieve effects of ventilation and perspiration.
  • a fiber with circular sectional shape usually has the porosity of 15%
  • a fiber with triangle sectional shape usually has the porosity of 20%.
  • a material to form the thermal-insulating part 10 includes a first base material, a near infrared reflective material 11 , and an additive.
  • the near infrared reflective material 11 and the additive are dispersed in the first base material.
  • the near infrared reflective material 11 is an inorganic material which can reflect a near infrared (NIR) light (having a wavelength ranging from 780 nm to 1500 nm) in an external environment, so as to block partial heat energy.
  • the near infrared reflective material 11 is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof.
  • the near infrared reflective material 11 is selected from the group consisting of iron-chromium alloy, iron-nickel alloy, copper-bismuth alloy, iron-chromium-bismuth alloy and iron-nickel-bismuth alloy.
  • An average diameter of the near infrared reflective material 11 ranges from 100 nm to 1500 nm.
  • the average diameter of the near infrared reflective material 11 ranges from 200 nm to 1000 nm.
  • the present disclosure is not limited thereto.
  • the near infrared reflective material 11 is present in an amount ranging from 0.5 wt % to 5 wt %.
  • the near infrared reflective material 11 is present in an amount ranging from 3 wt % to 5 wt %.
  • the first base material is a main material of the thermal-insulating part 10 .
  • the first base material can disperse the near infrared reflective material 11 , and adjust the intrinsic viscosity of the material forming the thermal-insulating part 10 .
  • the first base material can be polyester, polyolefin, polyamide, or polyurethane.
  • the polyester can be, but not limited to, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), poly(methyl methacrylate) (PMMA), polyethylene naphthalate (PEN), or any combination thereof.
  • the polyester is polybutylene terephthalate or polyethylene terephthalate.
  • the polyolefin can be, but not limited to, polyethylene (PE), polypropylene (PP), or any combination thereof.
  • the polyamide can be, but not limited to, nylon 6, nylon 66, nylon 12, nylon 46, or any combination thereof.
  • the polyurethane can be, but not limited to, thermoplastic urethane (TPU).
  • the first base material is polyester, and can include more than one kind of polyester, so that the fiber having both thermal-insulating and cool-feeling functions 1 can meet application requirements.
  • the viscosity of the material forming the thermal-insulating part 10 can be suitable for operation of a spinning device.
  • the first base material is polybutylene terephthalate, polyethylene terephthalate, or a combination of polybutylene terephthalate and polyethylene terephthalate.
  • the additive is an optional component.
  • the additive is optionally added into the material forming the thermal-insulating part 10 so as to achieve a specific function.
  • the additive can be an antioxidant, a dispersant, an ultraviolet absorber, or an ultraviolet reflective agent.
  • the antioxidant can prevent the near infrared reflective material 11 from oxidation.
  • the dispersant can help the near infrared reflective material 11 be uniformly dispersed in the first base material.
  • the antioxidant can be a hindered phenol type antioxidant, an amine type antioxidant, a triazine type antioxidant, an organophosphate type antioxidant, or a thioester type antioxidant.
  • the ultraviolet absorber or the ultraviolet reflective agent can provide the fiber having both thermal-insulating and cool-feeling functions 1 with a UV-cut function.
  • the ultraviolet absorber can be a nickel quencher type ultraviolet absorber, an oxanilide type ultraviolet absorber, a benzotriazole type ultraviolet absorber, a benzoate type ultraviolet absorber, or a benzophenone type ultraviolet absorber.
  • the ultraviolet reflective agent can be talc, kaolin, zinc oxide, iron oxide, or titanium dioxide.
  • a material to form the cool-feeling part 20 includes a second base material, a cool-feeling material 21 , and an additive.
  • the cool-feeling material 21 and the additive are dispersed in the second base material.
  • the cool-feeling material 21 is an inorganic material.
  • the cool-feeling material 21 helps dissipate heat energy from the skin of a human body through a temperature difference between the human body and the external environment, so as to provide a cool touch.
  • the cool-feeling material 21 is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum.
  • the cool-feeling material 21 can be a nephrite material or a jadeite material.
  • the nephrite material is a calcium magnesium silicate containing calcium, magnesium, and silicon elements (such as Ca 2 Mg 5 (OH) 2 (Si 4 O 11 ) 2 ).
  • the jadeite material is sodium aluminum silicate containing aluminum, sodium, and silicon elements (such as NaAlSi 2 O 6 ).
  • An average diameter of the cool-feeling material 21 ranges from 100 nm to 1500 nm. Preferably, the average diameter of the cool-feeling material 21 ranges from 500 nm to 1500 nm. However, the present disclosure is not limited thereto.
  • the cool-feeling material 21 is present in an amount ranging from 0.5 wt % to 5 wt %. Preferably, based on the total weight of the cool-feeling part 20 being 100 wt %, the cool-feeling material 21 is present in an amount ranging from 0.5 wt % to 1.5 wt %.
  • the cool-feeling material 21 is present in an excessive amount, a viscosity of the material forming the cool-feeling part 20 will increase, which is unfavorable for manufacturing the fiber.
  • the existing amount of the cool-feeling material 21 is insufficient, a heat dissipation effect of the cool-feeling part 20 is ineffective.
  • the second base material is a main material of the cool-feeling part 20 .
  • the second base material can disperse the cool-feeling material 21 and adjust the intrinsic viscosity of the material forming the cool-feeling part 20 .
  • the second base material can be polyester, polyolefin, polyamide, or polyurethane.
  • the polyester can be, but not limited to, polybutylene terephthalate, polyethylene terephthalate, poly(methyl methacrylate), polyethylene naphthalate, or any combination thereof.
  • the polyolefin can be, but not limited to, polyethylene, polypropylene, or any combination thereof.
  • the polyamide can be, but not limited to, nylon 6, nylon 66, nylon 12, nylon 46, or any combination thereof.
  • the polyurethane can be, but not limited to, thermoplastic urethane.
  • the second base material is polyester, and can include more than one kind of polyester, so that the fiber having both thermal-insulating and cool-feeling functions 1 can meet application requirements.
  • the viscosity of the material forming the cool-feeling part 20 can be suitable for operation of a spinning device.
  • the second base material is polybutylene terephthalate, polyethylene terephthalate, or a combination of polybutylene terephthalate and polyethylene terephthalate.
  • first base material and the second base material can be the same or different.
  • first base material and the second base material are the same, so that compatibility between the first base material and the second base material can be enhanced.
  • the additive is an optional component.
  • the additive is optionally added into the material forming the cool-feeling part 20 so as to achieve a specific function.
  • the additive can be an antioxidant, a dispersant, an ultraviolet absorber, or an ultraviolet reflective agent.
  • the specific antioxidant, dispersant, ultraviolet absorber, and ultraviolet reflective agent are similar to those mentioned previously and are not repeated herein.
  • a method for manufacturing the fiber having both thermal-insulating and cool-feeling functions 1 includes the following steps. Thermal-insulating masterbatches and cool-feeling masterbatches are prepared (step S 100 ). The thermal-insulating masterbatches are used to form the thermal-insulating part 10 of the fiber having both thermal-insulating and cool-feeling functions 1 . The cool-feeling masterbatches are used to form the cool-feeling part 20 of the fiber having both thermal-insulating and cool-feeling functions 1 .
  • the near infrared reflective material 11 , the first base material, and the antioxidant are mixed, melted, and granulated to obtain the thermal-insulating masterbatches.
  • an amount of the near infrared reflective material 11 ranges from 35 phr to 45 phr
  • an amount of the antioxidant is 0.5 phr
  • an amount of the first base material ranges from 54.5 phr to 64.5 phr.
  • a filter pressure value (FPV) of the thermal-insulating masterbatches is lower than 0.5 barg (gauge pressure).
  • An intrinsic viscosity (IV) of the thermal-insulating masterbatches ranges from 0.4 dl/g to 0.8 dl/g.
  • the cool-feeling material 21 , the second base material, and the antioxidant are mixed, melted, and granulated to obtain the cool-feeling masterbatches.
  • an amount of the cool-feeling material 21 ranges from 10 to 20 phr
  • an amount of the antioxidant is 0.5 phr
  • an amount of the second base material ranges from 79.5 to 89.5 phr.
  • a filter pressure value (FPV) of the cool-feeling masterbatches is lower than 0.5 barg (gauge pressure).
  • An intrinsic viscosity (IV) of the cool-feeling masterbatches ranges from 0.4 dl/g to 0.8 dl/g.
  • the method for manufacturing the fiber having both thermal-insulating and cool-feeling functions 1 includes the following steps. 5 wt % to 15 wt % of the thermal-insulating masterbatches and 85 wt % to 95 wt % of PET semi-dull masterbatches are mixed so as to form the material forming the thermal-insulating part 10 .
  • step S 200 5 wt % to 15 wt % of the cool-feeling masterbatches and 85 wt % to 95 wt % of the PET semi-dull masterbatches are mixed to form the material forming the cool-feeling part 20 (step S 200 ).
  • the method for manufacturing the fiber having both thermal-insulating and cool-feeling functions 1 includes the following steps.
  • the material forming the thermal-insulating part 10 and the material forming the cool-feeling part 20 are fed into an inlet of a spinning device with a core-sheath spinneret.
  • a spinning speed of the spinning device is set to be 3000 m/min to 4000 m/min.
  • Yarns produced by the spinning device are taken up as partially oriented yarns (POY) and processed by false twisting to become draw textured yarns (DTY), so that the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure is obtained (step S 300 ).
  • the fabric can also uphold the thermal-insulating and cool-feeling functions.
  • the thermal-insulating part 10 can reflect the near infrared light in sunlight and reduce the storage of heat energy in the fabric.
  • the cool-feeling part 20 can dissipate heat energy generated from the skin toward the external environment, so that the skin can feel a cool touch.
  • the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure possesses the thermal-insulating and cool-feeling effects, and can be directly provided to downstream manufacturers.
  • the downstream manufacturers can manufacture the fabric having both thermal-insulating and cool-feeling functions from the fiber by various weaving techniques (such as knitting or weaving). Therefore, compared with a fabric manufactured by blending the thermal-insulating fibers and cool-feeling fibers, the method for manufacturing the fabric having both thermal-insulating and cool-feeling functions of the present disclosure is more convenient.
  • the fabrics having both thermal-insulating and cool-feeling functions of Examples 1 to 3 are manufactured by the above-mentioned method.
  • the material forming the thermal-insulating part 10 and the material forming the cool-feeling part 20 are the same.
  • the specific material forming the thermal-insulating part 10 and the specific material forming the cool-feeling part 20 are listed in Table 1.
  • a PET fabric woven only from PET semi-dull yarns is used as Comparative Example 1.
  • compositions of the fiber having both thermal-insulating and cool-feeling functions of Examples 1 to 3 Thermal- 10 wt % of thermal- 40 phr of iron-chromium alloy insulating insulating masterbatches (diameter of 1 ⁇ m) part 59.5 phr of PBT 0.5 phr of antioxidant 90 wt % of PET semi- — dull masterbatches Cool- 9 wt % of cool-feeling 12 phr of Ca 2 Mg 5 (OH) 2 (Si 4 O 11 ) 2 feeling masterbatches (diameter of 500 nm) part 87.5 phr of PBT 0.5 phr of antioxidant 91 wt % of PET semi- — dull masterbatches
  • step S 300 feeding speeds of the material forming the thermal-insulating part 10 and the material forming the cool-feeling part 20 can be controlled by adjusting rotating speeds of screws, so that the content ratio of the thermal-insulating part 10 to the cool-feeling part 20 can also be controlled.
  • the content ratios of the thermal-insulating part 10 to the cool-feeling part 20 of Examples 1 to 3 are, sequentially and respectively, 5:5 (Example 1), 4:6 (Example 2), and 3:7 (Example 3).
  • the fabric having both thermal-insulating and cool-feeling functions of the present disclosure in Examples 1 to 3 and the PET fabric of Comparative Example 1 are cut into samples with a size of 3 ⁇ 4.5 cm 2 , so as to evaluate their near infrared reflective capacity and the instant cool-feeling capacity.
  • An absorbance at a wavelength range between 200 nm to 2500 nm and an absorbance at a wavelength range between 780 nm to 1500 nm of the samples are measured by a spectrophotometer (model: X-rite Color-Eye 70000A).
  • a near infrared reflectivity of the fabrics is obtained by dividing the absorbance at a wavelength range between 780 nm to 1500 nm by the absorbance at a wavelength range between 200 nm to 2500 nm.
  • a heat flux of the fabric is measured by a contact temperature tester (company: KATO TECH, model: KES-F7 Thermo Labo II). The near infrared reflectivity and the heat flux of the fabric are listed in Table 2.
  • the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has a near infrared reflectivity higher than 58%.
  • the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has a near infrared reflectivity higher than 60%. More preferably, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has a near infrared reflectivity higher than 63%. Therefore, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can reflect at least 58% of near infrared light at outdoors, decrease the heat energy stored in the fabric, and alleviate the discomfort of the human body caused by high temperature.
  • the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can transfer heat energy with a heat flux of 0.145 W/cm 2 .
  • the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can transfer heat energy with a heat flux of 0.155 W/cm 2 .
  • the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can transfer heat energy rapidly. Therefore, when the heat energy generated from the skin is dissipated to the outside, a cool touch of the fabric can be felt upon the skin.
  • the fabric having both thermal-insulating and cool-feeling functions (Examples 1 to 3) of the present disclosure has a higher near infrared reflectivity and a higher instant heat flux. Therefore, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has better thermal-insulating and cool-feeling capacities.
  • the fabric having both thermal-insulating and cool-feeling functions is capable of providing both the thermal-insulating and cool-feeling effects.
  • the near infrared reflective material 11 being selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof” and “the cool-feeling material 21 being a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum”, the near infrared reflective material 11 can reflect partial heat energy, and the cool-feeling material 21 can help the skin to dissipate heat energy toward the external environment through a temperature difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

A fiber having both thermal-insulating and cool-feeling functions and a fabric having both thermal-insulating and cool-feeling functions are provided. The fiber includes a thermal-insulating part and a cool-feeling part encapsulating the thermal-insulating part. A material of the thermal-insulating part includes a first base material and a near infrared reflective material dispersed in the first base material. The near infrared reflective material is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof. A material of the cool-feeling part includes a second base material and a cool feeling material dispersed in the second base material. The cool feeling material is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum. The fabric having both thermal-insulating and cool-feeling functions is woven from the fiber having both thermal-insulating and cool-feeling functions.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATION
  • This application claims the benefit of priority to Taiwan Patent Application No. 109113725, filed on Apr. 24, 2020. The entire content of the above identified application is incorporated herein by reference.
  • Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to a fiber and a fabric, and more particularly to a fiber having both thermal-insulating and cool-feeling functions and a fabric having both thermal-insulating and cool-feeling functions.
  • BACKGROUND OF THE DISCLOSURE
  • Due to the greenhouse effect, the worldwide average temperature is rising annually. In response to such climate changes, people have increased requirements for functional cloth in their pursuit of better comfort. For the functional cloth, a fabric having both thermal-insulating and cool-feeling functions has attracted the most attention.
  • To meet the public demand for thermal-insulating and cool-feeling functions, a thermal-insulating fiber has been developed. A thermal-insulating material is added during a manufacturing process of the thermal-insulating fiber. The thermal-insulating material can reflect partial infrared ray radiated by heat sources. Therefore, the thermal-insulating fiber can prevent partial heat energy of the sunlight from transferring to the skin, so that discomfort caused by high temperature can be reduced. In addition, a cool-feeling fiber has also been developed. A cool-feeling material is added during a manufacturing process of the cool-feeling fiber. When a temperature of the external environment is lower than a temperature of the skin, a heat energy transfer driven by a temperature difference will occur in the cool-feeling material, so that a heat energy generated from the skin is dissipated toward the external environment. Therefore, a cool touch sensation can be felt when the skin is in contact with the cool-feeling fiber.
  • As mentioned above, through different mechanisms, the thermal-insulating fiber and the cool-feeling fiber enhance the comfort of the functional cloth in use. Accordingly, a single fiber (i.e., the thermal-insulating fiber or the cool-feeling fiber) cannot easily meet the demand in the market for the functional cloth. To uphold both the thermal-insulating and cool-feeling functions, a fabric woven by blending the thermal-insulating fiber and the cool-feeling fiber is conventionally provided. However, simultaneous use of two kinds of fibers (i.e., the thermal-insulating fiber and the cool-feeling fiber) is required in the blended fabric having both thermal-insulating and cool-feeling effects, which has the disadvantage of involving a complicated manufacturing process.
  • SUMMARY OF THE DISCLOSURE
  • In response to the above-referenced technical inadequacies, the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions and a fabric having both thermal-insulating and cool-feeling functions.
  • In one aspect, the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions. The fiber having both thermal-insulating and cool-feeling functions includes a thermal-insulating part and a cool-feeling part encapsulating the thermal-insulating part. A material of the thermal-insulating part includes a first base material and a near infrared reflective material dispersed in the first base material. The near infrared reflective material is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof. A material of the cool-feeling part includes a second base material and a cool-feeling material dispersed in the second base material. The cool-feeling material is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum.
  • In certain embodiments, the thermal-insulating part is in a form of a core and the cool-feeling part is in a form of a sheath.
  • In certain embodiments, a weight ratio of the thermal-insulating part to the cool-feeling part ranges from 3:7 to 7:3.
  • In certain embodiments, based on a total weight of the thermal-insulating part being 100 wt %, the near infrared reflective material is present in an amount ranging from 0.5 wt % to 5 wt %.
  • In certain embodiments, based on a total weight of the cool-feeling part being 100 wt %, the cool-feeling material is present in an amount ranging from 0.5 wt % to 5 wt %.
  • In certain embodiments, the near infrared reflective material is dispersed in the first base material in a form of nanoparticles. An average diameter of the near infrared reflective material ranges from 100 nm to 1500 nm.
  • In certain embodiments, the cool-feeling material is dispersed in the second base material in a form of particles. An average diameter of the cool-feeling material ranges from 100 nm to 1500 nm.
  • In certain embodiments, the first base material is polyethylene terephthalate, polybutylene terephthalate, or a combination thereof. The second base material is polyethylene terephthalate, polybutylene terephthalate, or a combination thereof. The first base material and the second base material are the same or different.
  • In certain embodiments, a quantity of the thermal-insulating part is plural, and the thermal-insulating parts are encapsulated by the cool-feeling part.
  • In another aspect, the present disclosure provides a fabric having both thermal-insulating and cool-feeling functions. The fabric having both thermal-insulating and cool-feeling functions is woven from the above-mentioned fiber having both thermal-insulating and cool-feeling functions, and the fiber having both thermal-insulating and cool-feeling functions includes a thermal-insulating part and a cool-feeling part encapsulating the thermal-insulating part. A material of the thermal-insulating part includes a first base material and a near infrared reflective material dispersed in the first base material. The near infrared reflective material is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof. A material of the cool-feeling part includes a second base material and a cool-feeling material dispersed in the second base material. The cool-feeling material is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum. A heat flux of the fabric having both thermal-insulating and cool-feeling functions is higher than or equal to 0.145 W/cm2. A near infrared reflectivity of the fabric having both thermal-insulating and cool-feeling functions is higher than or equal to 58%.
  • Therefore, by virtue of “the fiber having both thermal-insulating and cool-feeling functions including a thermal-insulating part and a cool-feeling part” and “the cool-feeling part encapsulating the thermal-insulating part”, the fabric having both thermal-insulating and cool-feeling functions is capable of providing comfort in use.
  • These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The described embodiments may be better understood by reference to the following description and the accompanying drawings, in which:
  • FIG. 1 is a cross-sectional schematic view of a fiber having both thermal-insulating and cool-feeling functions according to a first embodiment of the present disclosure;
  • FIG. 2 is a cross-sectional schematic view of the fiber having both thermal-insulating and cool-feeling functions according to a second embodiment of the present disclosure;
  • FIG. 3 is a cross-sectional schematic view of the fiber having both thermal-insulating and cool-feeling functions according to a third embodiment of the present disclosure; and
  • FIG. 4 is a cross-sectional schematic view of the fiber having both thermal-insulating and cool-feeling functions according to a fourth embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
  • The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
  • The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
  • Unless otherwise indicated, all percentages mentioned in the present disclosure are weight percentages. When a range of upper and lower limits is provided, all combinations in the mentioned range are covered as if the combinations are explicitly listed.
  • To solve the problem that a conventional manufacturing process for blending thermal-insulating fibers and cool-feeling fibers is complicated, the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions and a fabric manufactured therefrom. The fiber and the fabric provide both thermal-insulating and cool-feeling effects.
  • Referring to FIG. 1, a first embodiment of the present disclosure provides a fiber having both thermal-insulating and cool-feeling functions 1. The fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure includes a thermal-insulating part 10 and a cool-feeling part 20. The thermal-insulating part 10 is completely encapsulated by the cool-feeling part 20, so that the thermal-insulating part 10 is not exposed from the cool-feeling part 20. Therefore, there is a larger contact area between the skin and the cool-feeling part 20.
  • In the present embodiment, the fiber having both thermal-insulating and cool-feeling functions 1 has a core-sheath structure. The thermal-insulating part 10 is in a form of a core. The cool-feeling part 20 is in a form of a sheath. Specifically, in a cross-sectional view of the fiber having both thermal-insulating and cool-feeling functions 1, a sectional shape of the thermal-insulating part 10 is circular, and the thermal-insulating part 10 is located at a center of the fiber having both thermal-insulating and cool-feeling functions 1. The sectional shape of the thermal-insulating part 10 and a sectional shape of the cool-feeling part 20 are coaxial. The sectional shape of the cool-feeling part 20 is annular, and an outer surface of the thermal-insulating part 10 is covered by the cool-feeling part 20. However, structures of the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure are not limited thereto.
  • In addition, a weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 can be adjusted according to requirements. In the present embodiment, the weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 ranges from 3:7 to 7:3. A density of the thermal-insulating part 10 is close to a density of the cool-feeling part 20, so that a volume ratio of the thermal-insulating part 10 to the cool-feeling part 20 is close to the weight ratio of the thermal-insulating part 10 to the cool-feeling part 20. In other words, the volume ratio of the thermal-insulating part 10 to the cool-feeling part 20 ranges from 3:7 to 7:3.
  • For example, when the thermal-insulating effect of the fiber having both thermal-insulating and cool-feeling functions 1 is to be emphasized, a content ratio of the thermal-insulating part 10 can be adjusted to be higher than a content ratio of the cool-feeling part 20. When the cool-feeling effect of the fiber having both thermal-insulating and cool-feeling functions 1 is to be emphasized, the content ratio of the cool-feeling part 20 can be adjusted to be higher than the content ratio of the thermal-insulating part 10.
  • Preferably, the weight ratio of the thermal-insulating part 10 to the cool-feeling part 20 ranges from 3:7 to 5:5. Referring to FIG. 2, in a second embodiment of the fiber having both thermal-insulating and cool-feeling functions 1, the content ratio of the cool-feeling part 20 is higher than the content ratio of the thermal-insulating part 10.
  • In other embodiments, a quantity of the thermal-insulating part 10 is not limited to one. According to requirements or a structural design of a spinneret, the fiber having both thermal-insulating and cool-feeling functions 1 can have one or more thermal insulating parts 10. Referring to FIG. 3, in a third embodiment, the quantity of the thermal-insulating part 10 is plural, and the thermal-insulating parts 10 are completely encapsulated by the cool-feeling part 20. In FIG. 3, the thermal-insulating parts 10 are independent from and do not contact with each other. However, according to practical requirements, the thermal-insulating parts 10 can contact with each other or partially contact with each other.
  • In other embodiments, a sectional shape of the fiber having both thermal-insulating and cool-feeling functions 1 is not limited to being circular. The fiber having both thermal-insulating and cool-feeling functions 1 can be a profiled fiber. For example, the sectional shape of the fiber having both thermal-insulating and cool-feeling functions 1 can be triangular, pentagonal, Y-shaped, X-shaped, W-shaped, U-shaped, or cruciform. Referring to FIG. 4, the sectional shape of a fourth embodiment of the fiber having both thermal-insulating and cool-feeling functions 1 is cruciform. Porosity of the fiber having both thermal-insulating and cool-feeling functions 1 can be adjusted by changing the sectional shape of the fiber having both thermal-insulating and cool-feeling functions 1, so as to achieve effects of ventilation and perspiration. For example, a fiber with circular sectional shape usually has the porosity of 15%, and a fiber with triangle sectional shape usually has the porosity of 20%.
  • A material to form the thermal-insulating part 10 includes a first base material, a near infrared reflective material 11, and an additive. The near infrared reflective material 11 and the additive are dispersed in the first base material.
  • The near infrared reflective material 11 is an inorganic material which can reflect a near infrared (NIR) light (having a wavelength ranging from 780 nm to 1500 nm) in an external environment, so as to block partial heat energy. The near infrared reflective material 11 is selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof. Preferably, the near infrared reflective material 11 is selected from the group consisting of iron-chromium alloy, iron-nickel alloy, copper-bismuth alloy, iron-chromium-bismuth alloy and iron-nickel-bismuth alloy. An average diameter of the near infrared reflective material 11 ranges from 100 nm to 1500 nm. Preferably, the average diameter of the near infrared reflective material 11 ranges from 200 nm to 1000 nm. However, the present disclosure is not limited thereto.
  • Based on a total weight of the thermal-insulating part 10 being 100 wt %, the near infrared reflective material 11 is present in an amount ranging from 0.5 wt % to 5 wt %. Preferably, based on the total weight of the thermal-insulating part 10 being 100 wt %, the near infrared reflective material 11 is present in an amount ranging from 3 wt % to 5 wt %. When the near infrared reflective material 11 is present in an excessive amount, a viscosity of the material forming the thermal-insulating part 10 will increase, which is unfavorable for manufacturing the fiber. When the existing amount of the near infrared reflective material 11 is insufficient, a reflection effect of the near infrared light is ineffective.
  • The first base material is a main material of the thermal-insulating part 10. The first base material can disperse the near infrared reflective material 11, and adjust the intrinsic viscosity of the material forming the thermal-insulating part 10. The first base material can be polyester, polyolefin, polyamide, or polyurethane. The polyester can be, but not limited to, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), poly(methyl methacrylate) (PMMA), polyethylene naphthalate (PEN), or any combination thereof. Preferably, the polyester is polybutylene terephthalate or polyethylene terephthalate. The polyolefin can be, but not limited to, polyethylene (PE), polypropylene (PP), or any combination thereof. The polyamide can be, but not limited to, nylon 6, nylon 66, nylon 12, nylon 46, or any combination thereof. The polyurethane can be, but not limited to, thermoplastic urethane (TPU).
  • In the present embodiment, the first base material is polyester, and can include more than one kind of polyester, so that the fiber having both thermal-insulating and cool-feeling functions 1 can meet application requirements. Moreover, the viscosity of the material forming the thermal-insulating part 10 can be suitable for operation of a spinning device. For example, the first base material is polybutylene terephthalate, polyethylene terephthalate, or a combination of polybutylene terephthalate and polyethylene terephthalate.
  • The additive is an optional component. The additive is optionally added into the material forming the thermal-insulating part 10 so as to achieve a specific function. For example, the additive can be an antioxidant, a dispersant, an ultraviolet absorber, or an ultraviolet reflective agent.
  • The antioxidant can prevent the near infrared reflective material 11 from oxidation. The dispersant can help the near infrared reflective material 11 be uniformly dispersed in the first base material. The antioxidant can be a hindered phenol type antioxidant, an amine type antioxidant, a triazine type antioxidant, an organophosphate type antioxidant, or a thioester type antioxidant.
  • An addition of the ultraviolet absorber or the ultraviolet reflective agent can provide the fiber having both thermal-insulating and cool-feeling functions 1 with a UV-cut function. The ultraviolet absorber can be a nickel quencher type ultraviolet absorber, an oxanilide type ultraviolet absorber, a benzotriazole type ultraviolet absorber, a benzoate type ultraviolet absorber, or a benzophenone type ultraviolet absorber. On the other hand, the ultraviolet reflective agent can be talc, kaolin, zinc oxide, iron oxide, or titanium dioxide.
  • A material to form the cool-feeling part 20 includes a second base material, a cool-feeling material 21, and an additive. The cool-feeling material 21 and the additive are dispersed in the second base material.
  • The cool-feeling material 21 is an inorganic material. The cool-feeling material 21 helps dissipate heat energy from the skin of a human body through a temperature difference between the human body and the external environment, so as to provide a cool touch. The cool-feeling material 21 is a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum. For example, the cool-feeling material 21 can be a nephrite material or a jadeite material. Specifically, the nephrite material is a calcium magnesium silicate containing calcium, magnesium, and silicon elements (such as Ca2Mg5(OH)2(Si4O11)2). The jadeite material is sodium aluminum silicate containing aluminum, sodium, and silicon elements (such as NaAlSi2O6). An average diameter of the cool-feeling material 21 ranges from 100 nm to 1500 nm. Preferably, the average diameter of the cool-feeling material 21 ranges from 500 nm to 1500 nm. However, the present disclosure is not limited thereto.
  • Based on a total weight of the cool-feeling part 20 being 100 wt %, the cool-feeling material 21 is present in an amount ranging from 0.5 wt % to 5 wt %. Preferably, based on the total weight of the cool-feeling part 20 being 100 wt %, the cool-feeling material 21 is present in an amount ranging from 0.5 wt % to 1.5 wt %. When the cool-feeling material 21 is present in an excessive amount, a viscosity of the material forming the cool-feeling part 20 will increase, which is unfavorable for manufacturing the fiber. When the existing amount of the cool-feeling material 21 is insufficient, a heat dissipation effect of the cool-feeling part 20 is ineffective.
  • The second base material is a main material of the cool-feeling part 20. The second base material can disperse the cool-feeling material 21 and adjust the intrinsic viscosity of the material forming the cool-feeling part 20. The second base material can be polyester, polyolefin, polyamide, or polyurethane. The polyester can be, but not limited to, polybutylene terephthalate, polyethylene terephthalate, poly(methyl methacrylate), polyethylene naphthalate, or any combination thereof. The polyolefin can be, but not limited to, polyethylene, polypropylene, or any combination thereof. The polyamide can be, but not limited to, nylon 6, nylon 66, nylon 12, nylon 46, or any combination thereof. The polyurethane can be, but not limited to, thermoplastic urethane.
  • In the present embodiment, the second base material is polyester, and can include more than one kind of polyester, so that the fiber having both thermal-insulating and cool-feeling functions 1 can meet application requirements. Moreover, the viscosity of the material forming the cool-feeling part 20 can be suitable for operation of a spinning device. For example, the second base material is polybutylene terephthalate, polyethylene terephthalate, or a combination of polybutylene terephthalate and polyethylene terephthalate.
  • It is worth mentioning that the first base material and the second base material can be the same or different. In the present embodiment, the first base material and the second base material are the same, so that compatibility between the first base material and the second base material can be enhanced.
  • The additive is an optional component. The additive is optionally added into the material forming the cool-feeling part 20 so as to achieve a specific function. For example, the additive can be an antioxidant, a dispersant, an ultraviolet absorber, or an ultraviolet reflective agent. The specific antioxidant, dispersant, ultraviolet absorber, and ultraviolet reflective agent are similar to those mentioned previously and are not repeated herein.
  • [Preparation of the Fiber Having Both Thermal-Insulating and Cool-Feeling Functions]
  • A method for manufacturing the fiber having both thermal-insulating and cool-feeling functions 1 includes the following steps. Thermal-insulating masterbatches and cool-feeling masterbatches are prepared (step S100). The thermal-insulating masterbatches are used to form the thermal-insulating part 10 of the fiber having both thermal-insulating and cool-feeling functions 1. The cool-feeling masterbatches are used to form the cool-feeling part 20 of the fiber having both thermal-insulating and cool-feeling functions 1.
  • The near infrared reflective material 11, the first base material, and the antioxidant are mixed, melted, and granulated to obtain the thermal-insulating masterbatches. Specifically, based on a total weight of the thermal-insulating masterbatches being 100 phr, an amount of the near infrared reflective material 11 ranges from 35 phr to 45 phr, an amount of the antioxidant is 0.5 phr, and an amount of the first base material ranges from 54.5 phr to 64.5 phr. However, the present disclosure is not limited thereto. In the present embodiment, a filter pressure value (FPV) of the thermal-insulating masterbatches is lower than 0.5 barg (gauge pressure). An intrinsic viscosity (IV) of the thermal-insulating masterbatches ranges from 0.4 dl/g to 0.8 dl/g.
  • The cool-feeling material 21, the second base material, and the antioxidant are mixed, melted, and granulated to obtain the cool-feeling masterbatches. Specifically, based on a total weight of the cool-feeling masterbatches being 100 phr, an amount of the cool-feeling material 21 ranges from 10 to 20 phr, an amount of the antioxidant is 0.5 phr, and an amount of the second base material ranges from 79.5 to 89.5 phr. However, the present disclosure is not limited thereto. In the present embodiment, a filter pressure value (FPV) of the cool-feeling masterbatches is lower than 0.5 barg (gauge pressure). An intrinsic viscosity (IV) of the cool-feeling masterbatches ranges from 0.4 dl/g to 0.8 dl/g. The method for manufacturing the fiber having both thermal-insulating and cool-feeling functions 1 includes the following steps. 5 wt % to 15 wt % of the thermal-insulating masterbatches and 85 wt % to 95 wt % of PET semi-dull masterbatches are mixed so as to form the material forming the thermal-insulating part 10. In addition, 5 wt % to 15 wt % of the cool-feeling masterbatches and 85 wt % to 95 wt % of the PET semi-dull masterbatches are mixed to form the material forming the cool-feeling part 20 (step S200).
  • The method for manufacturing the fiber having both thermal-insulating and cool-feeling functions 1 includes the following steps. The material forming the thermal-insulating part 10 and the material forming the cool-feeling part 20 are fed into an inlet of a spinning device with a core-sheath spinneret. A spinning speed of the spinning device is set to be 3000 m/min to 4000 m/min. Yarns produced by the spinning device are taken up as partially oriented yarns (POY) and processed by false twisting to become draw textured yarns (DTY), so that the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure is obtained (step S300).
  • When the fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure is woven into a fabric, the fabric can also uphold the thermal-insulating and cool-feeling functions. The thermal-insulating part 10 can reflect the near infrared light in sunlight and reduce the storage of heat energy in the fabric. The cool-feeling part 20 can dissipate heat energy generated from the skin toward the external environment, so that the skin can feel a cool touch.
  • The fiber having both thermal-insulating and cool-feeling functions 1 of the present disclosure possesses the thermal-insulating and cool-feeling effects, and can be directly provided to downstream manufacturers. The downstream manufacturers can manufacture the fabric having both thermal-insulating and cool-feeling functions from the fiber by various weaving techniques (such as knitting or weaving). Therefore, compared with a fabric manufactured by blending the thermal-insulating fibers and cool-feeling fibers, the method for manufacturing the fabric having both thermal-insulating and cool-feeling functions of the present disclosure is more convenient.
  • [Evaluation of the Fabric Having Both Thermal-Insulating and Cool-Feeling Functions]
  • The fabrics having both thermal-insulating and cool-feeling functions of Examples 1 to 3 are manufactured by the above-mentioned method. In Examples 1 to 3, the material forming the thermal-insulating part 10 and the material forming the cool-feeling part 20 are the same. The specific material forming the thermal-insulating part 10 and the specific material forming the cool-feeling part 20 are listed in Table 1. A PET fabric woven only from PET semi-dull yarns is used as Comparative Example 1.
  • TABLE 1
    compositions of the fiber having both thermal-insulating
    and cool-feeling functions of Examples 1 to 3
    Thermal- 10 wt % of thermal- 40 phr of iron-chromium alloy
    insulating insulating masterbatches (diameter of 1 μm)
    part 59.5 phr of PBT
    0.5 phr of antioxidant
    90 wt % of PET semi-
    dull masterbatches
    Cool- 9 wt % of cool-feeling 12 phr of Ca2Mg5(OH)2(Si4O11)2
    feeling masterbatches (diameter of 500 nm)
    part 87.5 phr of PBT
    0.5 phr of antioxidant
    91 wt % of PET semi-
    dull masterbatches
  • The difference between Examples 1 to 3 lies in the content ratio of the thermal-insulating part 10 to the cool-feeling part 20. In step S300, feeding speeds of the material forming the thermal-insulating part 10 and the material forming the cool-feeling part 20 can be controlled by adjusting rotating speeds of screws, so that the content ratio of the thermal-insulating part 10 to the cool-feeling part 20 can also be controlled. Specifically, the content ratios of the thermal-insulating part 10 to the cool-feeling part 20 of Examples 1 to 3 are, sequentially and respectively, 5:5 (Example 1), 4:6 (Example 2), and 3:7 (Example 3).
  • The fabric having both thermal-insulating and cool-feeling functions of the present disclosure in Examples 1 to 3 and the PET fabric of Comparative Example 1 are cut into samples with a size of 3×4.5 cm2, so as to evaluate their near infrared reflective capacity and the instant cool-feeling capacity. An absorbance at a wavelength range between 200 nm to 2500 nm and an absorbance at a wavelength range between 780 nm to 1500 nm of the samples are measured by a spectrophotometer (model: X-rite Color-Eye 70000A). A near infrared reflectivity of the fabrics is obtained by dividing the absorbance at a wavelength range between 780 nm to 1500 nm by the absorbance at a wavelength range between 200 nm to 2500 nm. In addition, a heat flux of the fabric is measured by a contact temperature tester (company: KATO TECH, model: KES-F7 Thermo Labo II). The near infrared reflectivity and the heat flux of the fabric are listed in Table 2.
  • TABLE 2
    properties of the fabric in Examples
    1 to 3 and Comparative Example 1
    Example Comparative
    1 2 3 Example 1
    Near infrared reflectivity (%) 64.18 63.39 64.23 56.69
    Heat flux(W/cm2) 0.156 0.161 0.159 0.141
  • According to results of Table 2, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has a near infrared reflectivity higher than 58%. Preferably, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has a near infrared reflectivity higher than 60%. More preferably, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has a near infrared reflectivity higher than 63%. Therefore, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can reflect at least 58% of near infrared light at outdoors, decrease the heat energy stored in the fabric, and alleviate the discomfort of the human body caused by high temperature.
  • According to results of Table 2, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can transfer heat energy with a heat flux of 0.145 W/cm2. Preferably, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can transfer heat energy with a heat flux of 0.155 W/cm2. In other words, when there is a temperature difference between the skin and the external environment, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure can transfer heat energy rapidly. Therefore, when the heat energy generated from the skin is dissipated to the outside, a cool touch of the fabric can be felt upon the skin.
  • Compared to the conventional PET fabric (Comparative Example 1), the fabric having both thermal-insulating and cool-feeling functions (Examples 1 to 3) of the present disclosure has a higher near infrared reflectivity and a higher instant heat flux. Therefore, the fabric having both thermal-insulating and cool-feeling functions of the present disclosure has better thermal-insulating and cool-feeling capacities.
  • Beneficial Effects of the Embodiments
  • In conclusion, by virtue of “the fiber having both thermal-insulating and cool-feeling functions 1 including a thermal-insulating part 10 and a cool-feeling part 20” and “the cool-feeling part 20 encapsulating the thermal-insulating part 10”, the fabric having both thermal-insulating and cool-feeling functions is capable of providing both the thermal-insulating and cool-feeling effects.
  • Further, by virtue of “the near infrared reflective material 11 being selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof” and “the cool-feeling material 21 being a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum”, the near infrared reflective material 11 can reflect partial heat energy, and the cool-feeling material 21 can help the skin to dissipate heat energy toward the external environment through a temperature difference.
  • The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
  • The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.

Claims (10)

What is claimed is:
1. A fiber having both thermal-insulating and cool-feeling functions, comprising:
a thermal-insulating part whose material includes a first base material and a near infrared reflective material dispersed in the first base material, the near infrared reflective material being selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof; and
a cool-feeling part encapsulating the thermal-insulating part, a material of the cool-feeling part including a second base material and a cool-feeling material dispersed in the second base material, and the cool-feeling material being a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum.
2. The fiber according to claim 1, wherein the thermal-insulating part is in a form of a core, and the cool-feeling part is in a form of a sheath.
3. The fiber according to claim 1, wherein a weight ratio of the thermal-insulating part to the cool-feeling part ranges from 3:7 to 7:3.
4. The fiber according to claim 1, wherein based on a total weight of the thermal-insulating part being 100 wt %, the near infrared reflective material is present in an amount ranging from 0.5 wt % to 5 wt %.
5. The fiber according to claim 1, wherein based on a total weight of the cool-feeling part being 100 wt %, the cool-feeling material is present in an amount ranging from 0.5 wt % to 5 wt %.
6. The fiber according to claim 1, wherein the near infrared reflective material is dispersed in the first base material in a form of nanoparticles, and an average diameter of the near infrared reflective material ranges from 100 nm to 1500 nm.
7. The fiber according to claim 1, wherein the cool-feeling material is dispersed in the second base material in a form of particles, and an average diameter of the cool-feeling material ranges from 100 nm to 1500 nm.
8. The fiber according to claim 1, wherein the first base material is polyethylene terephthalate, polybutylene terephthalate, or a combination thereof, the second base material is polyethylene terephthalate, polybutylene terephthalate, or a combination thereof, and the first base material and the second base material are the same or different.
9. The fiber according to claim 1, wherein a quantity of the thermal-insulating part is plural, and the thermal-insulating parts are encapsulated by the cool-feeling part.
10. A fabric having both thermal-insulating and cool-feeling functions, which is woven from a fiber having both thermal-insulating and cool-feeling functions, the fiber having both thermal-insulating and cool-feeling functions comprising:
a thermal-insulating part whose material includes a first base material and a near infrared reflective material dispersed in the first base material, the near infrared reflective material being selected from the group consisting of iron, cobalt, chromium, copper, nickel, bismuth, and an alloy thereof; and
a cool-feeling part encapsulating the thermal-insulating part, a material of the cool-feeling part including a second base material and a cool-feeling material dispersed in the second base material, and the cool-feeling material being a silicate containing at least one metal selected from the group consisting of calcium, magnesium, sodium, and aluminum;
wherein a heat flux of the fabric having both thermal-insulating and cool-feeling functions is higher than or equal to 0.145 W/cm2, and a near infrared reflectivity of the fabric having both thermal-insulating and cool-feeling functions is higher than or equal to 58%.
US17/191,877 2020-04-24 2021-03-04 Fiber having both thermal-insulating and cool-feeling functions, and fabric having both thermal-insulating and cool-feeling functions Abandoned US20210332505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109113725 2020-04-24
TW109113725A TWI727765B (en) 2020-04-24 2020-04-24 Fiber having both thermal-insulating and cool-feeling properties, and fabric having both thermal-insulating and cool-feeling properties

Publications (1)

Publication Number Publication Date
US20210332505A1 true US20210332505A1 (en) 2021-10-28

Family

ID=77036333

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/191,877 Abandoned US20210332505A1 (en) 2020-04-24 2021-03-04 Fiber having both thermal-insulating and cool-feeling functions, and fabric having both thermal-insulating and cool-feeling functions

Country Status (3)

Country Link
US (1) US20210332505A1 (en)
CN (1) CN113638067A (en)
TW (1) TWI727765B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102541791B1 (en) * 2022-01-13 2023-06-13 프라나 주식회사 Manufacturing method of fabric for awning and boat cover using polyester dyed DTY
IT202200006353A1 (en) * 2022-03-31 2023-10-01 Maglificio Fasirotex S N C Di Daldosso Fabio E C “PROTECTIVE CLOTHING FROM LOW TEMPERATURES PARTICULARLY FOR SCUBA DIVING IN COLD WATER”
JP7465588B2 (en) 2021-09-30 2024-04-11 ヤン,イェン Double-sided thermostatic fabric and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164585A1 (en) * 2000-09-21 2005-07-28 Magill Monte C. Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
CN102041562A (en) * 2009-10-19 2011-05-04 盈保纤维科技(仁化)有限公司 Preparation method of antibacterial fiber
CN109371494A (en) * 2018-09-21 2019-02-22 东莞幻鸟新材料有限公司 A kind of core-skin type composite polyester fiber with anti-infrared perspective function

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873282A4 (en) * 2005-04-18 2009-10-21 Gunze Kk Fiber highly cool to touch
TW200918705A (en) * 2007-10-17 2009-05-01 Hua Mao Nano Tech Co Ltd Structural composition of persistent cooling fiber
US20140271754A1 (en) * 2013-03-15 2014-09-18 Clopay Plastic Products Company, Inc. Polymeric materials providing improved infrared emissivity
EP3086943A4 (en) * 2013-12-23 2017-10-04 The North Face Apparel Corporation Textile constructs formed with fusible filaments
TWI586858B (en) * 2015-05-29 2017-06-11 台虹科技股份有限公司 Infrared reflective fiber and infrared reflective fiber manufacturing method
US10337128B2 (en) * 2017-08-31 2019-07-02 Brrr! Inc. Methods and compositions for cooling yarns and fabrics, and articles comprising same
CN107779988A (en) * 2017-09-28 2018-03-09 山东圣泉新材料股份有限公司 A kind of fiber, preparation method and the purposes of anti-near infrared ray transmittance
CN108796793A (en) * 2018-06-25 2018-11-13 江苏新凯盛企业发展有限公司 Heat-insulated cool feeling fabric
TW202006202A (en) * 2018-07-16 2020-02-01 鄭國彬 Heat insulating and cooling fabric
CN109457322A (en) * 2018-10-27 2019-03-12 安徽豹子头服饰有限公司 A kind of sun-proof cool fiber and preparation method thereof
CN110331465A (en) * 2019-08-01 2019-10-15 疏博(上海)纳米科技有限公司 A kind of preparation method of the anti-infrared nice and cool modified nylon long filament of skin-core structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164585A1 (en) * 2000-09-21 2005-07-28 Magill Monte C. Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
CN102041562A (en) * 2009-10-19 2011-05-04 盈保纤维科技(仁化)有限公司 Preparation method of antibacterial fiber
CN109371494A (en) * 2018-09-21 2019-02-22 东莞幻鸟新材料有限公司 A kind of core-skin type composite polyester fiber with anti-infrared perspective function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465588B2 (en) 2021-09-30 2024-04-11 ヤン,イェン Double-sided thermostatic fabric and its manufacturing method
KR102541791B1 (en) * 2022-01-13 2023-06-13 프라나 주식회사 Manufacturing method of fabric for awning and boat cover using polyester dyed DTY
IT202200006353A1 (en) * 2022-03-31 2023-10-01 Maglificio Fasirotex S N C Di Daldosso Fabio E C “PROTECTIVE CLOTHING FROM LOW TEMPERATURES PARTICULARLY FOR SCUBA DIVING IN COLD WATER”
WO2023187642A1 (en) * 2022-03-31 2023-10-05 Maglificio Fasirotex S.N.C. Di Daldosso Fabio E C. Low-temperature protective garment, in particular for underwater diving in cold water

Also Published As

Publication number Publication date
CN113638067A (en) 2021-11-12
TWI727765B (en) 2021-05-11
TW202140873A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US20210332505A1 (en) Fiber having both thermal-insulating and cool-feeling functions, and fabric having both thermal-insulating and cool-feeling functions
TWI551742B (en) Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber
CN110685031B (en) Radiation refrigeration fiber and preparation method and application thereof
KR101141149B1 (en) Method for manufacturing multi-functional fabric with antimicrobial and far-infrared ray radition function
CN102634863B (en) Constant-pressure positive ion dyeable cooling polyester filament yarn and production method thereof
JP6106487B2 (en) Functional fiber
CN103451768A (en) Production method of full-dull polyester fiber
TWI708750B (en) Antibacterial fiber and method for producing antibacterial fiber
JP6315897B2 (en) Multifilament yarn and its knitted fabric
CN106319685A (en) Heat insulation core-shell composite fiber for reflecting near infrared rays, and production method of fiber
CN110698818B (en) Graphene composite material and preparation method and application thereof
CN110863355A (en) PVC polyester coated yarn with far infrared emission function and preparation method thereof
CN205529175U (en) Novel moisture absorption coloured polyester filament that breathes freely
CN113913958A (en) Multi-principle zero-energy-consumption continuous cooling fiber and fabric thereof
JP2016113714A (en) False-twisted hollow multifilament yarn, and woven or knitted fabric
JP6498873B2 (en) Functional fiber yarn and woven or knitted fabric using the same
JPH0768647B2 (en) Radiation blocking fibers or their products
KR20220130868A (en) Fabric for ec0-friendly multifunctional clothing and method for manufacturing the same
JP6487171B2 (en) Functional fiber yarn
JP2016113715A (en) Hollow multifilament yarn, false-twisted hollow multifilament yarn, and woven or knitted fabric
KR102632327B1 (en) Sea-island Type Composite Yarn Having Excellent Cool-Touch
CN217628799U (en) Ultraviolet-resistant anti-deformation fabric
EP3933085A1 (en) String and hat
JP7005188B2 (en) False twist multifilament yarn, its manufacturing method, and woven and knitted fabrics
EP3636091A1 (en) Functional fabric and method for manufacturing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAN YA PLASTICS CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIAO, TE-CHAO;HSU, SEN-HUANG;FANG, CHUN-HAO;REEL/FRAME:055491/0239

Effective date: 20210302

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION