US20200359376A1 - Frame structure configuration method, frame structure obtaining method, base station and user equipment - Google Patents

Frame structure configuration method, frame structure obtaining method, base station and user equipment Download PDF

Info

Publication number
US20200359376A1
US20200359376A1 US16/765,986 US201816765986A US2020359376A1 US 20200359376 A1 US20200359376 A1 US 20200359376A1 US 201816765986 A US201816765986 A US 201816765986A US 2020359376 A1 US2020359376 A1 US 2020359376A1
Authority
US
United States
Prior art keywords
cell
frame structure
specific
periodicity
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/765,986
Other versions
US11284389B2 (en
Inventor
Xiaodong Xu
Guangyi Liu
Yuhong Huang
Xueying HOU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
China Mobile Communications Ltd Research Institute
Original Assignee
China Mobile Communications Group Co Ltd
China Mobile Communications Ltd Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, China Mobile Communications Ltd Research Institute filed Critical China Mobile Communications Group Co Ltd
Assigned to China Mobile Communications Group Co., Ltd., CHINA MOBILE COMMUNICATION CO., LTD RESEARCH INSTITUTE reassignment China Mobile Communications Group Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Hou, Xueying, HUANG, YUHONG, LIU, GUANGYI, XU, XIAODONG
Publication of US20200359376A1 publication Critical patent/US20200359376A1/en
Application granted granted Critical
Publication of US11284389B2 publication Critical patent/US11284389B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technology, in particular to a frame structure configuration method, a frame structure obtaining method, a base station and user equipment (UE).
  • a frame structure configuration method a frame structure obtaining method
  • UE user equipment
  • the frame structure includes a frame structure configuration with a relatively long periodicity and a frame structure configuration with a relatively short periodicity.
  • the relatively short periodicity is, for example, 2 ms, 1 ms or 0.5 ms.
  • the periodicities of 1 ms and 0.5 ms are suitable for a deployment scenario for a middle or high frequency hotspot, and the periodicity of 2 ms is suitable for a deployment scenario for a middle or low frequency macro network.
  • the periodicities may be applied to services such as enhanced mobile broadband (eMBB) and ultra-reliable and low latency communications (URLLC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • the uplink/downlink switching periodicity of 0.5 ms is an important enabling technology for achieving a 5G air-interface latency of 0.5 ms in a time division duplexing (TDD) system.
  • TDD time division duplexing
  • static resource configurations for all periodicities are identical, and a proportion of static uplink resources to static downlink resources in each periodicity is constant.
  • a joint periodicity configuration method may be adopted, so that different proportions of the static uplink resources to the static downlink resources may be employed in at least two consecutive periodicities arranged sequentially in time, thereby improving the resource configuration flexibility.
  • An object of the present disclosure is to provide a frame structure configuration method, a frame structure obtaining method, a base station and UE, so as to solve the problem in the related art that identical static resources configuration in each periodicity leads to insufficient resource configuration flexibility.
  • the present disclosure provides in some embodiments a frame structure configuration method, including transmitting at least two cell-specific frame structure configurations to UE.
  • Each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure
  • a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • the present disclosure provides in some embodiments a frame structure obtaining method, including: receiving at least two cell-specific frame structure configurations from a base station, where each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported; and determining a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • the determining the configuration result of the cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations includes: determining that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determining a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determining a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • the present disclosure provides in some embodiments a base station, including a processor and a transceiver.
  • the transceiver is configured to transmit at least two cell-specific frame structure configurations to UE.
  • Each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure
  • a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • the present disclosure provides in some embodiments UE, including a processor and a transceiver.
  • the transceiver is configured to receive at least two cell-specific frame structure configurations from a base station, each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the processor is configured to determine a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • the processor is further configured to: determine that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determine a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determine a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • the present disclosure provides in some embodiments a communication device, including a storage, a processor, and a computer program stored in the storage and configured to be executed by the processor.
  • the processor is configured to execute the computer program, to implement the above-mentioned frame structure configuration method, or to implement the above-mentioned frame structure obtaining method.
  • the present disclosure provides in some embodiments a computer-readable storage medium storing therein a computer program.
  • the computer program is configured to be executed by a processor, to implement steps of the above-mentioned frame structure configuration method, or to implement steps of the above-mentioned frame structure obtaining method.
  • a dual-periodicity or multi-periodicity frame structure configuration method is provided, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • FIG. 1 is a flow chart of a frame structure configuration method according to some embodiments of the present disclosure
  • FIG. 2 is a schematic view showing a frame structure configuration in the frame structure configuration method according to some embodiments of the present disclosure
  • FIG. 3 is a schematic view showing another frame structure configuration in the frame structure configuration method according to some embodiments of the present disclosure
  • FIG. 4 is a flow chart of a frame structure obtaining method according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural view showing a base station according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural view showing UE according to some embodiments of the present disclosure.
  • each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity.
  • the cell-specific frame structure configuration belongs to a cell-specific configuration, i.e., it is a configuration indicated by system broadcast information and cannot be changed arbitrarily, so the cell-specific configuration may usually be considered as a static configuration. However, the cell-specific configuration may also be changed at a cell level in a system information change process, so the cell-specific configuration may also be considered as a semi-static configuration.
  • the periodicity of uplink and/or downlink resources carried in the cell-specific frame structure configuration may be statically or semi-statically configured at a cell level.
  • the configuration for the uplink and/or downlink resources carried in the cell-specific frame structure configuration may also be statically or semi-statically configured at a cell level.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the configurations for the uplink and/or downlink resources within the two periodicities concatenated in the time domain may be the same or different from each other.
  • the durations of two periodicities of cell-specific uplink and/or downlink resources that are concatenated in the time domain may be the same or different from each other.
  • FIG. 2 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are the same and the configurations for the uplink and/or downlink resources are different.
  • FIG. 3 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are different and the configurations for the uplink and/or downlink resources are different too.
  • the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure.
  • a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • FIG. 2 when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and each having a periodicity of 1 ms, a target frame has a periodicity of 2 ms (1 ms+1 ms). As shown in FIG.
  • a target frame when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and having periodicities of 2 ms and 0.5 ms respectively, a target frame has a periodicity of 2.5 ms (2 ms+0.5 ms).
  • At least another (i.e., a second) cell-specific frame structure configuration needs to be broadcast in system information.
  • Periodicity in the second cell-specific frame structure configuration may be different from periodicity in the first cell-specific frame structure configuration, and/or the configuration for the uplink and/or downlink resources in the second cell-specific frame structure configuration may be different from the configuration for the uplink and/or downlink resources in the first cell-specific frame structure configuration.
  • the two identical or different periodicities are sequentially connected in the time domain so as to form a new periodicity, and this new periodicity may be continuously repeated in the time domain.
  • the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • a periodicity of 2 ms may be acquired through the combination of two periodicities of 1 ms
  • a periodicity of 2.5 ms may be acquired through the combination of a periodicity of 2 ms and a periodicity of 0.5 ms
  • a periodicity of 3 ms may be acquired through the combination of a periodicity of 1 ms and a periodicity of 2 ms
  • a periodicity of 4 ms may be acquired through the combination of two periodicities of 2 ms
  • a periodicity of 20 ms may be acquired through the combination of two periodicities of 10 ms, and so on.
  • the dual-periodicity or multi-periodicity frame structure configuration method is provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • the present disclosure further provides in some embodiments a frame structure obtaining method, which includes the following steps.
  • Step 41 receiving at least two cell-specific frame structure configurations from a base station.
  • Each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the configurations for the uplink and/or downlink resources within the two periodicities concatenated in the time domain may be the same or different from each other.
  • the durations of the two periodicities of cell-specific uplink and/or downlink resources that are concatenated in the time domain may be the same or different from each other.
  • Step 42 determining a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • FIG. 2 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are the same and the configurations for the uplink and/or downlink resources are different.
  • FIG. 3 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are different and the configurations for the uplink and/or downlink resources are different too.
  • Step 42 may include: determining that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determining a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determining a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • a target frame when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and each having a periodicity of 1 ms, a target frame has a periodicity of 2 ms (1 ms+1 ms).
  • a target frame when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and having periodicities of 2 ms and 0.5 ms respectively, a target frame has a periodicity of 2.5 ms (2 ms+0.5 ms).
  • At least another (i.e., a second) cell-specific frame structure configuration needs to be broadcast in system information.
  • Periodicity in the second cell-specific frame structure configuration may be different from periodicity in the first cell-specific frame structure configuration, and/or the configuration for the uplink and/or downlink resources in the second cell-specific frame structure configuration may be different from the configuration for the uplink and/or downlink resources in the first cell-specific frame structure configuration.
  • the two identical or different periodicities are sequentially connected in the time domain so as to form a new periodicity, and this new periodicity may be continuously repeated in the time domain.
  • the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • a periodicity of 2 ms may be acquired through the combination of two periodicities of 1 ms
  • a periodicity of 2.5 ms may be acquired through the combination of a periodicity of 2 ms and a periodicity of 0.5 ms
  • a periodicity of 3 ms may be acquired through the combination of a periodicity of 1 ms and a periodicity of 2 ms
  • a periodicity of 4 ms may be acquired through the combination of two periodicities of 2 ms
  • a periodicity of 20 ms may be acquired through the combination of two periodicities of 10 ms, and so on.
  • the dual-periodicity or multi-periodicity frame structure configuration method may be provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • the present disclosure further provides in some embodiments a base station, including a processor 500 and a transceiver 510 .
  • the transceiver 510 is configured to transmit at least two cell-specific frame structure configurations to UE.
  • Each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure.
  • a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • the dual-periodicity or multi-periodicity frame structure configuration method may be provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • the base station in the embodiments of the present disclosure is capable of implementing the above-mentioned frame structure configuration method, and all embodiments of the frame structure configuration method may be applied to the base station and achieve a same or similar beneficial effect.
  • the present disclosure further provides in some embodiments UE, which includes a processor 600 , a transceiver 610 , and a user interface 620 .
  • the transceiver 610 is configured to receive at least two cell-specific frame structure configurations from a base station, each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • the processor 600 is configured to determine a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • the processor 600 is further configured to: determine that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determine a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determine a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • the periodicity of the cell-specific uplink and/or downlink resources may refer to the periodicity of the uplink and/or downlink resources that is statically configured at a cell level
  • the configuration for the uplink and/or downlink resources within the periodicity may refer to the configuration for the uplink and/or downlink resources within the periodicity that is statically configured at a cell level.
  • the periodicity of the cell-specific uplink and/or downlink resources may refer to the periodicity of the uplink and/or downlink resources that is semi-statically configured at a cell level
  • the configuration for the uplink and/or downlink resources within the periodicity may refer to a configuration for the uplink and/or downlink resources within the periodicity that is semi-statically configured at a cell level.
  • the dual-periodicity or multi-periodicity frame structure configuration method may be provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • the UE in the embodiments of the present disclosure is capable of implementing the above-mentioned frame structure obtaining method, and all embodiments of the frame structure obtaining method may be applied to the base station and achieve a same or similar beneficial effect.
  • the present disclosure further provides in some embodiments a communication device, including a storage, a processor, and a computer program stored in the storage and configured to be executed by the processor.
  • the processor is configured to execute the computer program, to implement various processes of the above-mentioned frame structure configuration method or the above-mentioned frame structure obtaining method and may achieve a same technical effect, which will thus not be particularly defined herein.
  • the present disclosure further provides in some embodiments a computer-readable storage medium storing therein a computer program.
  • the computer program is configured to be executed by a processor, to implement various processes of the above-mentioned frame structure configuration method or the above-mentioned frame structure obtaining method and may achieve a same technical effect, which will thus not be particularly defined herein.
  • the computer-readable storage medium may be a read-only memory (ROM), a random access memory (RAM), a magnetic disk, an optical disc or the like.
  • the present disclosure may be provided as a method, a system or a computer program product, so the present disclosure may be in the form of full hardware embodiments, full software embodiments, or combinations thereof.
  • the present disclosure may be in the form of a computer program product implemented on one or more computer-readable storage media (including but not limited to disk storage, optical storage and the like) including computer-readable program codes.
  • These computer program instructions may also be loaded onto the computer or the other programmable data process devices, so that a series of operation steps are executed on the computer or the other programmable devices to create processes achieved by the computer. Therefore, the instructions executed in the computer or the other programmable devices provide the steps for achieving the function defined in one or more flows in the flow chart and/or one or more blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A frame structure configuration method, a frame structure obtaining method, a base station and UE are provided. The frame structure configuration method includes transmitting at least two cell-specific frame structure configurations concatenated in a time domain to the UE. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. In some embodiments, the base station transmits at least two cell-specific frame structure configurations concatenated in a time domain to the UE, where two periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain have different durations, and/or, the uplink and/or downlink resources within the two periodicities concatenated in the time domain have different configurations.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims a priority to Chinese patent application No. 201711175871.7 filed in China on Nov. 22, 2017, a disclosure of which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to the field of communication technology, in particular to a frame structure configuration method, a frame structure obtaining method, a base station and user equipment (UE).
  • BACKGROUND
  • In a 5th-generation (5G) New Radio (NR) design, a semi-statically configured frame structure has been introduced. The frame structure includes a frame structure configuration with a relatively long periodicity and a frame structure configuration with a relatively short periodicity. The relatively short periodicity is, for example, 2 ms, 1 ms or 0.5 ms. The periodicities of 1 ms and 0.5 ms are suitable for a deployment scenario for a middle or high frequency hotspot, and the periodicity of 2 ms is suitable for a deployment scenario for a middle or low frequency macro network. The periodicities may be applied to services such as enhanced mobile broadband (eMBB) and ultra-reliable and low latency communications (URLLC). The uplink/downlink switching periodicity of 0.5 ms is an important enabling technology for achieving a 5G air-interface latency of 0.5 ms in a time division duplexing (TDD) system.
  • In the above configuration scheme, static resource configurations for all periodicities are identical, and a proportion of static uplink resources to static downlink resources in each periodicity is constant. In order to further improve the resource configuration flexibility, a joint periodicity configuration method may be adopted, so that different proportions of the static uplink resources to the static downlink resources may be employed in at least two consecutive periodicities arranged sequentially in time, thereby improving the resource configuration flexibility.
  • SUMMARY
  • An object of the present disclosure is to provide a frame structure configuration method, a frame structure obtaining method, a base station and UE, so as to solve the problem in the related art that identical static resources configuration in each periodicity leads to insufficient resource configuration flexibility.
  • In one aspect, the present disclosure provides in some embodiments a frame structure configuration method, including transmitting at least two cell-specific frame structure configurations to UE. Each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • In a possible embodiment of the present disclosure, the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure, and a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • In a possible embodiment of the present disclosure, the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • In another aspect, the present disclosure provides in some embodiments a frame structure obtaining method, including: receiving at least two cell-specific frame structure configurations from a base station, where each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported; and determining a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • In a possible embodiment of the present disclosure, the determining the configuration result of the cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations includes: determining that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determining a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determining a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • In a possible embodiment of the present disclosure, the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • In yet another aspect, the present disclosure provides in some embodiments a base station, including a processor and a transceiver. The transceiver is configured to transmit at least two cell-specific frame structure configurations to UE. Each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • In a possible embodiment of the present disclosure, the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure, and a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • In a possible embodiment of the present disclosure, the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • In still yet another aspect, the present disclosure provides in some embodiments UE, including a processor and a transceiver. The transceiver is configured to receive at least two cell-specific frame structure configurations from a base station, each cell-specific frame structure configuration includes a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. The processor is configured to determine a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • In a possible embodiment of the present disclosure, the processor is further configured to: determine that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determine a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determine a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • In a possible embodiment of the present disclosure, the periodicity of cell-specific uplink and/or downlink resources includes one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • In still yet another aspect, the present disclosure provides in some embodiments a communication device, including a storage, a processor, and a computer program stored in the storage and configured to be executed by the processor. The processor is configured to execute the computer program, to implement the above-mentioned frame structure configuration method, or to implement the above-mentioned frame structure obtaining method.
  • In still yet another aspect, the present disclosure provides in some embodiments a computer-readable storage medium storing therein a computer program. The computer program is configured to be executed by a processor, to implement steps of the above-mentioned frame structure configuration method, or to implement steps of the above-mentioned frame structure obtaining method.
  • The present disclosure at least has the following beneficial effects. According to the embodiments of the present disclosure, on the basis of a single-periodicity design, a dual-periodicity or multi-periodicity frame structure configuration method is provided, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. As a result, it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart of a frame structure configuration method according to some embodiments of the present disclosure;
  • FIG. 2 is a schematic view showing a frame structure configuration in the frame structure configuration method according to some embodiments of the present disclosure;
  • FIG. 3 is a schematic view showing another frame structure configuration in the frame structure configuration method according to some embodiments of the present disclosure;
  • FIG. 4 is a flow chart of a frame structure obtaining method according to some embodiments of the present disclosure;
  • FIG. 5 is a schematic structural view showing a base station according to some embodiments of the present disclosure;
  • FIG. 6 is a schematic structural view showing UE according to some embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • In order to make the objects, the technical solutions and the advantages of the present disclosure more apparent, the present disclosure will be described hereinafter in a clear and complete manner in conjunction with the drawings and embodiments.
  • As shown in FIG. 1, the present disclosure provides in some embodiments a frame structure configuration method, which includes a Step 11: transmitting at least two cell-specific frame structure configurations to UE. Each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity.
  • In this step, the cell-specific frame structure configuration belongs to a cell-specific configuration, i.e., it is a configuration indicated by system broadcast information and cannot be changed arbitrarily, so the cell-specific configuration may usually be considered as a static configuration. However, the cell-specific configuration may also be changed at a cell level in a system information change process, so the cell-specific configuration may also be considered as a semi-static configuration.
  • To be specific, the periodicity of uplink and/or downlink resources carried in the cell-specific frame structure configuration may be statically or semi-statically configured at a cell level. In addition, the configuration for the uplink and/or downlink resources carried in the cell-specific frame structure configuration may also be statically or semi-statically configured at a cell level.
  • Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • To be specific, in the embodiments of the present disclosure, when the durations of two periodicities of cell-specific uplink and/or downlink resources that are concatenated in the time domain are different from each other, the configurations for the uplink and/or downlink resources within the two periodicities concatenated in the time domain may be the same or different from each other.
  • Similarly, when the configurations for the uplink and/or downlink resources within the two periodicities concatenated in the time domain are different from each other, the durations of two periodicities of cell-specific uplink and/or downlink resources that are concatenated in the time domain may be the same or different from each other.
  • For example, FIG. 2 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are the same and the configurations for the uplink and/or downlink resources are different. FIG. 3 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are different and the configurations for the uplink and/or downlink resources are different too.
  • Optionally, the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure.
  • A periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated. As shown in FIG. 2, when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and each having a periodicity of 1 ms, a target frame has a periodicity of 2 ms (1 ms+1 ms). As shown in FIG. 3, when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and having periodicities of 2 ms and 0.5 ms respectively, a target frame has a periodicity of 2.5 ms (2 ms+0.5 ms).
  • For example, apart from a first cell-specific frame structure configuration broadcast in system information, at least another (i.e., a second) cell-specific frame structure configuration needs to be broadcast in system information. Periodicity in the second cell-specific frame structure configuration may be different from periodicity in the first cell-specific frame structure configuration, and/or the configuration for the uplink and/or downlink resources in the second cell-specific frame structure configuration may be different from the configuration for the uplink and/or downlink resources in the first cell-specific frame structure configuration.
  • The two identical or different periodicities are sequentially connected in the time domain so as to form a new periodicity, and this new periodicity may be continuously repeated in the time domain.
  • Optionally, the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • To be specific, a periodicity of 2 ms may be acquired through the combination of two periodicities of 1 ms, a periodicity of 2.5 ms may be acquired through the combination of a periodicity of 2 ms and a periodicity of 0.5 ms, a periodicity of 3 ms may be acquired through the combination of a periodicity of 1 ms and a periodicity of 2 ms, a periodicity of 4 ms may be acquired through the combination of two periodicities of 2 ms, a periodicity of 20 ms may be acquired through the combination of two periodicities of 10 ms, and so on.
  • In summary, on the basis of a single-periodicity design, the dual-periodicity or multi-periodicity frame structure configuration method is provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. As a result, it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • As shown in FIG. 4, the present disclosure further provides in some embodiments a frame structure obtaining method, which includes the following steps.
  • Step 41: receiving at least two cell-specific frame structure configurations from a base station. Each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • To be specific, in the embodiments of the present disclosure, when the durations of the two periodicities of cell-specific uplink and/or downlink resources that are concatenated in the time domain are different from each other, the configurations for the uplink and/or downlink resources within the two periodicities concatenated in the time domain may be the same or different from each other.
  • Similarly, when the configurations for the uplink and/or downlink resources within the two periodicities concatenated in the time domain are different, the durations of the two periodicities of cell-specific uplink and/or downlink resources that are concatenated in the time domain may be the same or different from each other.
  • Step 42: determining a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • For example, FIG. 2 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are the same and the configurations for the uplink and/or downlink resources are different. FIG. 3 shows a combination of two frame structures concatenated in the time domain, in which durations of periodicities are different and the configurations for the uplink and/or downlink resources are different too.
  • In a possible embodiment of the present disclosure, Step 42 may include: determining that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determining a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determining a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • As shown in FIG. 2, when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and each having a periodicity of 1 ms, a target frame has a periodicity of 2 ms (1 ms+1 ms). As shown in FIG. 3, when the configuration of a cell-specific target frame structure is acquired by concatenating, in the time domain, cell-specific frame structure configurations of two frame structures concatenated in the time domain and having periodicities of 2 ms and 0.5 ms respectively, a target frame has a periodicity of 2.5 ms (2 ms+0.5 ms).
  • For example, apart from a first cell-specific frame structure configuration broadcast in system information, at least another (i.e., a second) cell-specific frame structure configuration needs to be broadcast in system information. Periodicity in the second cell-specific frame structure configuration may be different from periodicity in the first cell-specific frame structure configuration, and/or the configuration for the uplink and/or downlink resources in the second cell-specific frame structure configuration may be different from the configuration for the uplink and/or downlink resources in the first cell-specific frame structure configuration.
  • The two identical or different periodicities are sequentially connected in the time domain so as to form a new periodicity, and this new periodicity may be continuously repeated in the time domain.
  • In a possible embodiment of the present disclosure, the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • To be specific, a periodicity of 2 ms may be acquired through the combination of two periodicities of 1 ms, a periodicity of 2.5 ms may be acquired through the combination of a periodicity of 2 ms and a periodicity of 0.5 ms, a periodicity of 3 ms may be acquired through the combination of a periodicity of 1 ms and a periodicity of 2 ms, a periodicity of 4 ms may be acquired through the combination of two periodicities of 2 ms, a periodicity of 20 ms may be acquired through the combination of two periodicities of 10 ms, and so on.
  • In summary, on the basis of a single-periodicity design, the dual-periodicity or multi-periodicity frame structure configuration method may be provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. As a result, it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • As shown in FIG. 5, the present disclosure further provides in some embodiments a base station, including a processor 500 and a transceiver 510. The transceiver 510 is configured to transmit at least two cell-specific frame structure configurations to UE. Each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
  • In the embodiments of the present disclosure, the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure.
  • A periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
  • In the embodiments of the present disclosure, the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • In summary, on the basis of a single-periodicity design, the dual-periodicity or multi-periodicity frame structure configuration method may be provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. As a result, it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • It should be appreciated that, the base station in the embodiments of the present disclosure is capable of implementing the above-mentioned frame structure configuration method, and all embodiments of the frame structure configuration method may be applied to the base station and achieve a same or similar beneficial effect.
  • As shown in FIG. 6, the present disclosure further provides in some embodiments UE, which includes a processor 600, a transceiver 610, and a user interface 620. The transceiver 610 is configured to receive at least two cell-specific frame structure configurations from a base station, each cell-specific frame structure configuration may include a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. The processor 600 is configured to determine a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
  • In the embodiments of the present disclosure, the processor 600 is further configured to: determine that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure; determine a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, where the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and determine a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
  • In the embodiments of the present disclosure, the periodicity of the cell-specific uplink and/or downlink resources may include one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
  • In a possible embodiment of the present disclosure, the periodicity of the cell-specific uplink and/or downlink resources may refer to the periodicity of the uplink and/or downlink resources that is statically configured at a cell level, and the configuration for the uplink and/or downlink resources within the periodicity may refer to the configuration for the uplink and/or downlink resources within the periodicity that is statically configured at a cell level.
  • In another possible embodiment of the present disclosure, the periodicity of the cell-specific uplink and/or downlink resources may refer to the periodicity of the uplink and/or downlink resources that is semi-statically configured at a cell level, and the configuration for the uplink and/or downlink resources within the periodicity may refer to a configuration for the uplink and/or downlink resources within the periodicity that is semi-statically configured at a cell level.
  • In summary, on the basis of a single-periodicity design, the dual-periodicity or multi-periodicity frame structure configuration method may be provided in the embodiments of the present disclosure, so as to transmit at least two cell-specific frame structure configurations concatenated in the time domain to UE. Different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported. As a result, it is able to acquire various new periodicities through the combination of several typical periodicities, thereby improving the system scalability and the resource configuration flexibility.
  • It should be appreciated that, the UE in the embodiments of the present disclosure is capable of implementing the above-mentioned frame structure obtaining method, and all embodiments of the frame structure obtaining method may be applied to the base station and achieve a same or similar beneficial effect.
  • The present disclosure further provides in some embodiments a communication device, including a storage, a processor, and a computer program stored in the storage and configured to be executed by the processor. The processor is configured to execute the computer program, to implement various processes of the above-mentioned frame structure configuration method or the above-mentioned frame structure obtaining method and may achieve a same technical effect, which will thus not be particularly defined herein.
  • The present disclosure further provides in some embodiments a computer-readable storage medium storing therein a computer program. The computer program is configured to be executed by a processor, to implement various processes of the above-mentioned frame structure configuration method or the above-mentioned frame structure obtaining method and may achieve a same technical effect, which will thus not be particularly defined herein. The computer-readable storage medium may be a read-only memory (ROM), a random access memory (RAM), a magnetic disk, an optical disc or the like.
  • It should be appreciated that, the present disclosure may be provided as a method, a system or a computer program product, so the present disclosure may be in the form of full hardware embodiments, full software embodiments, or combinations thereof. In addition, the present disclosure may be in the form of a computer program product implemented on one or more computer-readable storage media (including but not limited to disk storage, optical storage and the like) including computer-readable program codes.
  • The present disclosure has been described with reference to the flow charts and/or block diagrams of the method, device (system) and computer program product according to the embodiments of the present disclosure. It should be understood that computer program instructions may be used to implement each of the work flows and/or blocks in the flow charts and/or the block diagrams, and the combination of the work flows and/or blocks in the flow charts and/or the block diagrams. These computer program instructions may be provided to a processor of a general computer, a dedicated computer, an embedded processor or any other programmable data processing devices to create a machine, so that instructions executable by the processor of the computer or the other programmable data processing devices may create a device to achieve the functions defined in one or more work flows in the flow chart and/or one or more blocks in the block diagram.
  • These computer program instructions may also be stored in a computer readable storage medium which may guide the computer or the other programmable data process devices to function in a certain way, so that the instructions stored in the computer readable storage medium may create a product including an instruction unit which achieves the functions defined in one or more flows in the flow chart and/or one or more blocks in the block diagram.
  • These computer program instructions may also be loaded onto the computer or the other programmable data process devices, so that a series of operation steps are executed on the computer or the other programmable devices to create processes achieved by the computer. Therefore, the instructions executed in the computer or the other programmable devices provide the steps for achieving the function defined in one or more flows in the flow chart and/or one or more blocks in the block diagram.
  • The above descriptions merely describe optional implementations of the present disclosure. It is appreciated, modifications and improvements may be made by a person of ordinary skill in the art without departing from the principle of the present disclosure, and these modifications and improvements shall also be construed as falling within the scope of the present disclosure.

Claims (25)

1. A frame structure configuration method, comprising:
transmitting at least two cell-specific frame structure configurations to user equipment (UE), wherein each cell-specific frame structure configuration comprises a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, wherein different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported.
2. The frame structure configuration method according to claim 1, wherein the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure, wherein a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
3. The frame structure configuration method according to claim 1, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
4. A frame structure obtaining method, comprising:
receiving at least two cell-specific frame structure configurations from a base station, wherein each cell-specific frame structure configuration comprises a periodicity of cell-specific uplink and/or downlink resources and a configuration for the uplink and/or downlink resources within the periodicity, different periodicities of cell-specific uplink and/or downlink resources that are concatenated in a time domain are supported, and/or different configurations for the uplink and/or downlink resources within periodicities concatenated in the time domain are supported; and
determining a configuration result of a cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations.
5. The frame structure obtaining method according to claim 4, wherein the determining the configuration result of the cell-specific target frame structure in accordance with the at least two cell-specific frame structure configurations comprises:
determining that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure;
determining a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, wherein the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and
determining a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
6. The frame structure obtaining method according to claim 4, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. A computer-readable storage medium storing therein a computer program, wherein the computer program is configured to be executed by a processor, to implement steps of the frame structure configuration method according to claim 1.
15. The frame structure configuration method according to claim 2, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
16. The frame structure obtaining method according to claim 5, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
17. A base station, comprising a storage, a processor, and a computer program stored in the storage and configured to be executed by the processor, wherein the processor is configured to execute the computer program, to implement the frame structure configuration method according to claim 1.
18. The base station according to claim 17, wherein the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of a cell-specific target frame structure, wherein a periodicity of cell-specific uplink and/or downlink resources in the configuration of the cell-specific target frame structure is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated.
19. The base station according to claim 17, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
20. The base station according to claim 18, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
21. User equipment (UE), comprising a storage, a processor, and a computer program stored in the storage and configured to be executed by the processor, wherein the processor is configured to execute the computer program, to implement the frame structure obtaining method according to claim 4.
22. The UE according to claim 21, wherein the processor is further configured to execute the computer program to implement following steps:
determining that the at least two cell-specific frame structure configurations are concatenated and repeated in the time domain to provide a configuration of the cell-specific target frame structure;
determining a target periodicity of the cell-specific target frame structure in accordance with the configuration of the cell-specific target frame structure, wherein the target periodicity is a sum of at least two periodicities of cell-specific uplink and/or downlink resources that are concatenated; and
determining a configuration for the uplink and/or downlink resources within the target periodicity in accordance with the configuration of the cell-specific target frame structure.
23. The UE according to claim 21, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
24. The UE according to claim 22, wherein the periodicity of cell-specific uplink and/or downlink resources comprises one of 0.5 ms, 1 ms, 2 ms, 5 ms and 10 ms.
25. A computer-readable storage medium storing therein a computer program, wherein the computer program is configured to be executed by a processor, to implement steps of the frame structure obtaining method according to claim 4.
US16/765,986 2017-11-17 2018-09-11 Frame structure configuration method, frame structure obtaining method, base station and user equipment Active 2038-12-31 US11284389B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711148139 2017-11-17
CN201711175871.7 2017-11-22
CN201711175871.7A CN109803425B (en) 2017-11-17 2017-11-22 Configuration method and acquisition method of frame structure, base station and terminal
PCT/CN2018/104989 WO2019100816A1 (en) 2017-11-17 2018-09-11 Frame structure configuration method, frame structure obtaining method, base station and terminal

Publications (2)

Publication Number Publication Date
US20200359376A1 true US20200359376A1 (en) 2020-11-12
US11284389B2 US11284389B2 (en) 2022-03-22

Family

ID=66555052

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/765,986 Active 2038-12-31 US11284389B2 (en) 2017-11-17 2018-09-11 Frame structure configuration method, frame structure obtaining method, base station and user equipment

Country Status (4)

Country Link
US (1) US11284389B2 (en)
EP (1) EP3716707A4 (en)
CN (2) CN112399608A (en)
WO (1) WO2019100816A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885376B (en) * 2022-05-30 2024-04-09 中国联合网络通信集团有限公司 Frame structure configuration method, device and storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651895B (en) * 2008-08-15 2012-06-27 华为技术有限公司 Method, equipment, system and wireless frame structure for time divide duplex communication of long term evolution
CN101924727A (en) * 2009-06-16 2010-12-22 中兴通讯股份有限公司 Method for configuring frame structure indication information in wireless communication system
US9439189B2 (en) 2012-02-20 2016-09-06 Lg Electronics Inc. Method and device for transmitting ACK/NACK in carrier aggregating system
CN103312462B (en) * 2012-03-16 2016-11-16 上海贝尔股份有限公司 Solve TDD ascending resource configuration information and the method for HARQ response message collision
EP2984779A1 (en) 2013-04-08 2016-02-17 Nokia Solutions and Networks Oy Reference configuration for flexible time division duplexing
CN105493419B (en) * 2013-08-20 2018-11-23 Lg 电子株式会社 The method and user equipment of multiple cells are accessed simultaneously
US9629066B2 (en) * 2015-02-24 2017-04-18 Huawei Technologies Co., Ltd. System and method for transmission time intervals
CN107408999B (en) * 2015-03-17 2019-04-05 Lg电子株式会社 The method and user equipment of measurement are executed in a wireless communication system
JP2022501937A (en) * 2018-09-27 2022-01-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Remote Interference Management (RIM) Reference Signal (RS) Identifier (ID) Coding

Also Published As

Publication number Publication date
CN109803425A (en) 2019-05-24
WO2019100816A1 (en) 2019-05-31
CN112399608A (en) 2021-02-23
EP3716707A4 (en) 2021-08-25
US11284389B2 (en) 2022-03-22
EP3716707A1 (en) 2020-09-30
CN109803425B (en) 2020-12-15

Similar Documents

Publication Publication Date Title
JP7226438B2 (en) Method and apparatus for transmitting control information
US20230156642A1 (en) Enabling Multiple Numerologies in a Network
JP2020145715A (en) Signal transmission configuration in wireless system
JP6320423B2 (en) CSI measuring method and apparatus
AU2017355743B2 (en) User equipment and uplink signal transmission method
JP7074764B2 (en) Transmission direction configuration method, device and system
JP2022191387A (en) Paging occasion start determination
CN111865479B (en) Communication method and device
US11019629B2 (en) Device-to-device communication method and apparatus
AU2021290316B2 (en) Methods and apparatuses for control resource mapping
US20170048906A1 (en) Operation method of communication node supporting device to device communication in communication network
CN111757484B (en) Method and device for configuring information
US10952137B2 (en) Information transmission method and apparatus
JP2020017780A (en) Wireless communication system and reference signal transmission method
JP2019515600A (en) RESOURCE DETERMINATION METHOD, RELATED DEVICE AND SYSTEM
JP2018500840A (en) COMMUNICATION METHOD, COMMUNICATION SYSTEM AND DEVICE
US10863549B2 (en) Random access method, terminal device, and network device
JPWO2018084126A1 (en) User equipment and base station
JP2022538207A (en) Communication method
US11284389B2 (en) Frame structure configuration method, frame structure obtaining method, base station and user equipment
JPWO2019064604A1 (en) Base station and user equipment
US10764850B2 (en) Information transceiving method, apparatus, and system
CN110461038B (en) Resource allocation method and device
EP3641445A1 (en) Network device, user device, and wireless communication method
US20130083738A1 (en) Method and apparatus for modifying resource allocation

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHINA MOBILE COMMUNICATION CO., LTD RESEARCH INSTITUTE, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XU, XIAODONG;LIU, GUANGYI;HUANG, YUHONG;AND OTHERS;REEL/FRAME:052723/0264

Effective date: 20200515

Owner name: CHINA MOBILE COMMUNICATIONS GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XU, XIAODONG;LIU, GUANGYI;HUANG, YUHONG;AND OTHERS;REEL/FRAME:052723/0264

Effective date: 20200515

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE