US20200259246A1 - Film antenna and display device including the same - Google Patents

Film antenna and display device including the same Download PDF

Info

Publication number
US20200259246A1
US20200259246A1 US16/861,560 US202016861560A US2020259246A1 US 20200259246 A1 US20200259246 A1 US 20200259246A1 US 202016861560 A US202016861560 A US 202016861560A US 2020259246 A1 US2020259246 A1 US 2020259246A1
Authority
US
United States
Prior art keywords
antenna
pattern
pad
film antenna
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/861,560
Other versions
US11276917B2 (en
Inventor
Jong Min Kim
Han Sub Ryu
Yoon Ho Huh
Won Bin HONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongwoo Fine Chem Co Ltd
Kreemo Inc
Original Assignee
Dongwoo Fine Chem Co Ltd
Postech Research and Business Development Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongwoo Fine Chem Co Ltd, Postech Research and Business Development Foundation filed Critical Dongwoo Fine Chem Co Ltd
Publication of US20200259246A1 publication Critical patent/US20200259246A1/en
Assigned to DONGWOO FINE-CHEM CO., LTD., KREEMO INC. reassignment DONGWOO FINE-CHEM CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DONGWOO FINE-CHEM CO., LTD., POSTECH Research and Business Development Foundation
Application granted granted Critical
Publication of US11276917B2 publication Critical patent/US11276917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly

Definitions

  • the present invention relates to a film antenna and a display device including the same. More particularly, the present invention relates to a film antenna including an electrode and a dielectric layer and a display device including the same.
  • a wireless communication technology such as Wi-Fi, Bluetooth, etc.
  • a display device in, e.g., a smartphone form.
  • an antenna may be combined with the display device to provide a communication function.
  • the antenna may be substantially integral with the display device.
  • an operation of the display device or structures in the display panel may be disturbed by a radio-wave or a radiation from the antenna.
  • a film antenna having improved signaling efficiency and radiation reliability.
  • a display device including a film antenna with improved signaling efficiency and radiation reliability.
  • a film antenna including: a dielectric layer; a pad disposed on the dielectric layer; and an antenna pattern inclined with respect to the pad on the dielectric layer.
  • the film antenna according to the above (1) further including a parallel antenna pattern that extends to be parallel with respect to the pad.
  • a display device including the film antenna according to embodiments as described above.
  • a radiation pattern and a transmission line may be inclined with respect to a pad. Accordingly, a radiation in, e.g., a ⁇ Z-axis direction may be suppressed to enhance a signal intensity of the radiation pattern and prevent a signal loss.
  • the film antenna when employed to a display device, malfunction or image disturbance of the display device due to the radiation in the ⁇ Z-axis direction may be also prevented.
  • the film antenna may be applied to a display device including a mobile communication device capable of transmitting/receiving at high-frequency or ultra-high frequency bands of 3G, 4G, 5G or more to also improve radiation properties and image quality.
  • FIGS. 1 and 2 are a schematic top planar view and a schematic cross-sectional view, respectively, illustrating a film antenna in accordance with exemplary embodiments.
  • FIG. 3 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • FIG. 4 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • FIG. 5 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • FIGS. 6 and 7 are schematic top planar views illustrating film antennas in accordance with some exemplary embodiments.
  • FIG. 8 is a schematic top planar view illustrating a display device in accordance with exemplary embodiments.
  • a film antenna including a radiation pattern extending diagonally relative to a pad by a predetermined angle so that a generation of a side lobe may be suppressed and a signaling reliability may be improved
  • the film antenna may be, e.g., a microstrip patch antenna fabricated as a transparent film.
  • the film antenna may be applied to a communication device for high or ultra-high frequency band (e.g., 3G, 4G, 5G or more) mobile communications.
  • high or ultra-high frequency band e.g., 3G, 4G, 5G or more
  • a display device including the film antenna.
  • the film antenna may be also applied to various devices or objects such as an automobile, a home electronic device, an architecture, etc.
  • FIGS. 1 and 2 are a schematic top planar view and a schematic cross-sectional view, respectively, illustrating a film antenna in accordance with exemplary embodiments.
  • the film antenna 50 may include sides extending in a first direction and a second direction.
  • the first direction and the second direction may be perpendicular on the same plane.
  • the first direction may be a horizontal direction (or a width direction)
  • the second direction may be a vertical direction (or a length direction).
  • the film antenna 50 may include an antenna pattern and a pad 116 disposed on a dielectric layer 100
  • the dielectric layer 100 may serve as a film substrate of the film antenna 50 for forming the antenna pattern.
  • the dielectric layer 100 may include an insulating material having a predetermined dielectric constant.
  • the dielectric layer 100 may include, e.g., an inorganic insulating material such as glass, silicon oxide, silicon nitride and a metal oxide, etc.
  • the dielectric layer 100 may include a transparent resin material.
  • the dielectric layer 100 may include, e.g., a polyester-based resin such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, etc.; a cellulose-based resin such as diacetyl cellulose, triacetyl cellulose, etc.; a polycarbonate-based resin; an acryl-based resin such as polymethyl (meth)acrylate, polyethyl (meth)acrylate, etc.; a styrene-based resin such as polystyrene, an acrylonitrile-styrene copolymer; a polyolefin-based resin such as polyethylene, polypropylene, a polyolefin having a cyclo or norbornene structure, etc.; a vinyl chloride-based resin; an amide-based resin such as nylon, an aromatic polyamide, etc.; an imide-based
  • the dielectric layer 100 may include an adhesive film including a pressure-sensitive adhesive (PSA) or an optically clear adhesive (OCA).
  • PSA pressure-sensitive adhesive
  • OCA optically clear adhesive
  • a dielectric constant of the dielectric layer 100 may be in a range from about 1.5 to about 12. If the dielectric constant exceeds about 12, a driving frequency may be excessively decreased and a desired high-frequency radiation may not be implemented.
  • the antenna pattern may include a radiation pattern 112 and a transmission line 114 .
  • the radiation pattern 112 may be integrally connected to the transmission line 114 .
  • the radiation pattern 112 may include a protrusion connected to the transmission line 114 in a central portion thereof.
  • the transmission line 114 may be provided as a feeding line of the antenna pattern, for example.
  • the transmission line 114 may extend from the protrusion of the radiation pattern 112 to the pad 116 .
  • the pad 116 may include a recess therein, and the transmission line 114 may be inserted into the recess of the pad 116 .
  • the shapes of the radiation pattern 112 and the pad 116 may be properly modified from the example of FIG. 1 in consideration of a radiation efficiency, etc.
  • the antenna pattern may extend to be diagonal with respect to the pad 116 by a predetermined angle.
  • the radiation pattern 112 of the antenna pattern may be inclined with respect to the pad 116 .
  • An inclination angle ⁇ of the radiation pattern 112 may be defined as an angle between an extension direction of the radiation pattern 112 and the second direction (e.g., a length direction) of the film antenna 50 .
  • the inclination angle ⁇ of the radiation pattern 112 may also be defined as an angle between the extension direction of the radiation pattern 112 and a lateral side 116 a of the pad 116 .
  • the transmission line 114 may also be inclined with respect to the pad 116 together with the radiation pattern 112 .
  • the inclination angle of the transmission line 114 and the inclination angle of the radiation pattern 112 may be substantially the same.
  • the transmission line 114 may include an end portion 114 a , and the end portion 114 a may be inserted into the recess of the pad 116 .
  • the end portion 114 a may be substantially parallel to a length direction of the pad 116 (e.g., the second direction). In this case, the transmission line 114 except for the end portion 114 a may be inclined
  • a first conductive layer 110 may be disposed on the dielectric layer 100 , and the first conductive layer 110 may include the antenna pattern and the pad portion 116 as described above.
  • the antenna pattern and/or the pad 116 may include silver (Ag), gold (Au), copper (Cu), aluminum (Al), platinum (Pt), palladium (Pd), chromium (Cr), titanium (Ti), tungsten (W), niobium (Nb), tantalum (Ta), vanadium (V), iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), molybdenum (Mo), calcium (Ca) or an alloy thereof. These may be used alone or in combination thereof.
  • the antenna pattern may be formed of silver (Ag) or a silver alloy (e.g., silver-palladium-copper (APC) alloy), or copper or a copper alloy (e.g., a copper-calcium (CuCa) alloy) for implementing a low resistance and a fine line width.
  • a silver alloy e.g., silver-palladium-copper (APC) alloy
  • copper or a copper alloy e.g., a copper-calcium (CuCa) alloy
  • the antenna pattern and/or the pad 116 may include a transparent metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), zinc oxide (ZnOx), etc.
  • a transparent metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), zinc oxide (ZnOx), etc.
  • the antenna pattern and/or the pad 116 may have a multi-layered structure including a metal layer or alloy layer and a transparent metal oxide layer.
  • a second conductive layer 90 may be disposed under the dielectric layer 100 .
  • the second conductive layer 90 may serve as a ground layer of the film antenna.
  • a contact or connection ground pattern connecting the second conductive layer 90 and the pad 116 may be formed in the dielectric layer 100 .
  • the second conductive layer 90 may be included as an individual element of the film antenna.
  • a conductive member of a display device to which the film antenna is applied may serve as the ground layer.
  • the conductive member may include a gate electrode of a thin film transistor (TFT), various wirings such as a scan line or a data line, various electrodes such as a pixel electrode, a common electrode, etc., included in a display panel.
  • TFT thin film transistor
  • the second conductive layer 90 may include a conductive material such as a metal, an alloy or a transparent metal oxide.
  • the antenna pattern may be inclined with respect to the pad 116 so that a side lobe of the film antenna 50 may be prevented or reduced.
  • a radio-wave or a radiation toward the display panel e.g., in a ⁇ Z axis direction
  • a radiation in a desired vertical direction e.g., +Z axis direction
  • TFT thin film transistor
  • the generation of the radiation or radio wave in the ⁇ Z axis direction may be reduced by adjusting the orientation of the antenna pattern to be inclined with respect to the pad 116 . Accordingly, operation disturbance of the display panel may be prevented while only achieving desired radiation properties of the film antenna 50 .
  • the second conductive layer 90 may be disposed under the dielectric layer 100 , and may serve as a ground layer.
  • the inclination angle ⁇ may be formed in the antenna pattern so that a resistance between the antenna pattern and the second conductive layer 90 may be increased, and thus the side lobe generated in the direction of the second conductive layer 90 (e.g., the ⁇ Z axis direction) may be suppressed.
  • the inclination angle ⁇ may be greater than 0 degree (°) and less than 90°.
  • the inclination angle ⁇ of the antenna pattern may be adjusted to 5° or more.
  • a degree of the side lobe may be decreased and a beam width of the film antenna 50 may decrease.
  • a wavelength a selectivity or a gain amount of the film antenna 50 may be increased.
  • the inclination angle used herein represents an absolute value, and may include angles in a clockwise direction or a counterclockwise direction.
  • the antenna pattern may form the inclination angle to a right direction with respect to the pad 116 or the end portion 114 a of the transmission line 114 .
  • FIG. 1 only one antenna pattern is illustrated for convenience of descriptions, but a plurality of antenna patterns may be arranged on the dielectric layer 100 .
  • FIG. 3 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • inclination angles of the radiation pattern 112 and the transmission line 114 included in the film antenna 52 may be different.
  • the transmission line 114 may have a first inclination angle ⁇ 1
  • the radiation pattern 112 may have a second inclination angle ⁇ 2
  • the second inclination angle ⁇ 2 of the radiation pattern 112 may be greater than the first inclination angle ⁇ 1 of the transmission line 114 .
  • the inclination angle of the transmission line 114 may be adjusted to be smaller than the inclination angle of the radiation pattern 112 , so that a distance between the radiation pattern 112 and the pad portion 116 may be maintained while blocking the above-mentioned side lobe in the Z-axis direction.
  • the transmission line 114 may function as an intermediate pattern or a buffer pattern between the radiation pattern 112 and the pad 116 .
  • FIG. 4 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • a film antenna 54 may include a plurality of the antenna patterns disposed on the dielectric layer 100 , and may include antenna patterns inclined in opposite directions to each other.
  • the film antenna 54 may include a first antenna pattern and a second antenna pattern inclined in opposite directions to each other.
  • the first antenna pattern may include a first radiation pattern 212 a and a first transmission line 214 a
  • the second antenna pattern may include a second radiation pattern 212 b and a second transmission line 214 b.
  • the first antenna pattern and the second antenna pattern may form inclination angles in opposite directions relative to the pads 216 a and 216 b.
  • the first antenna pattern including the first radiation pattern 212 a and the first transmission line 214 a may be inclined in a counterclockwise direction (e.g., leftward) relative to the first pad 216 a .
  • the second antenna pattern including the second radiation pattern 212 b and the second transmission line 214 b may be inclined in a clockwise direction (e.g., rightward) with respect to the second pad 216 b.
  • the absolute values of the inclination angle ⁇ a of the first antenna pattern and the inclination angle ⁇ b of the second antenna pattern may be substantially the same as or different from each other.
  • a plurality of antenna patterns oriented by different inclination angles may be included so that the anti-side lobe effect may be more uniformly implemented throughout an entire region of the film antenna 54 .
  • FIG. 5 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • a film antenna 56 may include a plurality of antenna patterns.
  • the plurality of antenna patterns may include an antenna pattern inclined to a pad and an antenna pattern parallel to a pad.
  • the antenna pattern may include first to third antenna patterns.
  • the first antenna pattern may include a first radiation pattern 212 a and a first transmission line 214 a
  • the second antenna pattern may include a second radiation pattern 212 b and a second transmission line 214 b
  • the third antenna pattern may include a third radiation pattern 212 c and a second transmission line 214 c.
  • the first and second antenna patterns may each be inclined by a predetermined angle with respect to a first pad 216 a and a second pad 216 b , respectively.
  • the first and second antenna patterns may be oriented to be inclined in opposite directions.
  • the third antenna pattern may extend to be substantially parallel to a sidewall of the third pad 216 c (e.g., an inclination angle is not formed).
  • the third antenna pattern may extend in the second direction.
  • the first and second antenna patterns may be arranged around the third antenna pattern.
  • the third antenna pattern may be included to enhance radiation in the +Z axis direction, and the generation of side lobes in the ⁇ Z axis direction may be suppressed by the first and second antenna patterns.
  • FIGS. 6 and 7 are schematic top planar views illustrating film antennas in accordance with some exemplary embodiments.
  • an antenna pattern including the radiation pattern 112 and the transmission line 114 may include a mesh structure.
  • a dummy pattern 120 may be arranged around the antenna pattern, and the dummy pattern 120 may also include a mesh structure substantially the same as or similar to that of the antenna pattern.
  • the antenna pattern may be formed of the mesh structure so that a transmittance of the film antenna may be enhanced. Further, the dummy pattern 120 of the mesh structure may be added to prevent a visual recognition of the antenna pattern due to a pattern shape deviation.
  • a cut region or a separation region from which the mesh structure is cut may be formed between the antenna pattern and the dummy pattern 120 to define the antenna pattern.
  • the pad 116 may also be formed of a mesh structure.
  • a pad 117 may have a substantially solid structure (not a mesh structure).
  • the radiation pattern 112 may be formed of the mesh structure to improve transmittance and optical properties, and the pad 117 may be formed as the solid structure to implement signal sensitivity and low resistance.
  • the pad 117 may be disposed at a peripheral portion or a bezel portion of the display device, and may not substantially affect a display image.
  • the pad 117 may be disposed at a different level or on a different layer from that of the radiation pattern 112 .
  • an insulation layer (not illustrated) may be formed on the radiation pattern 112 and the transmission line 114 , and the pad 117 may be disposed on the insulation layer.
  • a contact (not illustrated) for electrically connecting the pad 117 and the transmission line 114 may be formed in the insulation layer.
  • FIG. 8 is a schematic top planar view illustrating a display device in accordance with exemplary embodiments.
  • a display device 200 may include a display region 210 and a peripheral region 220 .
  • the peripheral region 220 may be positioned, e.g., at both lateral portions and/or both end portions of the display region 210 .
  • the above-described film antenna may be inserted in the display device 200 as a patch.
  • the antenna pattern of the film antenna may be entirely covered by the display region 210 of the display device 200 .
  • the radiation pattern 112 (see FIG. 1 ) of the antenna pattern may be superimposed by the display region 210 , and the pad 116 (see FIG. 1 ) may be disposed to correspond to the peripheral region 220 .
  • the peripheral region 220 may correspond to, e.g., a light-shielding portion or a bezel portion of the image display device. Additionally, a driving circuit such as an IC chip of the display device 200 and/or the film antenna may be disposed in the peripheral region 220 .
  • the pad 116 of the film antenna may be positioned to be adjacent to the driving circuit so that signal transmission/reception path may become shorter to suppress signal loss.
  • the antenna pattern including the radiation pattern 112 may have an inclined orientation so that a radiation in the ⁇ Z axis direction in the display region 210 may be suppressed. Therefore, radiation properties of high reliability may be realized without degrading an image quality of the display device 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

A film antenna according to an embodiment of the present invention includes a dielectric layer, a pad disposed on the dielectric layer and an antenna pattern inclined with respect to the pad on the dielectric layer. A generation of a side lobe is prevented by the inclined orientation of the antenna pattern. A radiation in a −Z-axis direction may be suppressed to enhance a signal intensity of a radiation pattern and prevent a signal loss. A display device including the film antenna is also provided.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS AND CLAIM OF PRIORITY
  • The present application is a continuation application to International Application No. PCT/KR2018/013338 with an International Filing Date of Nov. 6, 2018, which claims the benefit of Korean Patent Application No. 10-2017-0146687 filed on Nov. 6, 2017 at the Korean Intellectual Property Office, the disclosures of which are incorporated by reference herein in their entirety.
  • BACKGROUND 1. Field
  • The present invention relates to a film antenna and a display device including the same. More particularly, the present invention relates to a film antenna including an electrode and a dielectric layer and a display device including the same.
  • 2. Description of the Related Art
  • As information technologies have been developed, a wireless communication technology such as Wi-Fi, Bluetooth, etc., is combined with a display device in, e.g., a smartphone form. In this case, an antenna may be combined with the display device to provide a communication function.
  • As mobile communication technologies have been developed recently, an antenna for a communication of a high-frequency or ultra-high frequency band is required in the display device. Further, as the display device having a compact size has been developed, a distance or a space between the antenna and a display panel of the display device becomes decreased. Accordingly, the antenna may be substantially integral with the display device.
  • In this case, an operation of the display device or structures in the display panel (e.g., a thin film transistor, a light emitting element, etc.) may be disturbed by a radio-wave or a radiation from the antenna.
  • Thus, proper control of the radiation or the radio-wave direction from the antenna for enhancing signaling sensitivity without affecting an image quality may be needed.
  • SUMMARY
  • According to an aspect of the present invention, there is provided a film antenna having improved signaling efficiency and radiation reliability.
  • According to an aspect of the present invention, there is provided a display device including a film antenna with improved signaling efficiency and radiation reliability.
  • The above aspects of the present invention will be achieved by one or more of the following features or constructions:
  • (1) A film antenna, including: a dielectric layer; a pad disposed on the dielectric layer; and an antenna pattern inclined with respect to the pad on the dielectric layer.
  • (2) The film antenna according to the above (1), wherein the antenna pattern includes a radiation pattern and a transmission line mediating the radiation pattern and the pad.
  • (3) The film antenna according to the above (2), wherein the radiation pattern and the transmission line are inclined with respect to the pad.
  • (4) The film antenna according to the above (3), wherein the radiation pattern and the transmission line extend with the same inclination angle.
  • (5) The film antenna according to the above (3), wherein inclination angles of the radiation pattern and the transmission line with respect to the pad are different from each other
  • (6) The film antenna according to the above (1), wherein the antenna pattern includes antenna patterns which are inclined in opposite directions with respect to the pad.
  • (7) The film antenna according to the above (1), further including a parallel antenna pattern that extends to be parallel with respect to the pad.
  • (8) The film antenna according to the above (1), wherein the antenna pattern is inclined by a predetermined inclination angle with respect to a sidewall of the pad.
  • (9) The film antenna according to the above (8), wherein the inclination angle is 5 degree (°) or more, and less than 90°.
  • (10) The film antenna according to the above (1), further including a ground layer under the dielectric layer.
  • (11) The film antenna according to the above (1), further including a dummy pattern formed around the antenna pattern.
  • (12) The film antenna according to the above (11), wherein the antenna pattern and the dummy pattern include a mesh structure.
  • (13) A display device including the film antenna according to embodiments as described above.
  • In the film antenna according to embodiments of the present invention, a radiation pattern and a transmission line may be inclined with respect to a pad. Accordingly, a radiation in, e.g., a −Z-axis direction may be suppressed to enhance a signal intensity of the radiation pattern and prevent a signal loss.
  • Further, when the film antenna is employed to a display device, malfunction or image disturbance of the display device due to the radiation in the −Z-axis direction may be also prevented.
  • The film antenna may be applied to a display device including a mobile communication device capable of transmitting/receiving at high-frequency or ultra-high frequency bands of 3G, 4G, 5G or more to also improve radiation properties and image quality.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 and 2 are a schematic top planar view and a schematic cross-sectional view, respectively, illustrating a film antenna in accordance with exemplary embodiments.
  • FIG. 3 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • FIG. 4 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • FIG. 5 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • FIGS. 6 and 7 are schematic top planar views illustrating film antennas in accordance with some exemplary embodiments.
  • FIG. 8 is a schematic top planar view illustrating a display device in accordance with exemplary embodiments.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • According to exemplary embodiments of the present invention, there is provided a film antenna including a radiation pattern extending diagonally relative to a pad by a predetermined angle so that a generation of a side lobe may be suppressed and a signaling reliability may be improved,
  • The film antenna may be, e.g., a microstrip patch antenna fabricated as a transparent film. The film antenna may be applied to a communication device for high or ultra-high frequency band (e.g., 3G, 4G, 5G or more) mobile communications.
  • According to exemplary embodiments of the present invention, there is provided a display device including the film antenna. The film antenna may be also applied to various devices or objects such as an automobile, a home electronic device, an architecture, etc.
  • Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, those skilled in the art will appreciate that such embodiments described with reference to the accompanying drawings are provided to further understand the spirit of the present invention and do not limit subject matters to be protected as disclosed in the detailed description and appended claims.
  • FIGS. 1 and 2 are a schematic top planar view and a schematic cross-sectional view, respectively, illustrating a film antenna in accordance with exemplary embodiments.
  • The film antenna 50 may include sides extending in a first direction and a second direction. For example, the first direction and the second direction may be perpendicular on the same plane. The first direction may be a horizontal direction (or a width direction), and the second direction may be a vertical direction (or a length direction).
  • Referring to FIGS. 1 and 2, the film antenna 50 may include an antenna pattern and a pad 116 disposed on a dielectric layer 100
  • The dielectric layer 100 may serve as a film substrate of the film antenna 50 for forming the antenna pattern. The dielectric layer 100 may include an insulating material having a predetermined dielectric constant. The dielectric layer 100 may include, e.g., an inorganic insulating material such as glass, silicon oxide, silicon nitride and a metal oxide, etc.
  • The dielectric layer 100 may include a transparent resin material. For example, the dielectric layer 100 may include, e.g., a polyester-based resin such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, etc.; a cellulose-based resin such as diacetyl cellulose, triacetyl cellulose, etc.; a polycarbonate-based resin; an acryl-based resin such as polymethyl (meth)acrylate, polyethyl (meth)acrylate, etc.; a styrene-based resin such as polystyrene, an acrylonitrile-styrene copolymer; a polyolefin-based resin such as polyethylene, polypropylene, a polyolefin having a cyclo or norbornene structure, etc.; a vinyl chloride-based resin; an amide-based resin such as nylon, an aromatic polyamide, etc.; an imide-based resin; a polyether sulfone-based resin; a sulfone-based resin; a polyether ketone-based resin; a polyphenylene sulfide-based resin; a vinyl alcohol-based resin; a vinylidene chloride-based resin; a vinyl butyral-based resin; an allylate-based resin; a polyoxymethylene-based resin; an epoxy-based resin; a urethane or acryl urethane-based resin; a silicone-based resin, etc. These may be used alone or in a combination thereof.
  • In some embodiments, the dielectric layer 100 may include an adhesive film including a pressure-sensitive adhesive (PSA) or an optically clear adhesive (OCA).
  • In some embodiments, a dielectric constant of the dielectric layer 100 may be in a range from about 1.5 to about 12. If the dielectric constant exceeds about 12, a driving frequency may be excessively decreased and a desired high-frequency radiation may not be implemented.
  • The antenna pattern may include a radiation pattern 112 and a transmission line 114.
  • The radiation pattern 112 may be integrally connected to the transmission line 114. For example, the radiation pattern 112 may include a protrusion connected to the transmission line 114 in a central portion thereof.
  • The transmission line 114 may be provided as a feeding line of the antenna pattern, for example. The transmission line 114 may extend from the protrusion of the radiation pattern 112 to the pad 116.
  • As illustrated in FIG. 1, the pad 116 may include a recess therein, and the transmission line 114 may be inserted into the recess of the pad 116.
  • However, the shapes of the radiation pattern 112 and the pad 116 may be properly modified from the example of FIG. 1 in consideration of a radiation efficiency, etc.
  • In exemplary embodiments, the antenna pattern may extend to be diagonal with respect to the pad 116 by a predetermined angle.
  • For example, the radiation pattern 112 of the antenna pattern may be inclined with respect to the pad 116. An inclination angle θ of the radiation pattern 112 may be defined as an angle between an extension direction of the radiation pattern 112 and the second direction (e.g., a length direction) of the film antenna 50. The inclination angle θ of the radiation pattern 112 may also be defined as an angle between the extension direction of the radiation pattern 112 and a lateral side 116 a of the pad 116.
  • In some embodiments, the transmission line 114 may also be inclined with respect to the pad 116 together with the radiation pattern 112. In an embodiment, the inclination angle of the transmission line 114 and the inclination angle of the radiation pattern 112 may be substantially the same.
  • In some embodiments, the transmission line 114 may include an end portion 114 a, and the end portion 114 a may be inserted into the recess of the pad 116. The end portion 114 a may be substantially parallel to a length direction of the pad 116 (e.g., the second direction). In this case, the transmission line 114 except for the end portion 114 a may be inclined
  • As illustrated in FIG. 2, a first conductive layer 110 may be disposed on the dielectric layer 100, and the first conductive layer 110 may include the antenna pattern and the pad portion 116 as described above.
  • The antenna pattern and/or the pad 116 may include silver (Ag), gold (Au), copper (Cu), aluminum (Al), platinum (Pt), palladium (Pd), chromium (Cr), titanium (Ti), tungsten (W), niobium (Nb), tantalum (Ta), vanadium (V), iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), molybdenum (Mo), calcium (Ca) or an alloy thereof. These may be used alone or in combination thereof. For example, the antenna pattern may be formed of silver (Ag) or a silver alloy (e.g., silver-palladium-copper (APC) alloy), or copper or a copper alloy (e.g., a copper-calcium (CuCa) alloy) for implementing a low resistance and a fine line width.
  • The antenna pattern and/or the pad 116 may include a transparent metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), zinc oxide (ZnOx), etc.
  • For example, the antenna pattern and/or the pad 116 may have a multi-layered structure including a metal layer or alloy layer and a transparent metal oxide layer.
  • A second conductive layer 90 may be disposed under the dielectric layer 100. In exemplary embodiments, the second conductive layer 90 may serve as a ground layer of the film antenna. In this case, a contact or connection ground pattern connecting the second conductive layer 90 and the pad 116 may be formed in the dielectric layer 100.
  • In some embodiments, the second conductive layer 90 may be included as an individual element of the film antenna. In some embodiments, a conductive member of a display device to which the film antenna is applied may serve as the ground layer.
  • The conductive member may include a gate electrode of a thin film transistor (TFT), various wirings such as a scan line or a data line, various electrodes such as a pixel electrode, a common electrode, etc., included in a display panel.
  • The second conductive layer 90 may include a conductive material such as a metal, an alloy or a transparent metal oxide.
  • According to the exemplary embodiments described above, the antenna pattern may be inclined with respect to the pad 116 so that a side lobe of the film antenna 50 may be prevented or reduced.
  • For example, when the film antenna 50 is stacked or inserted on a display panel such as an OLED panel or an LCD panel, a radio-wave or a radiation toward the display panel (e.g., in a −Z axis direction) other than a radiation in a desired vertical direction (e.g., +Z axis direction) may occur as the side lobe.
  • In this case, light-emitting properties of the thin film transistor (TFT) and the OLED layer included in the display panel may be transformed or disturbed due to the −Z axis direction side lobe. Further, an orientation of liquid crystal molecules in a liquid crystal layer may be transformed or disturbed.
  • However, according to exemplary embodiments, the generation of the radiation or radio wave in the −Z axis direction may be reduced by adjusting the orientation of the antenna pattern to be inclined with respect to the pad 116. Accordingly, operation disturbance of the display panel may be prevented while only achieving desired radiation properties of the film antenna 50.
  • In some embodiments, as described above, the second conductive layer 90 may be disposed under the dielectric layer 100, and may serve as a ground layer. For example, the inclination angle θ may be formed in the antenna pattern so that a resistance between the antenna pattern and the second conductive layer 90 may be increased, and thus the side lobe generated in the direction of the second conductive layer 90 (e.g., the −Z axis direction) may be suppressed.
  • The inclination angle θ may be greater than 0 degree (°) and less than 90°. To effectively suppress the radiation in the −Z axis direction, the inclination angle θ of the antenna pattern may be adjusted to 5° or more.
  • For example, as the inclination angle increases, a degree of the side lobe may be decreased and a beam width of the film antenna 50 may decrease. Thus, a wavelength a selectivity or a gain amount of the film antenna 50 may be increased.
  • The inclination angle used herein represents an absolute value, and may include angles in a clockwise direction or a counterclockwise direction. For example, in FIG. 1, the antenna pattern may form the inclination angle to a right direction with respect to the pad 116 or the end portion 114 a of the transmission line 114.
  • In FIG. 1, only one antenna pattern is illustrated for convenience of descriptions, but a plurality of antenna patterns may be arranged on the dielectric layer 100.
  • FIG. 3 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • Referring to FIG. 3, inclination angles of the radiation pattern 112 and the transmission line 114 included in the film antenna 52 may be different.
  • For example, the transmission line 114 may have a first inclination angle θ1, and the radiation pattern 112 may have a second inclination angle θ2. In some embodiments, the second inclination angle θ2 of the radiation pattern 112 may be greater than the first inclination angle θ1 of the transmission line 114.
  • The inclination angle of the transmission line 114 may be adjusted to be smaller than the inclination angle of the radiation pattern 112, so that a distance between the radiation pattern 112 and the pad portion 116 may be maintained while blocking the above-mentioned side lobe in the Z-axis direction. For example, the transmission line 114 may function as an intermediate pattern or a buffer pattern between the radiation pattern 112 and the pad 116.
  • FIG. 4 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • Referring to FIG. 4, a film antenna 54 may include a plurality of the antenna patterns disposed on the dielectric layer 100, and may include antenna patterns inclined in opposite directions to each other.
  • For example, the film antenna 54 may include a first antenna pattern and a second antenna pattern inclined in opposite directions to each other. The first antenna pattern may include a first radiation pattern 212 a and a first transmission line 214 a, and the second antenna pattern may include a second radiation pattern 212 b and a second transmission line 214 b.
  • As illustrated in FIG. 4, the first antenna pattern and the second antenna pattern may form inclination angles in opposite directions relative to the pads 216 a and 216 b.
  • For example, the first antenna pattern including the first radiation pattern 212 a and the first transmission line 214 a may be inclined in a counterclockwise direction (e.g., leftward) relative to the first pad 216 a. The second antenna pattern including the second radiation pattern 212 b and the second transmission line 214 b may be inclined in a clockwise direction (e.g., rightward) with respect to the second pad 216 b.
  • The absolute values of the inclination angle θa of the first antenna pattern and the inclination angle θb of the second antenna pattern may be substantially the same as or different from each other.
  • As described above, a plurality of antenna patterns oriented by different inclination angles may be included so that the anti-side lobe effect may be more uniformly implemented throughout an entire region of the film antenna 54.
  • FIG. 5 is a schematic top planar view illustrating a film antenna in accordance with some exemplary embodiments.
  • Referring to FIG. 5, a film antenna 56 may include a plurality of antenna patterns. In some embodiments, the plurality of antenna patterns may include an antenna pattern inclined to a pad and an antenna pattern parallel to a pad.
  • For example, the antenna pattern may include first to third antenna patterns. The first antenna pattern may include a first radiation pattern 212 a and a first transmission line 214 a, and the second antenna pattern may include a second radiation pattern 212 b and a second transmission line 214 b. The third antenna pattern may include a third radiation pattern 212 c and a second transmission line 214 c.
  • The first and second antenna patterns may each be inclined by a predetermined angle with respect to a first pad 216 a and a second pad 216 b, respectively. For example, as described with reference to FIG. 4, the first and second antenna patterns may be oriented to be inclined in opposite directions.
  • The third antenna pattern may extend to be substantially parallel to a sidewall of the third pad 216 c (e.g., an inclination angle is not formed). For example, the third antenna pattern may extend in the second direction.
  • In an embodiment, as illustrated in FIG. 5, the first and second antenna patterns may be arranged around the third antenna pattern. For example, the third antenna pattern may be included to enhance radiation in the +Z axis direction, and the generation of side lobes in the −Z axis direction may be suppressed by the first and second antenna patterns.
  • FIGS. 6 and 7 are schematic top planar views illustrating film antennas in accordance with some exemplary embodiments.
  • Referring to FIGS. 6 and 7, an antenna pattern including the radiation pattern 112 and the transmission line 114 may include a mesh structure. In some embodiments, a dummy pattern 120 may be arranged around the antenna pattern, and the dummy pattern 120 may also include a mesh structure substantially the same as or similar to that of the antenna pattern.
  • The antenna pattern may be formed of the mesh structure so that a transmittance of the film antenna may be enhanced. Further, the dummy pattern 120 of the mesh structure may be added to prevent a visual recognition of the antenna pattern due to a pattern shape deviation.
  • Although not explicitly illustrated in FIGS. 6 and 7, a cut region or a separation region from which the mesh structure is cut may be formed between the antenna pattern and the dummy pattern 120 to define the antenna pattern.
  • As illustrated in FIG. 6, the pad 116 may also be formed of a mesh structure.
  • In some embodiments, as illustrated in FIG. 7, a pad 117 may have a substantially solid structure (not a mesh structure). In this case, the radiation pattern 112 may be formed of the mesh structure to improve transmittance and optical properties, and the pad 117 may be formed as the solid structure to implement signal sensitivity and low resistance.
  • For example, the pad 117 may be disposed at a peripheral portion or a bezel portion of the display device, and may not substantially affect a display image.
  • In some embodiments, the pad 117 may be disposed at a different level or on a different layer from that of the radiation pattern 112. For example, an insulation layer (not illustrated) may be formed on the radiation pattern 112 and the transmission line 114, and the pad 117 may be disposed on the insulation layer.
  • A contact (not illustrated) for electrically connecting the pad 117 and the transmission line 114 may be formed in the insulation layer.
  • FIG. 8 is a schematic top planar view illustrating a display device in accordance with exemplary embodiments.
  • Referring to FIG. 8, a display device 200 may include a display region 210 and a peripheral region 220. The peripheral region 220 may be positioned, e.g., at both lateral portions and/or both end portions of the display region 210.
  • In some embodiments, the above-described film antenna may be inserted in the display device 200 as a patch. In some embodiments, the antenna pattern of the film antenna may be entirely covered by the display region 210 of the display device 200. In some embodiments, the radiation pattern 112 (see FIG. 1) of the antenna pattern may be superimposed by the display region 210, and the pad 116 (see FIG. 1) may be disposed to correspond to the peripheral region 220.
  • The peripheral region 220 may correspond to, e.g., a light-shielding portion or a bezel portion of the image display device. Additionally, a driving circuit such as an IC chip of the display device 200 and/or the film antenna may be disposed in the peripheral region 220.
  • The pad 116 of the film antenna may be positioned to be adjacent to the driving circuit so that signal transmission/reception path may become shorter to suppress signal loss.
  • As described above, the antenna pattern including the radiation pattern 112 may have an inclined orientation so that a radiation in the −Z axis direction in the display region 210 may be suppressed. Therefore, radiation properties of high reliability may be realized without degrading an image quality of the display device 200.

Claims (13)

What is claimed is:
1. A film antenna, comprising:
a dielectric layer;
a pad disposed on the dielectric layer; and
an antenna pattern formed on the dielectric layer and inclined with respect to the pad.
2. The film antenna according to claim 1, wherein the antenna pattern comprises a radiation pattern and a transmission line mediating the radiation pattern and the pad.
3. The film antenna according to claim 2, wherein the radiation pattern and the transmission line are inclined with respect to the pad.
4. The film antenna according to claim 3, wherein the radiation pattern and the transmission line extend with the same inclination angle.
5. The film antenna according to claim 3, wherein inclination angles of the radiation pattern and the transmission line with respect to the pad are different from each other
6. The film antenna according to claim 1, wherein the antenna pattern comprises antenna patterns which are inclined in opposite directions to each other with respect to the pad.
7. The film antenna according to claim 1, further comprising a parallel antenna pattern that extends to be parallel with respect to the pad.
8. The film antenna according to claim 1, wherein the antenna pattern is inclined by a predetermined inclination angle with respect to a sidewall of the pad.
9. The film antenna according to claim 8, wherein the inclination angle is 5 degree (°) or more, and less than 90°.
10. The film antenna according to claim 1, further comprising a ground layer under the dielectric layer.
11. The film antenna according to claim 1, further comprising a dummy pattern formed around the antenna pattern.
12. The film antenna according to claim 11, wherein the antenna pattern and the dummy pattern comprise a mesh structure.
13. A display device comprising the film antenna according to claim 1.
US16/861,560 2017-11-06 2020-04-29 Film antenna and display device including the same Active US11276917B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170146687A KR101971441B1 (en) 2017-11-06 2017-11-06 Film antenna and display device including the same
KR10-2017-0146687 2017-11-06
PCT/KR2018/013338 WO2019088788A1 (en) 2017-11-06 2018-11-06 Film antenna and display device comprising same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013338 Continuation WO2019088788A1 (en) 2017-11-06 2018-11-06 Film antenna and display device comprising same

Publications (2)

Publication Number Publication Date
US20200259246A1 true US20200259246A1 (en) 2020-08-13
US11276917B2 US11276917B2 (en) 2022-03-15

Family

ID=66285268

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/861,560 Active US11276917B2 (en) 2017-11-06 2020-04-29 Film antenna and display device including the same

Country Status (5)

Country Link
US (1) US11276917B2 (en)
JP (1) JP6971399B2 (en)
KR (1) KR101971441B1 (en)
CN (1) CN111357153B (en)
WO (1) WO2019088788A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165171B2 (en) * 2019-06-12 2021-11-02 3M Innovative Properties Company Transparent antenna stack and assembly
US20220140482A1 (en) * 2020-11-05 2022-05-05 Dongwoo Fine-Chem Co., Ltd. Antenna element, antenna device and display device including the same
US12034219B2 (en) 2021-09-30 2024-07-09 3M Innovative Properties Company Transparent antenna stack and assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210041156A (en) 2019-10-04 2021-04-15 삼성디스플레이 주식회사 Display apparatus and electric apparatus having the same
KR20210050435A (en) * 2019-10-28 2021-05-07 동우 화인켐 주식회사 Antenna structure and display device including the same
WO2021085919A1 (en) * 2019-10-28 2021-05-06 동우화인켐 주식회사 Antenna structure, and antenna array and display device comprising same
KR20210052749A (en) 2019-10-31 2021-05-11 삼성디스플레이 주식회사 Display apparatus and electronic apparatus having the same
KR102241964B1 (en) * 2019-12-05 2021-04-16 동우 화인켐 주식회사 Antenna device and display device including the same
KR20210152170A (en) * 2020-06-08 2021-12-15 동우 화인켐 주식회사 Antenna device and display device including the same
CN113193339B (en) * 2021-03-22 2023-01-10 安徽精卓光显技术有限责任公司 Transparent room divides ceiling antenna

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467990B2 (en) * 1996-10-16 2003-11-17 三菱電機株式会社 Millimeter wave planar antenna
JP2000138512A (en) * 1998-09-23 2000-05-16 Sharp Corp Liquid crystal display device provided with plane antenna
JP3537770B2 (en) * 1999-04-06 2004-06-14 三菱電機株式会社 Portable wireless device and method of manufacturing casing for portable wireless device
JP2003347827A (en) * 2002-05-28 2003-12-05 Ngk Spark Plug Co Ltd Antenna and radio frequency module using the same
KR100447852B1 (en) 2002-06-12 2004-09-08 삼성전자주식회사 An Inner Antenna of a portable radio device
WO2007102360A1 (en) * 2006-03-06 2007-09-13 Mitsubishi Electric Corporation Rfid tag, method for manufacturing rfid tag and method for arranging rfid tag
JP4188975B2 (en) * 2006-03-16 2008-12-03 三菱電機株式会社 Phased array antenna for mobile satellite communications
JP4764321B2 (en) * 2006-12-20 2011-08-31 株式会社東芝 Electronics
JP4826916B2 (en) * 2007-03-02 2011-11-30 株式会社村田製作所 Patch antenna device and high-frequency module
US20090122847A1 (en) * 2007-09-04 2009-05-14 Sierra Wireless, Inc. Antenna Configurations for Compact Device Wireless Communication
KR101677521B1 (en) * 2009-03-11 2016-11-18 타이코 일렉트로닉스 서비시스 게엠베하 High gain metamaterial antenna device
JP5660857B2 (en) * 2010-11-10 2015-01-28 富士通テン株式会社 antenna
KR101269711B1 (en) * 2011-05-23 2013-05-30 주식회사 에이스테크놀로지 Radar Array Antenna Using Open Stub
CN202662795U (en) * 2012-06-25 2013-01-09 中国计量学院 Single-band coplanar waveguide microstrip antenna
CN104681993B (en) * 2013-11-27 2018-04-20 神讯电脑(昆山)有限公司 Antenna assembly
KR20160027446A (en) * 2014-08-29 2016-03-10 (주) 네톰 Loop antenna for a rfid label printer and method of installing the same
JP6470930B2 (en) * 2014-09-16 2019-02-13 日本ピラー工業株式会社 Distributor and planar antenna
CN108604732B (en) * 2015-11-17 2020-09-08 深谷波股份公司 Self-grounded surface-mountable bowtie antenna assembly, antenna lobe and method of manufacture
JP6604552B2 (en) * 2016-03-25 2019-11-13 大日本印刷株式会社 antenna
KR101776850B1 (en) * 2016-06-15 2017-09-08 주식회사 에스원 Hybrid Synthetic Antenna with High Gain for 180 degree radiation Pattern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165171B2 (en) * 2019-06-12 2021-11-02 3M Innovative Properties Company Transparent antenna stack and assembly
US20220140482A1 (en) * 2020-11-05 2022-05-05 Dongwoo Fine-Chem Co., Ltd. Antenna element, antenna device and display device including the same
US11824282B2 (en) * 2020-11-05 2023-11-21 Dongwoo Fine-Chem Co., Ltd. Antenna element, antenna device and display device including the same
US12034219B2 (en) 2021-09-30 2024-07-09 3M Innovative Properties Company Transparent antenna stack and assembly

Also Published As

Publication number Publication date
CN111357153B (en) 2023-01-10
CN111357153A (en) 2020-06-30
JP6971399B2 (en) 2021-11-24
US11276917B2 (en) 2022-03-15
JP2021501539A (en) 2021-01-14
WO2019088788A1 (en) 2019-05-09
KR101971441B1 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
US11276917B2 (en) Film antenna and display device including the same
US11296401B2 (en) Film antenna and display device including the same
US11342686B2 (en) Film antenna and display device comprising same
US11165169B2 (en) Antenna structure and display device including the same
US11710889B2 (en) Antenna device and display device including the same
US11411299B2 (en) Film antenna and display device including the same
US11462823B2 (en) Antenna structure
KR20210050435A (en) Antenna structure and display device including the same
US11600911B2 (en) Antenna device and display device including the same
US11424529B2 (en) Antenna structure and display device including the same
KR102258794B1 (en) Antenna device and display device including the same
US11955697B2 (en) Antenna device and display device including the same
US11557830B2 (en) Film antenna-circuit connection structure and display device including the same
US11804646B2 (en) Antenna structure and image display device including the same
US11848484B2 (en) Antenna structure and image display device including the same
KR102541132B1 (en) Antrnna array, antrnna device and display device including the same
US20220200157A1 (en) Antenna device and display device including the same
US20230121298A1 (en) Antenna package and display device including the same
US20230108271A1 (en) Antenna device and display device including the same
US20220285840A1 (en) Antenna device and display device including the same
KR102581398B1 (en) Antenna device and display device including the same
KR20210064531A (en) Antenna device and display device including the same
US12040540B2 (en) Antenna structure and image display device including the same
US20230006363A1 (en) Antenna structure and image display device including the same
US20230006339A1 (en) Antenna structure and image display device including the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: DONGWOO FINE-CHEM CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DONGWOO FINE-CHEM CO., LTD.;POSTECH RESEARCH AND BUSINESS DEVELOPMENT FOUNDATION;SIGNING DATES FROM 20210223 TO 20210225;REEL/FRAME:055432/0683

Owner name: KREEMO INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DONGWOO FINE-CHEM CO., LTD.;POSTECH RESEARCH AND BUSINESS DEVELOPMENT FOUNDATION;SIGNING DATES FROM 20210223 TO 20210225;REEL/FRAME:055432/0683

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE