US20200195115A1 - Linear vibration motor - Google Patents

Linear vibration motor Download PDF

Info

Publication number
US20200195115A1
US20200195115A1 US16/699,148 US201916699148A US2020195115A1 US 20200195115 A1 US20200195115 A1 US 20200195115A1 US 201916699148 A US201916699148 A US 201916699148A US 2020195115 A1 US2020195115 A1 US 2020195115A1
Authority
US
United States
Prior art keywords
fixed
hole
vibration motor
permanent magnet
linear vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/699,148
Inventor
Tao Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Holdings Shenzhen Co Ltd
Original Assignee
AAC Acoustic Technologies Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Acoustic Technologies Shenzhen Co Ltd filed Critical AAC Acoustic Technologies Shenzhen Co Ltd
Assigned to AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) CO., LTD. reassignment AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, TAO
Publication of US20200195115A1 publication Critical patent/US20200195115A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present disclosure relates to the field of electroacoustic conversion, and more particularly, to a linear vibration motor.
  • the linear vibration motor of the related art includes a shell with an accommodating space, a vibration unit accommodated in the accommodating space, an elastic component for suspending the vibration unit in the accommodating space, and a driving unit for driving the vibration unit to vibrate and fixed to the shell.
  • the structure of the vibration unit of the linear vibration motor in the related art is not stable enough, and drop events occur from time to time.
  • the permanent magnets are easy to fall off in the drop testing, thus reducing the yield and reliability of the linear vibration motor.
  • FIG. 1 is a schematic perspective view of a linear vibration motor provided by the present disclosure
  • FIG. 2 is a schematic perspective view of the linear vibration motor shown in FIG. 1 after removing a top cover;
  • FIG. 3 is an 3 D exploded view of the linear vibration motor shown in FIG. 1 ;
  • FIG. 4 is a sectional view of the linear vibration motor shown in FIG. 1 along a line A-A;
  • FIG. 5 is a partial 3 D exploded view of the linear vibration motor of the present disclosure.
  • the linear vibration motor 100 includes a shell 10 with an accommodating space, a vibration unit 30 accommodated in the accommodating space, an elastic component 70 for suspending the vibration unit 30 in the accommodating space, and a driving unit 50 for driving the vibration unit 30 to vibrate and fixed to the shell 10 .
  • the shell 10 includes a base plate 11 and a top cover 13 assembled with the base plate 11 to form the accommodating space.
  • the vibration unit 30 includes a counterweight 31 with a middle through hole 311 , a magnet yoke 33 assembled in the through hole 311 , a permanent magnet 35 attached and fixed to the magnet yoke 33 , and baffles 37 covered at two ends of the through hole 311 .
  • the driving unit 50 is located in a center of the magnet yoke 33 , and an orthographic projection of the permanent magnet 35 that is along a vertical vibration direction is at least partially overlapped with the baffles 37 .
  • the vibration unit 30 may not include the magnet yoke 33 , and the permanent magnet 35 may be directly fixed to the counterweight 31 .
  • the counterweight 31 further includes end faces 313 located at the two ends of the through hole 311 , annular grooves 315 recessed from the end faces 313 along the vertical vibration direction, and an inner side wall 317 that defines the through hole 311 .
  • the magnet yoke 33 is fixed to the inner side wall 317
  • the permanent magnet 35 is fixed to the magnet yoke 33
  • the driving unit 50 is inserted into the through hole 311 and separately disposed from the permanent magnet 35 .
  • the annular grooves 315 are communicated with the through hole 311 , and the baffles 37 are clamped and fixed in the annular grooves 315 .
  • the baffles 37 By arranging the baffles 37 , the structure stability and reliability of the magnet yoke 33 and the plurality of permanent magnets 35 are strengthened, so that the magnet yoke 33 and the permanent magnets 35 are not dropped during vibration, and the product yield of the linear vibration motor 100 is ensured.
  • the annular groove 315 includes a bottom groove surface 3151 .
  • a height of the magnet yoke 33 and a height of the permanent magnet 35 along the vertical vibration direction are equal to a vertical pitch between the two bottom groove surfaces 3151 .
  • the baffles 37 are glued to the bottom groove surface 3151 , and the baffles 37 are abutted against the magnet yoke 33 and the permanent magnet 35 , thus further enhancing the structure stability of the permanent magnet.
  • the magnet yoke 33 is annular.
  • the magnet yoke 33 includes first side walls 331 facing the permanent magnet 35 and arranged oppositely, and second side walls 333 connected with the first side walls 331 and arranged oppositely.
  • Four permanent magnets 35 are provided.
  • the first side walls 331 and the second side walls 333 are fixedly provided with one permanent magnet 35 respectively. In other embodiments, two permanent magnets 35 may be provided as well.
  • the driving unit 50 includes a pole shoe 51 fixed to the shell, a pole core 53 fixed to the pole shoe 51 , and a coil 55 wound and fixed to the pole core 53 .
  • Two ends of the driving unit 50 are respectively connected to the base plate 11 and the top cover 13 along a penetrating direction of the through hole 311 . Therefore, a center of each baffle 37 is provided with an escape hole 371 avoiding the pole shoe 51 and corresponding to the through hole 11 , and one end of the pole shoe 51 is fixed to the top cover 13 and the other end of the pole shoe 51 is fixed to the base plate 11 along the vertical vibration direction.
  • the pole shoe 51 includes a fixing hole 511 penetrating along the vibration direction, two pole shoes 51 are provided, and two ends of the pole core 53 are respectively clamped and fixed to the fixing holes 511 .
  • the linear vibration motor 100 strengthens the structure of the linear vibration motor 100 by arranging the baffles 37 in the vibration unit 30 , and plays a role of protecting the permanent magnet 35 in a drop testing, so that the linear vibration motor 100 has stable structure and strong reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

The present disclosure provides a linear vibration motor, which includes a shell with an accommodating space, a vibration unit accommodated in the accommodating space, an elastic component suspending the vibration unit in the accommodating space and a driving unit driving the vibration unit to vibrate and fixed to the shell, wherein the vibration unit includes a counterweight with a middle through hole, a magnet yoke assembled in the through hole and a permanent magnet attached and fixed to the magnet yoke, the vibration unit further includes baffles covered at two ends of the through hole, and an orthographic projection of the permanent magnet are along a perpendicular vibration direction is at least partially overlapped with the baffles. Compared with the prior art, the linear vibration motor provided by the present disclosure has stable structure and strong reliability.

Description

    TECHNICAL FIELD
  • The present disclosure relates to the field of electroacoustic conversion, and more particularly, to a linear vibration motor.
  • BACKGROUND
  • With the rapid development of electronic technologies, portable consumer electronics, such as mobile phones, handheld game consoles, navigation devices or handheld multimedia entertainment devices, are more and more popular with people. These electronics generally use linear motors for system feedback, such as incoming call prompt, information prompt, navigation prompt, vibration feedback of the game consoles, etc.
  • The linear vibration motor of the related art includes a shell with an accommodating space, a vibration unit accommodated in the accommodating space, an elastic component for suspending the vibration unit in the accommodating space, and a driving unit for driving the vibration unit to vibrate and fixed to the shell.
  • However, in drop testing, the structure of the vibration unit of the linear vibration motor in the related art is not stable enough, and drop events occur from time to time. In particular, the permanent magnets are easy to fall off in the drop testing, thus reducing the yield and reliability of the linear vibration motor.
  • Therefore, it is necessary to provide a novel linear vibration motor to solve the above-mentioned problems.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to illustrate the technical solutions in the embodiments of the present disclosure more clearly, the drawings used in the description of the embodiments will be briefly described below. Obviously, the drawings in the following description merely are some embodiments of the present disclosure. Those of ordinary skills in the art can also obtain other drawings according to these drawings without going through any creative work, wherein:
  • FIG. 1 is a schematic perspective view of a linear vibration motor provided by the present disclosure;
  • FIG. 2 is a schematic perspective view of the linear vibration motor shown in FIG. 1 after removing a top cover;
  • FIG. 3 is an 3D exploded view of the linear vibration motor shown in FIG. 1;
  • FIG. 4 is a sectional view of the linear vibration motor shown in FIG. 1 along a line A-A; and
  • FIG. 5 is a partial 3D exploded view of the linear vibration motor of the present disclosure.
  • DETAILED DESCRIPTION
  • The following clearly and completely describes the technical solutions in the embodiments of the present disclosure with reference to the accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are merely some but not all of the embodiments of the present disclosure. Based on the embodiments of the present disclosure, all other embodiments obtained by those of ordinary skills in the art without going through any creative work shall fall within the scope of protection of the present disclosure.
  • Referring to FIG. 1 to FIG. 5, the linear vibration motor 100 includes a shell 10 with an accommodating space, a vibration unit 30 accommodated in the accommodating space, an elastic component 70 for suspending the vibration unit 30 in the accommodating space, and a driving unit 50 for driving the vibration unit 30 to vibrate and fixed to the shell 10.
  • The shell 10 includes a base plate 11 and a top cover 13 assembled with the base plate 11 to form the accommodating space.
  • In the embodiment, the vibration unit 30 includes a counterweight 31 with a middle through hole 311, a magnet yoke 33 assembled in the through hole 311, a permanent magnet 35 attached and fixed to the magnet yoke 33, and baffles 37 covered at two ends of the through hole 311. The driving unit 50 is located in a center of the magnet yoke 33, and an orthographic projection of the permanent magnet 35 that is along a vertical vibration direction is at least partially overlapped with the baffles 37. In other embodiments, the vibration unit 30 may not include the magnet yoke 33, and the permanent magnet 35 may be directly fixed to the counterweight 31.
  • The counterweight 31 further includes end faces 313 located at the two ends of the through hole 311, annular grooves 315 recessed from the end faces 313 along the vertical vibration direction, and an inner side wall 317 that defines the through hole 311. To be specific, the magnet yoke 33 is fixed to the inner side wall 317, the permanent magnet 35 is fixed to the magnet yoke 33, and the driving unit 50 is inserted into the through hole 311 and separately disposed from the permanent magnet 35.
  • The annular grooves 315 are communicated with the through hole 311, and the baffles 37 are clamped and fixed in the annular grooves 315. By arranging the baffles 37, the structure stability and reliability of the magnet yoke 33 and the plurality of permanent magnets 35 are strengthened, so that the magnet yoke 33 and the permanent magnets 35 are not dropped during vibration, and the product yield of the linear vibration motor 100 is ensured.
  • The annular groove 315 includes a bottom groove surface 3151. Preferably, in order to further strengthen the structure stability of the magnet yoke 33 and the permanent magnet 35, in the embodiment, a height of the magnet yoke 33 and a height of the permanent magnet 35 along the vertical vibration direction are equal to a vertical pitch between the two bottom groove surfaces 3151.
  • Preferably, the baffles 37 are glued to the bottom groove surface 3151, and the baffles 37 are abutted against the magnet yoke 33 and the permanent magnet 35, thus further enhancing the structure stability of the permanent magnet.
  • The magnet yoke 33 is annular. The magnet yoke 33 includes first side walls 331 facing the permanent magnet 35 and arranged oppositely, and second side walls 333 connected with the first side walls 331 and arranged oppositely. Four permanent magnets 35 are provided. To be specific, the first side walls 331 and the second side walls 333 are fixedly provided with one permanent magnet 35 respectively. In other embodiments, two permanent magnets 35 may be provided as well.
  • The driving unit 50 includes a pole shoe 51 fixed to the shell, a pole core 53 fixed to the pole shoe 51, and a coil 55 wound and fixed to the pole core 53. Two ends of the driving unit 50 are respectively connected to the base plate 11 and the top cover 13 along a penetrating direction of the through hole 311. Therefore, a center of each baffle 37 is provided with an escape hole 371 avoiding the pole shoe 51 and corresponding to the through hole 11, and one end of the pole shoe 51 is fixed to the top cover 13 and the other end of the pole shoe 51 is fixed to the base plate 11 along the vertical vibration direction.
  • Referring to FIG. 5 for details, the pole shoe 51 includes a fixing hole 511 penetrating along the vibration direction, two pole shoes 51 are provided, and two ends of the pole core 53 are respectively clamped and fixed to the fixing holes 511.
  • Compared with the related art, the linear vibration motor 100 according to the present disclosure strengthens the structure of the linear vibration motor 100 by arranging the baffles 37 in the vibration unit 30, and plays a role of protecting the permanent magnet 35 in a drop testing, so that the linear vibration motor 100 has stable structure and strong reliability.
  • The description above merely is the embodiments of the present disclosure, and it should be noted that those of ordinary skills in the art may make improvements without departing from the concept of the present disclosure, and all these improvements shall belong to the scope of protection of the present disclosure.

Claims (9)

What is claimed is:
1. A linear vibration motor, comprising a shell with an accommodating space, a vibration unit accommodated in the accommodating space, an elastic component suspending the vibration unit in the accommodating space, and a driving unit driving the vibration unit to vibrate and fixed to the shell, wherein the vibration unit comprises a counterweight with a middle through hole, a magnet yoke assembled in the through hole and a permanent magnet attached and fixed to the magnet yoke, the vibration unit further comprises baffles covered at two ends of the through hole, and an orthographic projection of the permanent magnet that is along a vertical vibration direction is at least partially overlapped with the baffles.
2. The linear vibration motor according to claim 1, wherein the counterweight comprises end faces located at the two ends of the through hole and annular grooves recessed from the end faces along the vertical vibration direction, the annular grooves are communicated with the through hole, and the baffles are clamped and fixed in the annular grooves.
3. The linear vibration motor according to claim 2, wherein the annular groove comprises a bottom groove surface, and a height of the magnet yoke and a height of the permanent magnet along the vertical vibration direction are equal to a vertical pitch between the two bottom groove surfaces.
4. The linear vibration motor according to claim 3, wherein the baffles are glued to the bottom groove surface, and the baffle are abutted against the magnet yoke and the permanent magnet.
5. The linear vibration motor according to claim 1, wherein the counterweight further comprises an inside wall that defines the through hole, the magnet yoke is fixed to the inside wall, the permanent magnet is fixed to the magnet yoke, and the driving unit is inserted into the through hole and separately disposed from the permanent magnet.
6. The linear vibration motor according to claim 5, wherein the magnet yoke is annular and comprises first side walls facing the permanent magnet and arranged oppositely, and second side walls connected with the first side walls and arranged oppositely, four permanent magnets are provided, and the first side walls and the second side walls are fixedly provided with one permanent magnet respectively.
7. The linear vibration motor according to claim 1, wherein the driving unit comprises a pole shoe fixed to the shell, a pole core fixed to the pole shoe and a coil wound and fixed to the pole core.
8. The linear vibration motor according to claim 7, wherein the shell comprises a base plate and a top cover assembled with the base plate to form the accommodating space, each of the baffles is provided with an escape hole for avoiding the pole shoe and corresponding to the through hole, and one end of the pole shoe is fixed to the top cover and the other end of the pole shoe is fixed to the base plate along the vertical vibration direction.
9. The linear vibration motor according to claim 8, wherein the pole shoe comprises a fixing hole penetrating along the vibration direction, two pole shoes are provided, and both ends of the pole core are respectively clamped and fixed to the fixing holes.
US16/699,148 2018-12-17 2019-11-29 Linear vibration motor Abandoned US20200195115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201822119164.2 2018-12-17
CN201822119164.2U CN209200904U (en) 2018-12-17 2018-12-17 Linear vibration electric motor

Publications (1)

Publication Number Publication Date
US20200195115A1 true US20200195115A1 (en) 2020-06-18

Family

ID=67429388

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/699,148 Abandoned US20200195115A1 (en) 2018-12-17 2019-11-29 Linear vibration motor

Country Status (3)

Country Link
US (1) US20200195115A1 (en)
CN (1) CN209200904U (en)
WO (1) WO2020125156A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025148B2 (en) * 2018-08-03 2021-06-01 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Vibration motor
US20220320984A1 (en) * 2021-03-31 2022-10-06 Aac Microtech (Changzhou) Co., Ltd. Linear Vibration Motor
US20220352800A1 (en) * 2021-04-29 2022-11-03 Aac Microtech (Changzhou) Co., Ltd. Linear Vibration Motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209200904U (en) * 2018-12-17 2019-08-02 瑞声科技(南京)有限公司 Linear vibration electric motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223048B (en) * 2011-06-08 2014-01-01 瑞声声学科技(深圳)有限公司 Vibration motor
US20150123498A1 (en) * 2013-11-04 2015-05-07 Hyun-Ki Yang Linear vibrator and production method therefor
CN205864216U (en) * 2016-08-15 2017-01-04 重庆市灵龙电子有限公司 A kind of ticker assembly of motor for cell phone
CN107425692B (en) * 2017-07-05 2019-11-19 瑞声科技(南京)有限公司 Linear electric machine
CN209200904U (en) * 2018-12-17 2019-08-02 瑞声科技(南京)有限公司 Linear vibration electric motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025148B2 (en) * 2018-08-03 2021-06-01 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Vibration motor
US20220320984A1 (en) * 2021-03-31 2022-10-06 Aac Microtech (Changzhou) Co., Ltd. Linear Vibration Motor
US11967874B2 (en) * 2021-03-31 2024-04-23 Aac Microtech (Changzhou) Co., Ltd. Linear vibration motor with copper rig around magnetic conductive plate with thickness
US20220352800A1 (en) * 2021-04-29 2022-11-03 Aac Microtech (Changzhou) Co., Ltd. Linear Vibration Motor
US11949307B2 (en) * 2021-04-29 2024-04-02 Aac Microtech (Changzhou) Co., Ltd. Linear vibration motor with iron core and pole pieces with groove on pole piece facing connecting part between magnets

Also Published As

Publication number Publication date
WO2020125156A1 (en) 2020-06-25
CN209200904U (en) 2019-08-02

Similar Documents

Publication Publication Date Title
US20200195115A1 (en) Linear vibration motor
JP6815444B2 (en) Linear vibration motor
US10220412B2 (en) Vibration motor
US11211857B2 (en) Linear vibration motor having accommodation spaces provided for magnets in a support member
US10008894B2 (en) Double resonance vibration motor
US20120104875A1 (en) Linear Vibrator
US10148161B2 (en) Vibration motor
US10110106B2 (en) Vibration motor with coil and two sets of magnets for improving vibration intensity
CN109348373B (en) Sound production device
US10170966B2 (en) Vibration motor
US10170968B2 (en) Vibration motor
WO2020140531A1 (en) Linear vibration motor
JP7341626B1 (en) Multifunctional sound device
WO2020140536A1 (en) Linear vibration motor
US10056814B2 (en) Vibration motor
US11211839B2 (en) Vibration motor
WO2020140533A1 (en) Linear vibration motor
JP6884822B2 (en) Linear vibration motor
US10141825B2 (en) Vibration motor
US20180297065A1 (en) Vibration motor
US11917389B2 (en) Multifunctional sounding device
US10069369B2 (en) Vibrating motor
CN206060495U (en) Vibrating motor
JP2020025953A (en) Linear motor
US20240088768A1 (en) Vibrating motor, electronic device, and control method

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHANG, TAO;REEL/FRAME:051895/0076

Effective date: 20191127

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION