US20200171228A1 - Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment - Google Patents

Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment Download PDF

Info

Publication number
US20200171228A1
US20200171228A1 US16/782,457 US202016782457A US2020171228A1 US 20200171228 A1 US20200171228 A1 US 20200171228A1 US 202016782457 A US202016782457 A US 202016782457A US 2020171228 A1 US2020171228 A1 US 2020171228A1
Authority
US
United States
Prior art keywords
skin
electrical connector
prosthetic rib
patient
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/782,457
Inventor
Kevin Bourque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TC1 LLC
Original Assignee
TC1 LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TC1 LLC filed Critical TC1 LLC
Priority to US16/782,457 priority Critical patent/US20200171228A1/en
Publication of US20200171228A1 publication Critical patent/US20200171228A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A61M1/127
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/878Electrical connections within the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30744End caps, e.g. for closing an endoprosthetic cavity
    • A61M1/1008
    • A61M1/122
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/861Connections or anchorings for connecting or anchoring pumps or pumping devices to parts of the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/88Percutaneous cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/48Operating or control means, e.g. from outside the body, control of sphincters
    • A61F2/482Electrical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30589Sealing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30668Means for transferring electromagnetic energy to implants
    • A61F2002/3067Means for transferring electromagnetic energy to implants for data transfer
    • A61F2002/482
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • A61M2039/0267Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body comprising sensors or electrical contacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/04General characteristics of the apparatus implanted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8262Internal energy supply devices connectable to external power source, e.g. connecting to automobile battery through the cigarette lighter

Definitions

  • Ventricular assist devices known as VADs, often include an implantable blood pump and are used for both short-term (i.e., days, months) and long-term applications (i.e., years or a lifetime) where a patient's heart is incapable of providing adequate circulation, commonly referred to as heart failure or congestive heart failure.
  • heart failure congestive heart failure
  • Heart Association more than five million Americans are living with heart failure, with about 670,000 new cases diagnosed every year. People with heart failure often have shortness of breath and fatigue. Years of living with blocked arteries and/or high blood pressure can leave a heart too weak to pump enough blood to the body. As symptoms worsen, advanced heart failure develops.
  • a patient suffering from heart failure may use a VAD while awaiting a heart transplant or as a long term destination therapy.
  • a patient may also use a VAD while recovering from heart surgery.
  • a VAD can supplement a weak heart (i.e., partial support) or can effectively replace the natural heart's function.
  • VAD Long term use of a VAD, however, may result in undesirable complications.
  • One of the most prevalent adverse events for patients under chronic mechanical circulatory support is infection.
  • a percutaneous power cable which is often used to supply electrical power to the implanted blood pump, is the predominant source of such infections.
  • transcutaneous energy transfer system can be used to eliminate the need to use a percutaneous power cable, transcutaneous energy transfer systems are complicated and have the potential for associated adverse events.
  • VAD long-term use of a VAD can provide
  • improved VAD systems that have reduced occurrences of adverse advents relative to existing VAD systems are desired.
  • improved VAD systems that include a percutaneous power cable with reduced potential for associated infection are desired.
  • a bone-anchored connector assembly provides an externally accessible power connection port for supplying power to an implanted device (e.g., an implanted blood pump, for example, a VAD).
  • the bone-anchored connector assembly extends through an aperture in the skin and interfaces with the skin around the aperture in stabilized manner in which relative movement between the bone-anchored connector assembly and the skin is inhibited, thereby reducing the potential for associated infection.
  • a bone structure of a patient e.g., rib
  • a short section of rib is resected and replaced by a rib-anchored connector assembly.
  • the resection of the rib and the installation of the rib-anchored connector assembly to replace the resected portion of rib can be accomplished by a cardiovascular surgeon using relatively simple, established surgical procedures.
  • the rib-anchored connector assembly provides the following advantages: (a) the rib-anchored connector can be configured to attach to the rib at opposing ends of the rib-anchored connector thereby enabling non-complicated replacement of the resected segment of the rib with the rib-anchored connector assembly; (b) the power line between the rib-anchored connector and the implanted device can be connected to the back of the rib-anchored connector; (c) the implantation of the rib-anchored connector assembly can be accomplished through a small thoracotomy in the upper quadrant that generally coincides with the incision made to expose the ascending aorta for attachment of the outflow cannula of a VAD to the ascending aorta, thereby obviating need for an additional incision; (d) implantation of the rib-anchored connector
  • a mechanical circulatory support system includes an implantable blood pump, an implantable prosthetic rib assembly, and an implantable power cable.
  • the implantable blood pump is for generating a blood flow in a patient in which the blood pump is implanted.
  • the implantable prosthetic rib assembly includes a prosthetic rib segment and a percutaneous electrical connector mounted to the prosthetic rib segment.
  • the prosthetic rib segment is configured to be mounted to a rib of the patient in place of a resected segment of the rib.
  • the percutaneous electrical connector includes a skin interface portion configured to interface with an edge of an aperture through a skin portion of the patient.
  • the electrical connector is configured to expose a connection port of the electrical connector via the aperture.
  • the implantable power cable is connected with or configured to be connected with each of the blood pump and the percutaneous electrical connector for transferring electric power received by the percutaneous electrical connector to the blood pump.
  • the skin interface portion of the electrical connector includes a circumferential recess for enhanced constraint of the interfacing skin.
  • the percutaneous electrical connector is replaceable.
  • the percutaneous electrical connector can be configured to be demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment.
  • the distance from the prosthetic rib segment to the skin interface portion is adjustable to accommodate patient to patient variation.
  • the implantable prosthetic rib assembly can be reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture. Any suitable approach can be used to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • the implantable prosthetic rib assembly can include a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • the implantable prosthetic rib assembly can be configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • connection port can have any suitable position and/or orientation relative to the patient.
  • the connection port can be substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • the connection port can be disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • the connection port can be oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • a method of transferring electrical power from an external power source to a medical device implanted in a patient includes supporting a prosthetic rib segment via a rib of the patient.
  • the prosthetic rib segment is mounted to the rib and occupies a volume that was occupied by a resected segment of the rib.
  • a percutaneous electrical connector is supported via the prosthetic rib segment so as to expose a connection port of the electrical connector via an aperture through a skin portion of the patient.
  • the percutaneous electrical connector is mounted to the prosthetic rib segment.
  • a skin interface portion of the percutaneous electrical connector is interfaced with an edge of the skin aperture.
  • the skin interface portion of the electrical connector includes a circumferential recess.
  • the percutaneous electrical connector is replaceable.
  • the percutaneous electrical connector can be demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment.
  • the distance from the prosthetic rib segment to the skin interface portion is adjustable to accommodate patient to patient variation.
  • the implantable prosthetic rib assembly can be reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture. Any suitable approach can be used to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • the implantable prosthetic rib assembly includes a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • the implantable prosthetic rib assembly is configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • connection port can be substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • connection port can be disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • connection port can be oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • an implantable medical system in another aspect, includes an implantable medical device, an implantable prosthetic rib assembly, and an implantable power cable.
  • the implantable prosthetic rib assembly includes a prosthetic rib segment and a percutaneous electrical connector mounted to the prosthetic rib segment.
  • the prosthetic rib segment is configured to be mounted to a rib of the patient in place of a resected segment of the rib.
  • the percutaneous electrical connector includes a skin interface portion configured to interface with an edge of a skin aperture through a skin portion of the patient.
  • the electrical connector is configured to expose a connection port of the electrical connector via the skin aperture.
  • the implantable power cable is connected with or configured to be connected with each of the medical device and the percutaneous electrical connector for transferring electric power received by the percutaneous electrical connector to the medical device.
  • the skin interface portion of the electrical connector includes a circumferential recess.
  • the implantable medical device can have suitable combination of additional features and/or attributes.
  • the percutaneous electrical connector can be demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment.
  • the implantable prosthetic rib assembly can be reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture.
  • the implantable prosthetic rib assembly can include a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • the implantable prosthetic rib assembly can be configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • the connection port can have any suitable position and/or orientation.
  • the connection port can be substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • the connection port can be disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • the connection port can be oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • FIG. 1 is an illustration of a mechanical circulatory support system, which includes a prosthetic rib assembly, implanted in a patient's body, in accordance with many embodiments.
  • FIG. 2 is an illustration of the prosthetic rib assembly that includes a percutaneous electrical connector, in accordance with many embodiments.
  • FIG. 3 illustrates the prosthetic rib assembly of FIG. 2 implanted in a patient's body.
  • FIG. 4 is an illustration of a prosthetic rib assembly, which includes a percutaneous electrical connector and can be configured to account for patient to patient variation in rib to skin distance, in accordance with many embodiments.
  • FIG. 5 is an illustration of another prosthetic rib assembly, which includes a percutaneous electrical connector and can be adjusted to account for patient to patient variation in rib to skin distance, in accordance with many embodiments.
  • FIG. 6 is a simplified block diagram of acts of a method for transferring power from an external power source to an implanted medical device via a rib-mounted prosthetic rib assembly that includes a percutaneous electrical connector, in accordance with many embodiments.
  • FIG. 1 is an illustration of a mechanical circulatory support system 10 implanted in a patient 12 .
  • the mechanical circulatory support system 10 includes an implantable blood pump assembly 14 , a ventricular cuff 16 , an outflow cannula 18 , an external system controller 20 , power sources 22 , an external drive line 24 , a prosthetic rib assembly 26 , and an implanted drive line 28 .
  • the implantable blood pump assembly 14 can include a VAD that is attached to an apex of the left ventricle, as illustrated, or the right ventricle, or both ventricles of the heart 30 .
  • the VAD can include a centrifugal pump (as shown) that is capable of pumping the entire output delivered to the left ventricle from the pulmonary circulation (i.e., up to 10 liters per minute).
  • a centrifugal pump as shown
  • Related blood pumps applicable to the present invention are described in greater detail below and in U.S. Pat. Nos. 5,695,471, 6,071,093, 6,116,862, 6,186,665, 6,234,772, 6,264,635, 6,688,861, 7,699,586, 7,976,271, 7,997,854, 8,007,254, 8,152,493, 8,652,024, and 8,668,473 and U.S. Patent Publication Nos.
  • the blood pump assembly 14 can be attached to the heart 30 via the ventricular cuff 16 , which can be sewn to the heart 30 and coupled to the blood pump 14 .
  • the other end of the blood pump 14 connects to the ascending aorta via the outflow cannula 18 so that the VAD effectively diverts blood from the weakened ventricle and propels it to the aorta for circulation through the rest of the patient's vascular system.
  • FIG. 1 illustrates the mechanical circulatory support system 10 during battery 22 powered operation.
  • the blood pump 14 is operatively connected with the external controller 20 and the batteries 22 via the external drive line 24 , the prosthetic rib assembly 26 , and the implanted drive line 28 .
  • the prosthetic rib assembly 26 is attached to a rib of the patient 12 in place of a resected segment of the rib.
  • the prosthetic rib assembly 26 includes a percutaneous electrical connector that is connected with the implanted drive line 28 and connectable with the external drive line 24 for the transfer of electrical power and/or one or more control signals from any suitable external source (e.g., the battery 22 , the external system controller 20 ) to the blood pump 14 .
  • any suitable external source e.g., the battery 22 , the external system controller 20
  • the percutaneous electrical connector of the prosthetic rib assembly 26 extends through an aperture in the patient's skin.
  • the external system controller 20 monitors operation of the mechanical circulatory support system 10 .
  • Related controller systems applicable to the present invention are described in greater detail below and in U.S. Pat. Nos. 5,888,242, 6,991,595, 8,323,174, 8,449,444, 8,506,471, 8,597,350, and 8,657,733, EP 1812094, and U.S. Patent Publication Nos. 2005/0071001 and 2013/0314047, all of which are incorporated herein by reference for all purposes in their entirety.
  • the system 10 can be powered by either one, two, or more batteries 22 .
  • the mechanical circulatory support system 10 can also include an internal controller assembly and one or more internal rechargeable power storage devices that are configured and operatively coupled between the prosthetic rib assembly 26 and the blood pump 14 via the implanted drive line 28 to enable untethered operation of the system 10 .
  • the mechanical circulatory support system 10 can include an internal controller as assembly described in U.S. Pat. No. 8,562,508, all of which is incorporated herein by reference for all purposes in their entirety.
  • FIG. 2 illustrate an embodiment of the prosthetic rib assembly 26 .
  • the prosthetic rib assembly 26 includes a prosthetic rib segment 32 and a percutaneous electrical connector 34 attached or mounted to the prosthetic rib segment 32 .
  • the prosthetic rib segment 32 is configured to be mounted in place of a resected section of the patient's rib.
  • the prosthetic rib segment 32 includes mounting studs 36 extending from opposite ends of the prosthetic rib segment 32 .
  • the mounting studs 36 are coaxial with a mounting stud axis 38 and extend in opposite directions.
  • the mounting studs 36 include self-tapping threads with one reverse-direction thread so that the prosthetic rib assembly 26 can be mounted in place of a resected rib segment via rotation of the prosthetic rib assembly 26 around the mounting stud axis 38 to screw the mounting studs 36 into the exposed rib ends resulting from the resection of the rib segment.
  • the percutaneous electrical connector 34 is connectable with each of the external drive line 24 and the implanted drive line 28 to operatively couple conductors of the external drive line 24 with respective conductors of the implanted drive line 28 .
  • the prosthetic rib assembly 26 can be separately rotated around the mounting stud axis 28 to screw the mounting studs into the exposed rib ends with the implanted drive line 28 disconnected and the implanted drive line 28 connected to the percutaneous electrical connector 34 after the prosthetic rib assembly 26 is mounted to the exposed rib ends.
  • FIG. 3 illustrates the prosthetic rib assembly of FIG. 2 implanted in a patient's body.
  • the external drive line 24 can then be selectively coupled with the electrical connector 34 and selectively decoupled from the electrical connector 34 .
  • FIG. 4 shows a cross-sectional view of an embodiment of the prosthetic rib assembly 26 in an implanted state and connected with the implanted drive line 28 .
  • the prosthetic rib assembly 26 includes the prosthetic rib segment 32 , the transcutaneous electrical connector 34 , and a coupling element 40 .
  • the electrical connector 34 is accommodated within a recess in the prosthetic rib segment 32 .
  • the coupling element 40 is configured for use in securing the electrical connector 34 to the prosthetic rib segment 32 .
  • the coupling element 40 includes female threads 42 that engage male threads 44 included the prosthetic rib segment 32 .
  • the coupling element 40 engages a shoulder 46 of the electrical connector 34 thereby securing the electrical connector 34 to the prosthetic rib segment 32 . Any suitable approach can be used to mount the electrical connector 34 to the prosthetic rib segment 32 .
  • the electrical connector 34 includes a circumferential recessed skin interface portion 48 that is configured to interface with the edge of an aperture through the skin 50 of the patient 12 .
  • the edge of the aperture through the skin 50 extends into the recessed skin interface portion 48 thereby helping to inhibit relative movement between the interfacing aperture of the skin 50 and the recessed skin interface portion 48 .
  • the prosthetic rib assembly 26 is configurable to have a rib to skin offset distance 52 suitable for a particular patient 12 .
  • the electrical connector 34 can be selected from a series of electrical connectors 34 , each having a different length 54 , to produce a desired rib to skin offset distance 52 .
  • the ability to vary the rib to skin offset distance 52 provides the ability to accommodate patient to patient variability with respect to distance between the rib of the patient 12 and the skin 50 as well as variability in the implanted location of the prosthetic rib segment 32 relative to the rib of the patient 12 .
  • the thickness of a shim(s) 56 can be adjusted to produce a desired rib to skin offset distance 52 .
  • the prosthetic rib assembly 26 includes a water-proof cap 58 for inhibiting and ideally preventing ingress of water into the electrical connector 34 when coupled with the electrical connector 34 .
  • the water-proof cap 58 can be coupled with the electrical connector 34 during a period of untethered operation.
  • the external drive line 24 can be decoupled from the electrical connector 34 and the water-proof cap 58 configured to be mounted to the electrical connector 34 and shield a connection port of the electrical connector 34 from moisture ingression during showing or bathing by the patient.
  • FIG. 6 is a simplified block diagram of acts of a method 100 for transferring power from an external power source to an implanted medical device via a rib-mounted prosthetic rib assembly that includes a percutaneous electrical connector, in accordance with many embodiments.
  • Any suitable rib-mounted prosthetic rib assembly such as the prosthetic rib assembly 26 embodiments described herein, can be used to practice the method 100 .
  • the method 100 includes supporting a prosthetic rib segment via a rib of a patient (act 102 ).
  • the prosthetic rib segment is mounted to the patient's rib and occupies a volume that was occupied by a resected segment of the patient's rib.
  • the method 100 includes supporting a percutaneous electrical connector via the prosthetic rib segment so as to expose a connection port of the electrical connector via an aperture through a skin portion of the patient (act 104 ).
  • the percutaneous electrical connector is mounted to the prosthetic rib segment.
  • the method 100 includes interfacing a skin interface portion of the percutaneous electrical connector and an edge of the aperture (act 106 ).
  • interfacing the skin interface portion of the electrical connector and the edge of the aperture in the skin inhibits relative movement between the patient's skin and the electrical connector, thereby helping to inhibit the development of infection induced via relative movement between the skin and the electrical connector.
  • the method 100 includes transferring electrical power from the external power source to the medical device via an external power cable connected to the connection port and an implanted power cable connected with the percutaneous electrical connector (act 108 ).
  • the external power cable can be selectively coupled to and decoupled from the percutaneous electrical connector.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • External Artificial Organs (AREA)

Abstract

A method of transferring electrical power to a medical device implanted in a patient includes supporting a prosthetic rib segment via a rib of the patient. A percutaneous electrical connector is supported via the prosthetic rib segment so as to expose a connection port of the electrical connector via a skin aperture through a skin portion of the patient. Electrical power is transferred to the medical device via an external power cable connected to the connection port and an implanted power cable connected with the percutaneous electrical connector.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present application is a Divisional of U.S. patent application Ser. No. 15/685,976 filed Aug. 24, 2017 (Allowed); which claims the benefit of U.S. Provisional Appln No. 62/380,081 filed Aug. 26, 2016; the full disclosures which are incorporated herein by reference in their entirety for all purposes.
  • BACKGROUND
  • Ventricular assist devices, known as VADs, often include an implantable blood pump and are used for both short-term (i.e., days, months) and long-term applications (i.e., years or a lifetime) where a patient's heart is incapable of providing adequate circulation, commonly referred to as heart failure or congestive heart failure. According to the American Heart Association, more than five million Americans are living with heart failure, with about 670,000 new cases diagnosed every year. People with heart failure often have shortness of breath and fatigue. Years of living with blocked arteries and/or high blood pressure can leave a heart too weak to pump enough blood to the body. As symptoms worsen, advanced heart failure develops.
  • A patient suffering from heart failure may use a VAD while awaiting a heart transplant or as a long term destination therapy. A patient may also use a VAD while recovering from heart surgery. Thus, a VAD can supplement a weak heart (i.e., partial support) or can effectively replace the natural heart's function.
  • Long term use of a VAD, however, may result in undesirable complications. One of the most prevalent adverse events for patients under chronic mechanical circulatory support is infection. In existing VAD systems, a percutaneous power cable, which is often used to supply electrical power to the implanted blood pump, is the predominant source of such infections. While the use of a transcutaneous energy transfer system can be used to eliminate the need to use a percutaneous power cable, transcutaneous energy transfer systems are complicated and have the potential for associated adverse events.
  • In view of the benefits that the long-term use of a VAD can provide, improved VAD systems that have reduced occurrences of adverse advents relative to existing VAD systems are desired. In particular, improved VAD systems that include a percutaneous power cable with reduced potential for associated infection are desired.
  • BRIEF SUMMARY
  • The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented later.
  • Improved medical systems and related methods are described in which a bone-anchored connector assembly provides an externally accessible power connection port for supplying power to an implanted device (e.g., an implanted blood pump, for example, a VAD). The bone-anchored connector assembly extends through an aperture in the skin and interfaces with the skin around the aperture in stabilized manner in which relative movement between the bone-anchored connector assembly and the skin is inhibited, thereby reducing the potential for associated infection. In many embodiments, a bone structure of a patient (e.g., rib) is prepared so that the bone-anchored connector assembly replaces a portion of the bone structure. For example, in many embodiments, a short section of rib is resected and replaced by a rib-anchored connector assembly. The resection of the rib and the installation of the rib-anchored connector assembly to replace the resected portion of rib can be accomplished by a cardiovascular surgeon using relatively simple, established surgical procedures. The rib-anchored connector assembly provides the following advantages: (a) the rib-anchored connector can be configured to attach to the rib at opposing ends of the rib-anchored connector thereby enabling non-complicated replacement of the resected segment of the rib with the rib-anchored connector assembly; (b) the power line between the rib-anchored connector and the implanted device can be connected to the back of the rib-anchored connector; (c) the implantation of the rib-anchored connector assembly can be accomplished through a small thoracotomy in the upper quadrant that generally coincides with the incision made to expose the ascending aorta for attachment of the outflow cannula of a VAD to the ascending aorta, thereby obviating need for an additional incision; (d) implantation of the rib-anchored connector assembly in the upper quadrant is suitable for many common implanted devices (VAD, automatic implantable cardioverter-defibrillator (AICD), pacemaker); and (e) a rib-anchored connector assembly implanted in the upper quadrant can be easily seen and reached by the patient to make secure connections/disconnections and, importantly, to properly place a waterproof cap for periods of untethered operation.
  • Thus, in one aspect, a mechanical circulatory support system is described. The mechanical circulatory support system includes an implantable blood pump, an implantable prosthetic rib assembly, and an implantable power cable. The implantable blood pump is for generating a blood flow in a patient in which the blood pump is implanted. The implantable prosthetic rib assembly includes a prosthetic rib segment and a percutaneous electrical connector mounted to the prosthetic rib segment. The prosthetic rib segment is configured to be mounted to a rib of the patient in place of a resected segment of the rib. The percutaneous electrical connector includes a skin interface portion configured to interface with an edge of an aperture through a skin portion of the patient. The electrical connector is configured to expose a connection port of the electrical connector via the aperture. The implantable power cable is connected with or configured to be connected with each of the blood pump and the percutaneous electrical connector for transferring electric power received by the percutaneous electrical connector to the blood pump. In many embodiments, the skin interface portion of the electrical connector includes a circumferential recess for enhanced constraint of the interfacing skin.
  • In many embodiments, the percutaneous electrical connector is replaceable. For example, the percutaneous electrical connector can be configured to be demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment.
  • In many embodiments, the distance from the prosthetic rib segment to the skin interface portion is adjustable to accommodate patient to patient variation. For example, the implantable prosthetic rib assembly can be reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture. Any suitable approach can be used to adjust the distance from the prosthetic rib segment to the skin interface portion. For example, the implantable prosthetic rib assembly can include a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion. As another example, the implantable prosthetic rib assembly can be configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • The connection port can have any suitable position and/or orientation relative to the patient. For example, the connection port can be substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture. As another example, the connection port can be disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture. As yet another example, the connection port can be oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • In another aspect, a method of transferring electrical power from an external power source to a medical device implanted in a patient is provided. The method includes supporting a prosthetic rib segment via a rib of the patient. The prosthetic rib segment is mounted to the rib and occupies a volume that was occupied by a resected segment of the rib. A percutaneous electrical connector is supported via the prosthetic rib segment so as to expose a connection port of the electrical connector via an aperture through a skin portion of the patient. The percutaneous electrical connector is mounted to the prosthetic rib segment. A skin interface portion of the percutaneous electrical connector is interfaced with an edge of the skin aperture. Electrical power is transferred from the external power source to the medical device via an external power cable connected to the connection port and an implanted power cable connected with the percutaneous electrical connector. In many embodiments of the method, the skin interface portion of the electrical connector includes a circumferential recess.
  • In many embodiments of the method, the percutaneous electrical connector is replaceable. For example, the percutaneous electrical connector can be demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment.
  • In many embodiments of the method, the distance from the prosthetic rib segment to the skin interface portion is adjustable to accommodate patient to patient variation. For example, the implantable prosthetic rib assembly can be reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture. Any suitable approach can be used to adjust the distance from the prosthetic rib segment to the skin interface portion. For example, in many embodiments of the method, the implantable prosthetic rib assembly includes a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion. As another example, in many embodiments of the method, the implantable prosthetic rib assembly is configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion.
  • The method can be practiced with any connection port that has a suitable position and/or orientation relative to the patient. For example, the connection port can be substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture. As another example, the connection port can be disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture. As yet another example, the connection port can be oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • In another aspect, an implantable medical system includes an implantable medical device, an implantable prosthetic rib assembly, and an implantable power cable. The implantable prosthetic rib assembly includes a prosthetic rib segment and a percutaneous electrical connector mounted to the prosthetic rib segment. The prosthetic rib segment is configured to be mounted to a rib of the patient in place of a resected segment of the rib. The percutaneous electrical connector includes a skin interface portion configured to interface with an edge of a skin aperture through a skin portion of the patient. The electrical connector is configured to expose a connection port of the electrical connector via the skin aperture. The implantable power cable is connected with or configured to be connected with each of the medical device and the percutaneous electrical connector for transferring electric power received by the percutaneous electrical connector to the medical device. In many embodiments of the implantable medical system, the skin interface portion of the electrical connector includes a circumferential recess.
  • The implantable medical device can have suitable combination of additional features and/or attributes. For example, the percutaneous electrical connector can be demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment. The implantable prosthetic rib assembly can be reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture. For example, the implantable prosthetic rib assembly can include a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion. As another example, the implantable prosthetic rib assembly can be configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion. The connection port can have any suitable position and/or orientation. For example, the connection port can be substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture. As another example, the connection port can be disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture. As yet another example, the connection port can be oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
  • For a fuller understanding of the nature and advantages of the present invention, reference should be made to the ensuing detailed description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of a mechanical circulatory support system, which includes a prosthetic rib assembly, implanted in a patient's body, in accordance with many embodiments.
  • FIG. 2 is an illustration of the prosthetic rib assembly that includes a percutaneous electrical connector, in accordance with many embodiments.
  • FIG. 3 illustrates the prosthetic rib assembly of FIG. 2 implanted in a patient's body.
  • FIG. 4 is an illustration of a prosthetic rib assembly, which includes a percutaneous electrical connector and can be configured to account for patient to patient variation in rib to skin distance, in accordance with many embodiments.
  • FIG. 5 is an illustration of another prosthetic rib assembly, which includes a percutaneous electrical connector and can be adjusted to account for patient to patient variation in rib to skin distance, in accordance with many embodiments.
  • FIG. 6 is a simplified block diagram of acts of a method for transferring power from an external power source to an implanted medical device via a rib-mounted prosthetic rib assembly that includes a percutaneous electrical connector, in accordance with many embodiments.
  • DETAILED DESCRIPTION
  • In the following description, various embodiments of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.
  • Referring now to the drawings, in which like reference numerals represent like parts throughout the several views, FIG. 1 is an illustration of a mechanical circulatory support system 10 implanted in a patient 12. The mechanical circulatory support system 10 includes an implantable blood pump assembly 14, a ventricular cuff 16, an outflow cannula 18, an external system controller 20, power sources 22, an external drive line 24, a prosthetic rib assembly 26, and an implanted drive line 28. The implantable blood pump assembly 14 can include a VAD that is attached to an apex of the left ventricle, as illustrated, or the right ventricle, or both ventricles of the heart 30. The VAD can include a centrifugal pump (as shown) that is capable of pumping the entire output delivered to the left ventricle from the pulmonary circulation (i.e., up to 10 liters per minute). Related blood pumps applicable to the present invention are described in greater detail below and in U.S. Pat. Nos. 5,695,471, 6,071,093, 6,116,862, 6,186,665, 6,234,772, 6,264,635, 6,688,861, 7,699,586, 7,976,271, 7,997,854, 8,007,254, 8,152,493, 8,652,024, and 8,668,473 and U.S. Patent Publication Nos. 2007/0078293, 2008/0021394, 2009/0203957, 2012/0046514, 2012/0095281, 2013/0096364, 2013/0170970, 2013/0121821, and 2013/0225909, all of which are incorporated herein by reference for all purposes in their entirety. The blood pump assembly 14 can be attached to the heart 30 via the ventricular cuff 16, which can be sewn to the heart 30 and coupled to the blood pump 14. The other end of the blood pump 14 connects to the ascending aorta via the outflow cannula 18 so that the VAD effectively diverts blood from the weakened ventricle and propels it to the aorta for circulation through the rest of the patient's vascular system.
  • FIG. 1 illustrates the mechanical circulatory support system 10 during battery 22 powered operation. The blood pump 14 is operatively connected with the external controller 20 and the batteries 22 via the external drive line 24, the prosthetic rib assembly 26, and the implanted drive line 28. As described in more detail herein, the prosthetic rib assembly 26 is attached to a rib of the patient 12 in place of a resected segment of the rib. The prosthetic rib assembly 26 includes a percutaneous electrical connector that is connected with the implanted drive line 28 and connectable with the external drive line 24 for the transfer of electrical power and/or one or more control signals from any suitable external source (e.g., the battery 22, the external system controller 20) to the blood pump 14. The percutaneous electrical connector of the prosthetic rib assembly 26 extends through an aperture in the patient's skin. The external system controller 20 monitors operation of the mechanical circulatory support system 10. Related controller systems applicable to the present invention are described in greater detail below and in U.S. Pat. Nos. 5,888,242, 6,991,595, 8,323,174, 8,449,444, 8,506,471, 8,597,350, and 8,657,733, EP 1812094, and U.S. Patent Publication Nos. 2005/0071001 and 2013/0314047, all of which are incorporated herein by reference for all purposes in their entirety. The system 10 can be powered by either one, two, or more batteries 22.
  • The mechanical circulatory support system 10 can also include an internal controller assembly and one or more internal rechargeable power storage devices that are configured and operatively coupled between the prosthetic rib assembly 26 and the blood pump 14 via the implanted drive line 28 to enable untethered operation of the system 10. For example, the mechanical circulatory support system 10 can include an internal controller as assembly described in U.S. Pat. No. 8,562,508, all of which is incorporated herein by reference for all purposes in their entirety.
  • FIG. 2 illustrate an embodiment of the prosthetic rib assembly 26. In the illustrated embodiment, the prosthetic rib assembly 26 includes a prosthetic rib segment 32 and a percutaneous electrical connector 34 attached or mounted to the prosthetic rib segment 32. In many embodiments, the prosthetic rib segment 32 is configured to be mounted in place of a resected section of the patient's rib. In the illustrated embodiment, the prosthetic rib segment 32 includes mounting studs 36 extending from opposite ends of the prosthetic rib segment 32. The mounting studs 36 are coaxial with a mounting stud axis 38 and extend in opposite directions. The mounting studs 36 include self-tapping threads with one reverse-direction thread so that the prosthetic rib assembly 26 can be mounted in place of a resected rib segment via rotation of the prosthetic rib assembly 26 around the mounting stud axis 38 to screw the mounting studs 36 into the exposed rib ends resulting from the resection of the rib segment.
  • In many embodiments, the percutaneous electrical connector 34 is connectable with each of the external drive line 24 and the implanted drive line 28 to operatively couple conductors of the external drive line 24 with respective conductors of the implanted drive line 28. Accordingly, the prosthetic rib assembly 26 can be separately rotated around the mounting stud axis 28 to screw the mounting studs into the exposed rib ends with the implanted drive line 28 disconnected and the implanted drive line 28 connected to the percutaneous electrical connector 34 after the prosthetic rib assembly 26 is mounted to the exposed rib ends. FIG. 3 illustrates the prosthetic rib assembly of FIG. 2 implanted in a patient's body. The external drive line 24 can then be selectively coupled with the electrical connector 34 and selectively decoupled from the electrical connector 34.
  • FIG. 4 shows a cross-sectional view of an embodiment of the prosthetic rib assembly 26 in an implanted state and connected with the implanted drive line 28. In the illustrated embodiment, the prosthetic rib assembly 26 includes the prosthetic rib segment 32, the transcutaneous electrical connector 34, and a coupling element 40. The electrical connector 34 is accommodated within a recess in the prosthetic rib segment 32. The coupling element 40 is configured for use in securing the electrical connector 34 to the prosthetic rib segment 32. In the illustrated embodiment, the coupling element 40 includes female threads 42 that engage male threads 44 included the prosthetic rib segment 32. The coupling element 40 engages a shoulder 46 of the electrical connector 34 thereby securing the electrical connector 34 to the prosthetic rib segment 32. Any suitable approach can be used to mount the electrical connector 34 to the prosthetic rib segment 32.
  • In the illustrated embodiment, the electrical connector 34 includes a circumferential recessed skin interface portion 48 that is configured to interface with the edge of an aperture through the skin 50 of the patient 12. The edge of the aperture through the skin 50 extends into the recessed skin interface portion 48 thereby helping to inhibit relative movement between the interfacing aperture of the skin 50 and the recessed skin interface portion 48.
  • In many embodiments, the prosthetic rib assembly 26 is configurable to have a rib to skin offset distance 52 suitable for a particular patient 12. For example, in the embodiment illustrated in FIG. 4, the electrical connector 34 can be selected from a series of electrical connectors 34, each having a different length 54, to produce a desired rib to skin offset distance 52. The ability to vary the rib to skin offset distance 52 provides the ability to accommodate patient to patient variability with respect to distance between the rib of the patient 12 and the skin 50 as well as variability in the implanted location of the prosthetic rib segment 32 relative to the rib of the patient 12. As another example, in the embodiment illustrated in FIG. 5, the thickness of a shim(s) 56 can be adjusted to produce a desired rib to skin offset distance 52.
  • In many embodiments, the prosthetic rib assembly 26 includes a water-proof cap 58 for inhibiting and ideally preventing ingress of water into the electrical connector 34 when coupled with the electrical connector 34. For example, the water-proof cap 58 can be coupled with the electrical connector 34 during a period of untethered operation. For example, the external drive line 24 can be decoupled from the electrical connector 34 and the water-proof cap 58 configured to be mounted to the electrical connector 34 and shield a connection port of the electrical connector 34 from moisture ingression during showing or bathing by the patient.
  • FIG. 6 is a simplified block diagram of acts of a method 100 for transferring power from an external power source to an implanted medical device via a rib-mounted prosthetic rib assembly that includes a percutaneous electrical connector, in accordance with many embodiments. Any suitable rib-mounted prosthetic rib assembly, such as the prosthetic rib assembly 26 embodiments described herein, can be used to practice the method 100.
  • The method 100 includes supporting a prosthetic rib segment via a rib of a patient (act 102). In many embodiments of the method 100, the prosthetic rib segment is mounted to the patient's rib and occupies a volume that was occupied by a resected segment of the patient's rib.
  • The method 100 includes supporting a percutaneous electrical connector via the prosthetic rib segment so as to expose a connection port of the electrical connector via an aperture through a skin portion of the patient (act 104). In many embodiments of the method 100, the percutaneous electrical connector is mounted to the prosthetic rib segment.
  • The method 100 includes interfacing a skin interface portion of the percutaneous electrical connector and an edge of the aperture (act 106). In many embodiments of the method 100, interfacing the skin interface portion of the electrical connector and the edge of the aperture in the skin inhibits relative movement between the patient's skin and the electrical connector, thereby helping to inhibit the development of infection induced via relative movement between the skin and the electrical connector.
  • The method 100 includes transferring electrical power from the external power source to the medical device via an external power cable connected to the connection port and an implanted power cable connected with the percutaneous electrical connector (act 108). In many embodiments of the method 100, the external power cable can be selectively coupled to and decoupled from the percutaneous electrical connector.
  • Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

Claims (10)

What is claimed is:
1. A method of transferring electrical power from an external power source to a medical device implanted in a patient, the method comprising:
supporting a prosthetic rib assembly via a rib of the patient, wherein the prosthetic rib assembly comprises a prosthetic rib segment mounted to the rib and occupying a volume that was occupied by a resected segment of the rib;
supporting a percutaneous electrical connector via the prosthetic rib segment so as to expose a connection port of the percutaneous electrical connector via a skin aperture through a skin portion of the patient, the percutaneous electrical connector being mounted to the prosthetic rib segment;
interfacing a skin interface portion of the percutaneous electrical connector and an edge of the skin aperture; and
transferring electrical power from the external power source to the medical device via an external power cable connected to the connection port and an implanted power cable connected with the percutaneous electrical connector.
2. The method of claim 1, wherein the percutaneous electrical connector is demountable from the prosthetic rib segment to enable mounting of a replacement percutaneous electrical connector to the prosthetic rib segment.
3. The method of claim 1, wherein the prosthetic rib assembly is reconfigurable to adjust a distance from the prosthetic rib segment to the skin interface portion to enable placement of the skin interface portion based on a location of the edge of the skin aperture.
4. The method of claim 3, wherein the prosthetic rib assembly comprises a replaceable fixed length portion that can be replaced with a replacement fixed length portion having a different length than the replaceable fixed length portion to adjust the distance from the prosthetic rib segment to the skin interface portion.
5. The method of claim 3, wherein the prosthetic rib assembly is configured to accommodate installation and/or removal of one or more spacers to adjust the distance from the prosthetic rib segment to the skin interface portion.
6. The method of claim 1, wherein the connection port is substantially flush with an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
7. The method of claim 1, wherein the connection port is disposed proud of an exterior surface of the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
8. The method of claim 1, wherein the connection port is oriented substantially parallel to the skin portion of the patient when the skin interface portion is interfaced with the edge of the skin aperture.
9. The method of claim 1, wherein the skin interface portion of the percutaneous electrical connector includes a circumferential recess.
10. The method of claim 1, further comprising mounting a water-proof cap to the percutaneous electrical connector to shield the connection port from moisture ingression during showering or bathing by the patient.
US16/782,457 2016-08-26 2020-02-05 Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment Abandoned US20200171228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/782,457 US20200171228A1 (en) 2016-08-26 2020-02-05 Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662380081P 2016-08-26 2016-08-26
US15/685,976 US10589013B2 (en) 2016-08-26 2017-08-24 Prosthetic rib with integrated percutaneous connector for ventricular assist devices
US16/782,457 US20200171228A1 (en) 2016-08-26 2020-02-05 Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/685,976 Division US10589013B2 (en) 2016-08-26 2017-08-24 Prosthetic rib with integrated percutaneous connector for ventricular assist devices

Publications (1)

Publication Number Publication Date
US20200171228A1 true US20200171228A1 (en) 2020-06-04

Family

ID=61241097

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/685,976 Expired - Fee Related US10589013B2 (en) 2016-08-26 2017-08-24 Prosthetic rib with integrated percutaneous connector for ventricular assist devices
US16/782,457 Abandoned US20200171228A1 (en) 2016-08-26 2020-02-05 Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/685,976 Expired - Fee Related US10589013B2 (en) 2016-08-26 2017-08-24 Prosthetic rib with integrated percutaneous connector for ventricular assist devices

Country Status (3)

Country Link
US (2) US10589013B2 (en)
EP (1) EP3503940B1 (en)
WO (1) WO2018039479A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10894114B2 (en) 2017-01-12 2021-01-19 Tc1 Llc Driveline bone anchors and methods of use
US10737007B2 (en) * 2017-04-28 2020-08-11 Tc1 Llc Patient adapter for driveline cable and methods
EP3634528B1 (en) 2017-06-07 2023-06-07 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
CN111556763B (en) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 Intravascular fluid movement device and system
DE102018201030A1 (en) 2018-01-24 2019-07-25 Kardion Gmbh Magnetic coupling element with magnetic bearing function
CN117959583A (en) 2018-02-01 2024-05-03 施菲姆德控股有限责任公司 Intravascular blood pump and methods of use and manufacture
US11389641B2 (en) * 2018-03-21 2022-07-19 Tc1 Llc Modular flying lead cable and methods for use with heart pump controllers
US10953145B2 (en) 2018-03-21 2021-03-23 Tci Llc Driveline connectors and methods for use with heart pump controllers
EP3787707B1 (en) 2018-04-30 2023-12-27 Tc1 Llc Improved blood pump connectors
DE102018207611A1 (en) 2018-05-16 2019-11-21 Kardion Gmbh Rotor bearing system
US11224736B2 (en) 2018-05-31 2022-01-18 Tc1 Llc Blood pump controllers
DE102018211327A1 (en) 2018-07-10 2020-01-16 Kardion Gmbh Impeller for an implantable vascular support system
WO2021011473A1 (en) 2019-07-12 2021-01-21 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
DE102020102474A1 (en) 2020-01-31 2021-08-05 Kardion Gmbh Pump for conveying a fluid and method for manufacturing a pump
EP3922299A1 (en) * 2020-06-11 2021-12-15 Berlin Heart GmbH Connection system for energy and / or data transmission from and / or to an implantable blood pump and cardiac assistance system

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925443A (en) 1987-02-27 1990-05-15 Heilman Marlin S Biocompatible ventricular assist and arrhythmia control device
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
DE19625300A1 (en) 1996-06-25 1998-01-02 Guenter Prof Dr Rau Blood pump
US6071093A (en) 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
US5888242A (en) 1996-11-01 1999-03-30 Nimbus, Inc. Speed control system for implanted blood pumps
US5904646A (en) * 1997-09-08 1999-05-18 Jarvik; Robert Infection resistant power cable system for medically implanted electric motors
US6264635B1 (en) 1998-12-03 2001-07-24 Kriton Medical, Inc. Active magnetic bearing system for blood pump
US6186665B1 (en) 1999-01-26 2001-02-13 Nimbus, Inc. Motor rotor bearing assembly for a blood pump
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
CN1148231C (en) 2000-11-16 2004-05-05 北京泰杰磁电研究所 Permanent magnetic heart assisting pump
US6991595B2 (en) 2002-04-19 2006-01-31 Thoratec Corporation Adaptive speed control for blood pump
US20050071001A1 (en) 2003-09-30 2005-03-31 Robert Jarvik Artificial heart power and control system
CN101056663B (en) 2004-11-16 2010-10-27 心血管微创医疗公司 Remote data monitor for heart pump system
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
US7699586B2 (en) 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US20070142923A1 (en) 2005-11-04 2007-06-21 Ayre Peter J Control systems for rotary blood pumps
JP5155186B2 (en) 2006-01-13 2013-02-27 ハートウェア、インコーポレイテッド Rotary blood pump
US8152493B2 (en) 2007-04-30 2012-04-10 Hearthware Inc. Centrifugal rotary blood pump with impeller having a hydrodynamic thrust bearing surface
EP3434227A1 (en) 2008-02-08 2019-01-30 HeartWare, Inc. Ventricular assist device for intraventricular placement
WO2010042014A1 (en) * 2008-10-10 2010-04-15 Milux Holding Sa Heart help device, system, and method
HUE055876T2 (en) 2008-10-10 2021-12-28 Medicaltree Patent Ltd Heart help pump
US8449444B2 (en) 2009-02-27 2013-05-28 Thoratec Corporation Blood flow meter
FR2944920B1 (en) * 2009-04-23 2011-09-02 Pierre Sabin SUBCUTANEOUS PERCUTANEOUS ELECTRICAL CONNECTION DEVICE
US8628460B2 (en) 2009-09-21 2014-01-14 Heartware, Inc. Hard-wired implanted controller system
US8562508B2 (en) 2009-12-30 2013-10-22 Thoratec Corporation Mobility-enhancing blood pump system
JP5681403B2 (en) 2010-07-12 2015-03-11 ソーラテック コーポレイション Centrifugal pump device
WO2012024493A1 (en) 2010-08-20 2012-02-23 Thoratec Corporation Implantable blood pump
JP5577506B2 (en) 2010-09-14 2014-08-27 ソーラテック コーポレイション Centrifugal pump device
EP3299045B1 (en) 2010-09-24 2020-12-30 Tc1 Llc Generating artificial pulse
EP2627366B1 (en) 2010-10-13 2016-08-31 Thoratec Corporation Blood pump
US8066628B1 (en) 2010-10-22 2011-11-29 Nupulse, Inc. Intra-aortic balloon pump and driver
KR20140015291A (en) 2010-12-09 2014-02-06 하트웨어, 인코포레이티드 Controller and power source for implantable blood pump
FR2970859B1 (en) * 2011-01-27 2014-01-03 Pierre Sabin INTRA-BONE ARRANGEMENT SYSTEM FOR ANCHORING A DEVICE INTO A BONE STRUCTURE
DE112012004282T5 (en) 2011-10-13 2014-07-03 Thoratec Corporation PUMP AND METHOD FOR THE HYDRAULIC PUMPING OF BLOOD
US8882744B2 (en) 2012-02-27 2014-11-11 Thoratec Corporation Quick-connect outflow tube for ventricular assist device
CN104903738B (en) 2012-05-24 2017-07-28 哈特威尔公司 Low-power consumption battery pack with security system
US8652024B1 (en) 2013-01-23 2014-02-18 Thoratec Corporation Sterilizable cable system for implantable blood pump
CN107865988A (en) * 2013-03-15 2018-04-03 华思科公司 Aorta pectoralis ventricle auxiliary system

Also Published As

Publication number Publication date
US10589013B2 (en) 2020-03-17
EP3503940B1 (en) 2020-11-25
WO2018039479A1 (en) 2018-03-01
US20180055983A1 (en) 2018-03-01
EP3503940A1 (en) 2019-07-03
EP3503940A4 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US20200171228A1 (en) Methods of Transferring Power to an Implanted Medical Device Employing a Prosthetic Rib Segment
EP2519273B1 (en) Blood pump system with mounting cuff
US8679177B2 (en) Method of implanting a blood pump system
US20180243493A1 (en) Wearable vad controller with reserve battery
US8382830B2 (en) Implantable VAD with replaceable percutaneous cable
US20200397964A1 (en) Percutaneous Driveline Anchor Devices and Methods of Use
US6723039B2 (en) Methods, systems and devices relating to implantable fluid pumps
US20150285258A1 (en) Centrifugal Pump
US10286132B2 (en) Implantable connector
US20150374892A1 (en) Cable system for implantable blood pump with accidental disconnection prevention
US11944834B2 (en) Modular flying lead cable and methods for use with heart pump controllers
US11027113B2 (en) Implantable mechanical circulatory support devices
JPH09509595A (en) Reciprocating pump device
JP2003501154A (en) Ventricular assist device
US11331469B2 (en) Implantable fluid pump system
US20180200420A1 (en) Driveline Bone Anchors and Methods of Use
US11801379B2 (en) Aortic connectors and methods of use
US20230149702A1 (en) Hybrid powering system for an implanted medical device
US20230080217A1 (en) Implantable device for long-term assist of the right ventricle of a heart
AU2013231115B2 (en) Blood pump system with mounting cuff
Kleinheyer et al. BiVACOR Total Artificial Heart and Future Concepts

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE