US20200063735A1 - Co-rotating scroll compressor - Google Patents

Co-rotating scroll compressor Download PDF

Info

Publication number
US20200063735A1
US20200063735A1 US16/489,530 US201816489530A US2020063735A1 US 20200063735 A1 US20200063735 A1 US 20200063735A1 US 201816489530 A US201816489530 A US 201816489530A US 2020063735 A1 US2020063735 A1 US 2020063735A1
Authority
US
United States
Prior art keywords
driving
driven
shaft portion
rolling bearing
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/489,530
Inventor
Takuma YAMASHITA
Norihisa Horaguchi
Takahide Ito
Keita Kitaguchi
Makoto Takeuchi
Hirofumi Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Assigned to MITSUBISHI HEAVY INDUSTRIES, LTD. reassignment MITSUBISHI HEAVY INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORAGUCHI, NORIHISA, ITO, TAKAHIDE, KITAGUCHI, Keita, TAKEUCHI, MAKOTO, YAMASHITA, Takuma
Assigned to MITSUBISHI HEAVY INDUSTRIES, LTD. reassignment MITSUBISHI HEAVY INDUSTRIES, LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE 6TH ASSIGNOR AND DOC DATE PREVIOUSLY RECORDED ON REEL 050201 FRAME 0979. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: HIRATA, HIROFUMI, HORAGUCHI, NORIHISA, ITO, TAKAHIDE, KITAGUCHI, Keita, TAKEUCH, MAKOTO, YAMASHITA, Takuma
Publication of US20200063735A1 publication Critical patent/US20200063735A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • F04C18/0238Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof

Definitions

  • the present invention relates to a co-rotating scroll compressor.
  • a co-rotating scroll compressor has been well-known (refer to PTL 1).
  • the co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates in synchronization with the driving-side scroll, and causes a driving shaft causing the driving-side scroll to rotate and a driven shaft supporting rotation of the driven-side scroll to rotate in the same direction at the same angular velocity while the driven-shaft is offset by a revolving radius from the driving shaft.
  • PTL 2 discloses a scroll compressor including a static scroll and a rotating scroll, unlike a co-rotating scroll compressor.
  • a crankpin mechanism including a crankpin and a ball bearing is adopted as a rotation prevention mechanism of the rotating scroll.
  • the co-rotating scroll compressor uses a synchronous driving mechanism that transmits driving force from a driving-side scroll member to a driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity.
  • a mechanism that uses a crankpin including a rolling bearing or a pin ring can be contemplated.
  • lubricant encapsulated in the rolling bearing leaks to the outside by centrifugal force, there is a risk of a shorter operating life of the bearing due to inadequate lubrication.
  • the lubricant leaks to the outside, there is a risk that the lubricant is mixed with fluid before or after compression to contaminate the fluid.
  • the inventors have found the existence of the following particular problem about leakage of the lubricant of the rolling bearing since not only rotation movement but also revolution movement is added to the rolling bearing in the co-rotating scroll compressor.
  • FIG. 13 illustrates three bail bearings (rolling bearing) 102 attached to a bearing supporting member 100 .
  • the bearing supporting member 100 rotates about a rotation center O 1 together with a driving-side scroll member or a driven-side scroll member.
  • an outer ring 102 a is fitted to the bearing supporting member 100
  • an inner ring 102 b is fitted to a shaft portion 104 of a crankpin.
  • a plurality of balls 102 c are disposed between the outer ring 102 a and the inner ring 102 b, and a predetermined interval between the balls 102 c is maintained by a not shown retainer.
  • the present invention is made considering such circumstances, and an object of the present invention is to provide a co-rotating scroll compressor that can achieve a longer operating life of a synchronous driving mechanism that includes a rolling bearing.
  • a co-rotating scroll compressor according to one aspect of the present invention adopts the following solutions.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and a sealing member that extends to a
  • the outer ring of the rolling bearing Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member and performs revolution movement about a predetermined center axis. Since the sealing member is fixed to the outer ring, the sealing member performs revolution movement about the predetermined center axis in the same manner as the outer ring. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around a center axis of shaft portion together with the shaft portion.
  • the sealing member extends to the side portion of the inner ring, which inhibits the lubricant from leaking from the side of the inner ring to the outside of the rolling bearing. As a result, poor lubrication due to leakage of the lubricant oil is prevented, and a longer operating life of the synchronous driving mechanism can be achieved.
  • an inclined surface is formed at an inner peripheral edge facing the side portion of the inner ring such that a distance from the side portion of the inner ring increases toward an inner peripheral side of the sealing member.
  • the inclined surface for example, a C chamfered surface or an R chamfered surface is used.
  • the inclined surface may foe formed over the entire circumference of the inner peripheral edge of the sealing member.
  • the inclined surface is formed only on an outer peripheral side of revolution movement of the rolling bearing at the inner peripheral edge of the sealing member.
  • the inclined surface formed at the inner peripheral edge of the sealing member is formed only on the outer peripheral side of the revolution movement of the ball bearing. Accordingly, the lubricant that is leaked due to the centrifugal force by the revolution movement of the outer ring can be received by the inclined surface formed on the outer peripheral side. On the other hand, no inclined surface is provided on the inner peripheral side of the revolution movement, which prevents leakage of the lubricant as possible.
  • the range for providing the inclined surface is, for example a range of 90° on both sides based on a direction of the centrifugal force due to the revolution movement, that is, a range of 180°.
  • the crankpin includes a first shaft portion to which the inner ring is fitted and a second shaft portion that is continuously provided from the first shaft portion and has a larger diameter than a diameter of the first shaft portion, and a stepped portion that partitions the first shaft portion and the second shaft portion is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end.
  • the stepped portion that partitions the first shaft portion and the second shaft portion of the crankpin is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end. Due to this, the lubricant leaked from the ball bearing is introduced to the first shaft portion having a smaller diameter than a diameter of the second shaft portion, and the lubricant oil can be received from a portion between the sealing member and the inner ring.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and a sealing member that extends to a side
  • the outer ring of the rolling bearing Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member to perform revolution movement around the predetermined center axis.
  • the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around the center axis of the shaft portion together with the shaft portion.
  • the sealing member is fixed to the side portion of the inner ring and extends to the side portion of the outer ring, which inhibits the lubricant from leaking from the side of the inner ring to the outside of the rolling bearing.
  • a side wall portion that is connected to the bearing supporting member to surround an outer peripheral side of the sealing member is provided.
  • the side wall portion that is connected to the bearing supporting member to surround the outer peripheral side of the sealing member is provided. This allows for maintaining the lubricant leaked to the outer peripheral side of the rolling bearing due to the centrifugal force of the revolution movement. Also, since the inner ring of the rolling bearing rotates around the center axis of the shaft portion of the crankpin by autorotation, the lubricant tries to be leaked from the outer peripheral side of the sealing member.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit, and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, and a chip seal that is disposed on an outer peripheral side of the rolling bearing with respect to a center axis of the shaft portion of the crankpin to seal a space on
  • the lubricant that leaks from the rolling bearing can be sealed. Also, the lubricant can be sealed in the space of the side of the rolling bearing, which prevents contamination of fluid before and after compression due to the lubricant.
  • the co-rotating scroll compressor includes a snap ring provided on a lateral side of the sealing member to fix the sealing member, wherein the snap ring has a substantially C-letter shape with one open portion, and the open portion is arranged such that the open portion is directed to a rotation center of the bearing supporting member.
  • the snap ring has a substantially C-letter shape and is fitted in a groove while being biased in a direction of increasing the diameter.
  • the snap ring has one open portion to reduce the diameter at the time of attachment, and a retention ring for inserting an attachment jig etc. is provided to each end portion of the snap ring. Since the snap ring has the open portion, the weight of a portion on the side of the open portion is relatively light, while the weight of an opposite portion from the open portion is heavy. Accordingly, when the centrifugal force is applied to the snap ring, the opposite portion from the open portion tries to be directed in the direction of the centrifugal force. Considering this, the open portion of the snap ring is directed to the rotation center of the bearing supporting member. This prevents that the snap ring rotates due to the centrifugal force and thus the sealing member is displaced to be slid, so that the sealing member can be reliably fixed.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, wherein a sealing wall portion fixed to the bearing supporting
  • the outer ring of the rolling bearing Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member to perform revolution movement around the predetermined center axis.
  • the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around the center axis of the shaft portion together with the shaft portion.
  • the sealing wall portion is provided to seal the rolling bearing from a lateral side to inhibit leakage of the lubricant from the rolling bearing.
  • the recess formed to a lateral side from the outer ring is provided to the sealing wall portion, and the recess is used as an oil pocket to temporarily retain the lubricant leaked from the rolling bearing. Due to this, even when the lubricant leaks by gravity from the recess positioned at an upper side at the time of stopping, collecting is performed by the recess positioned at a lower side.
  • FIG. 1 is a vertical cross-sectional view illustrating a co-rotating scroll compressor according to a first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a first driving-side wall in FIG. 1 .
  • FIG. 3 is a plan view illustrating a first driven-side wall in FIG. 1 .
  • FIG. 4 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin.
  • FIG. 5 is a vertical cross-sectional view illustrating a first modification of the first embodiment.
  • FIG. 6 is a vertical cross-sectional view illustrating a second modification of the first embodiment.
  • FIG. 7 is a vertical cross-sectional view illustrating a reference example of a third modification of the first embodiment.
  • FIG. 8 is a vertical cross-sectional view illustrating the third modification of the first embodiment.
  • FIG. 9 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin of a co-rotating scroll compressor according to a second embodiment of the present invention.
  • FIG. 10 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin of a co-rotating scroll compressor according to a third embodiment of the present invention.
  • FIG. 11 is a front view illustrating an arrangement of a snap ring of a co-rotating scroll compressor according to a fourth embodiment of the present invention.
  • FIG. 12 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin of a co-rotating scroll compressor according to a fifth embodiment of the present invention.
  • FIG. 13 is a front view illustrating a process in which lubricant is leaked from a ball bearing.
  • a first embodiment of the present invention is described below with reference to FIG. 1 , etc.
  • FIG. 1 illustrates a co-rotating scroll compressor 1 .
  • the co-rotating scroll compressor 1 can be used as, for example, a supercharger that compresses combustion air (fluid) to be supplied to an internal combustion engine such as a vehicle engine, a compressor that supplies compressed air to an electrode of a fuel cell, and a compressor that supplies compressed air used in a brake device of a vehicle such as a railway vehicle.
  • the co-rotating scroll compressor 1 includes a housing 3 , a motor (driving unit) 5 accommodated on one end side in the housing 3 , and a driving-side scroll member 70 and a driven-side scroll member 90 that are accommodated on the other end side in the housing 3 .
  • the housing 3 has a substantially cylindrical shape, and includes a motor accommodation portion 3 a that accommodates the motor 5 , and a scroll accommodation portion 3 b that accommodates the scroll members 70 and 90 .
  • a discharge opening 3 d from which compressed air is discharged is provided at an end part of the scroll accommodation portion 3 b.
  • the housing 3 includes an air suction opening from which air is sucked in.
  • the motor 5 is driven by being supplied with power from an unillustrated power supply source. Rotation of the motor 5 is controlled by an instruction from an unillustrated control unit.
  • a stator 5 a of the motor 5 is fixed to an inner periphery of the housing 3 .
  • a rotor 5 b of the motor 5 rotates around a driving-side rotation axis CL 1 .
  • a driving shaft 6 that extends on the driving-side rotation axis CL 1 is connected to the rotor 5 b.
  • the driving shaft 6 is connected to a driving shaft portion 71 d fixed to a first driving-side scroll portion 71 of the driving-side scroll member 70 .
  • the driving-side scroll member 70 includes a first driving-side scroll portion 71 on the motor 5 side, and a second driving-side scroll portion 72 on the discharge opening 3 d side.
  • the first driving-side scroll portion 71 includes a first driving-side end plate 71 a and first driving-side walls 71 b.
  • the first driving-side end plate 71 a extends in a direction orthogonal to the driving-side rotation axis CL 1 .
  • the driving shaft portion 71 d extending along the driving-side rotation axis CL 1 is fixed to a rotation center of the first driving-side end plate 71 a.
  • a center plate (bearing supporting member) 20 is fixed to the driving shaft portion 71 d.
  • the center plate 20 extends parallel to the first driving-side end plate 71 a.
  • the first driving-side end plate 71 a has a substantially disc shape in a planar view. As illustrated in FIG. 2 , three first driving-side walls 71 b , namely, three lines of first driving-side walls 71 b each formed in a spiral shape are provided on the first driving-side end plate 71 a. The three lines of first driving-side walls 71 b are disposed at an equal interval around the driving-side rotation axis CL 1 . Note that the number of lines of the first driving-side walls 71 b may be one or two, or four or more.
  • the second driving-side scroll portion 72 includes a second driving-side end plate 72 a and second driving-side walls 72 b.
  • Three lines of second driving-side walls 72 b are provided similarly to the above-described first driving-side walls 71 b (see FIG. 2 ). Note that the number of lines of the second driving-side walls 72 b may be one or two, four or more.
  • a second driving-side shaft portion 72 c that extends in the direction of the driving-side rotation axis CL 1 is connected to the second driving-side end plate 72 a.
  • the second driving-side shaft portion 72 c is provided so as to be rotatable with respect to the housing 3 through a second driving-side bearing 14 that is a ball bearing.
  • the second driving-side end plate 72 a includes a discharge port 72 d extending along the driving-side rotation axis CL 1 .
  • two second driving shaft sealing members 26 are provided at a tip side of the second driving-side shaft portion 72 c than the second driving-side bearing 14 (left side in FIG. 1 ).
  • the two second driving shaft sealing members 26 and the second driving-side bearing 14 are disposed with a predetermined interval in the direction of the driving-side rotation axis CL 1 .
  • lubricant that is grease such as semisolid lubricant is encapsulated.
  • one second driving shaft sealing member 26 may be used. In such a case, the lubricant is encapsulated between the second driving shaft sealing member 26 and the second driving-side bearing 14 .
  • the first, driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed in a state that front ends (free ends) of the walls 71 b and 72 b face each other.
  • the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by bolts 31 that are fastened to respective flange portions 73 provided at a plurality of positions in the circumferential direction.
  • the flange portions 73 are provided so as to protrude outward in a radial direction.
  • the driven-side end plate 90 a is positioned at a substantially center in the axis direction (horizontal direction in figure).
  • a through hole 90 h is provided at a center of the driven-side end plate 90 a, and causes the compressed air to flow toward the discharge port 72 d.
  • three first driven-side walls 91 b namely, three lines of first driven-side walls 91 b are provided.
  • the three lines of driven-side walls 91 b are disposed at an equal interval around a driven-side rotation axis CL 2 .
  • the second driven-side walls 92 b are also configured in a similar manner. Note that the number of lines of the driven-side walls 91 b and the number of lines of the driven-side walls 97 b may be one or two, or four or more.
  • a support member 33 is provided on the side of a discharge opening 3 d of the driven-side scroll member 90 (left, side in figure).
  • the support member 33 is fixed to front ends (free ends) of the respective second driven-side walls 92 b by bolts 25 .
  • a support member shaft portion 35 a is provided on a center axis side of the support member 33 , and the support member shaft portion 35 a is fixed to the housing 3 through a second support member bearing 38 that is a ball bearing.
  • the driven-side scroll member 90 rotates around the driven-side rotation axis CL 2 through the support member 33 .
  • a first side plate (bearing supporting member) 27 is provided on the side of the motor 5 of the driven-side scroll member 90 (right side in FIG. 1 ).
  • the first side plate 27 is fixed to front ends (free ends) of the respective first driven-side walls 91 b by bolts 28 .
  • a first side plate hole portion 27 h that allows the driving shaft portion 71 d to penetrate is formed at a rotation center of the first side plate 27 .
  • a second side plate (bearing supporting member) 30 is provided with a predetermined interval on the side of the motor 5 of the first side plate 27 .
  • the second side plate 30 is fixed to the first side plate 27 via bolts 34 .
  • a second side plate hole portion 30 h that allows the driving shaft portion 71 d to penetrate is formed at a rotation center of the second side plate 30 .
  • a second side plate shaft portion 30 a is provided on a center axis side of the second side plate 30 , and the second side plate shaft portion 30 a is fixed to the housing 3 through a second side plate bearing 32 that is a ball bearing.
  • the driven-side scroll member 90 rotates around the driven-side rotation axis CL 2 through the second side plate 30 and the first side plate 27 .
  • crankpin 15 is provided between the first side plate 27 as well as the second side plate 30 and the center plate 20 .
  • the crankpin 15 includes a center cylindrical portion 15 a and an eccentric shaft portion 15 b that includes an eccentric axis that is eccentric to the center axis of the cylindrical portion 15 a.
  • a rolling bearing 16 that is a bail bearing is provided at an outer periphery of the cylindrical portion 15 a. As a result, the cylindrical portion 15 a is freely rotatable to the center plate 20 . Lubricant such as grease is encapsulated in the rolling bearing 16 .
  • a rolling bearing 18 and a rolling bearing 19 that are ball bearings are respectively provided at both ends of the eccentric shaft portion 15 b.
  • the eccentric shaft portion 15 b is freely rotatable to the first side plate 27 and the second side plate 30 .
  • Grease lubricant
  • crankpin 15 and each of the bearings 16 , 18 and 19 is used as a synchronous driving mechanism that transmits driving force from the driving shaft portion 71 d to the driven-side scroll member 90 such that both scroll members 70 , 90 perform revolving movement synchronously.
  • a plurality of synchronous driving mechanisms including the crankpin 15 are preferably provided, for example, three synchronous driving mechanisms are provided equiangularly around the rotation axes CL 1 , C 12 .
  • FIG. 4 illustrates an enlarged view of a portion surrounding the eccentric shaft portion 15 b of the crankpin 15 .
  • the rolling bearing 18 is provided at the eccentric shaft portion 15 b. Note that, while an explanation will be made using the rolling bearing 18 in the description below, the same is applied to the rolling bearing 19 and the rolling bearing 16 .
  • the outer ring 18 a is fitted to a circular groove formed on the first side plate.
  • the inner ring 18 b is fitted to the eccentric shaft portion 15 b.
  • Lubricant such as grease is encapsulated between the outer ring 18 a and the inner ring 18 b.
  • a scaling member 40 that seals the lubricant is provided on a lateral side of the rolling bearing 18 (right side in FIG. 4 ).
  • the sealing member 40 is annular and has an outer peripheral side fixed to a side portion of the outer ring 18 a .
  • the sealing member 40 is not fixed to the inner ring 18 b, and has a predetermined interval to a side portion of the inner ring 18 b.
  • An inner peripheral end of the sealing member 40 extends to the side portion of the inner ring 18 b, and more specifically, extends to an inner peripheral side than an outer periphery of the inner ring 18 b.
  • a snap ring 42 that fixes the sealing member 40 at a fixed place is provided on a lateral side of the sealing member 40 (right side in the same figure).
  • An outer periphery of the snap ring 42 is fitted to a snap ring groove 43 formed on the first side plate 27 .
  • An arrow denoted by reference sign AO shown in FIG. 4 shows a direction of centrifugal force due to rotation of the first side plate 27 in the same manner as reference sign A 0 of FIG. 13 .
  • the co-rotating scroll compressor 1 having the above configuration operates as follows.
  • each compression chamber formed by the respective first driving-side walls 71 b and the respective first driven-side walls 91 b and each compression chamber formed by the respective second driving-side walls 72 b and the respective second driven-side walls 92 b are separately compressed. In each compression chamber, the volume decreases as it moves to the center side, and accompanied with this, air is compressed.
  • Air compressed by the first driving-side walls 71 b and the first driven-side walls 91 b passes through the through hole 90 h formed on the driven-side end plate 90 a, and is joined up with air compressed by the second driving-side walls 72 b and the second driven-side walls 92 b, and then the air after confluence passes through the discharge port 72 d to be discharged to the outside from the discharge opening 3 d of the housing 3 .
  • the outer ring 18 a of the rolling bearing 18 since the outer ring 18 a of the rolling bearing 18 is fitted to the first side plate 27 , the outer ring 18 a rotates together with the first side plate 27 to perform revolution movement around the driven-side rotation axis CL 2 . Moreover, since the sealing member 40 is fixed to the outer ring 18 a, it preforms revolution movement around the driven-side rotation axis CL 2 in the same manner as the outer ring 18 a.
  • the inner ring 18 b performs revolution movement together with the outer ring 18 a , and moreover, the inner ring 18 b is fitted to the eccentric shaft portion 15 b of the crankpin 15 , so that it performs rotation movement around the center axis of the eccentric shaft portion 15 b together with the eccentric shaft portion 15 b.
  • the inner ring 18 b performs revolution movement together with the outer ring 18 a , and moreover, the inner ring 18 b is fitted to the eccentric shaft portion 15 b of the crankpin 15 , so that it performs rotation movement around the center axis of the eccentric shaft portion 15 b together with the eccentric shaft portion 15 b.
  • the sealing member 40 extends to the side portion of the inner ring 18 b, which inhibits the lubricant from leaking from the side of the inner ring 18 b to the outside of the rolling bearing 18 .
  • poor lubrication due to leakage of lubricant oil is prevented, and a longer operating life of the synchronous driving mechanism can be achieved.
  • the present embodiment may be modified as follows.
  • a C chamfering 40 a is formed at a position facing the side portion of the inner ring 18 b at an inner peripheral edge of the sealing member 40 .
  • the C chamfering 40 a is an inclined surface in which the distance from the side portion of the inner ring 18 b increases toward the inner peripheral side of the sealing member 40 .
  • the C chamfering is formed over the entire circumference of the inner peripheral edge of the sealing member 40 .
  • the inclined surface may adopt other shapes such as R chamfering instead of the C chamfering 40 a.
  • the above first modification can be further modified as follows.
  • the C chamfering 40 a is formed only on the outer peripheral side of the revolution movement of the roiling bearing 18 of the inner peripheral edge of the sealing member 40 . Consequently, the C chamfering 40 a is not formed on the inner peripheral side of the roiling bearing 18 , and a corner portion 40 b is remained.
  • the range for providing the C chamfering 40 a is, for example a range of 90° on both sides based on a direction of the centrifugal force duo to the revolution movement of the rolling bearing 18 (more specifically, a radially outer side around the driven-side rotation axis CL 2 ), that is, a range of 180°.
  • the C chamfering 40 a formed at the inner peripheral edge of the sealing member 40 is formed only on the outer peripheral side of the revolution movement of the rolling bearing 18 , so that the lubricant that is leaked due to the centrifugal force of the revolution movement of the rolling bearing 18 can be received by the C chamfering 40 a formed on the outer peripheral side.
  • no inclined surface is provided on the inner peripheral side of the revolution movement of the rolling bearing 18 and the corner portion 40 b is formed, which prevents leakage of the lubricant as possible.
  • the present embodiment can be modified as follows.
  • FIG. 7 shows a leakage path of the lubricant shown by an arrow denoted reference sign A 6 to the same configuration as in FIG. 4 .
  • lubricant G preferably flows in a direction of the arrow A 5 due to the centrifugal force due to the revolution movement, such a case can be contemplated that the lubricant flows inclining in an axis direction of the eccentric shaft portion 15 b as shown in the arrow A 6 .
  • there is a risk of poor lubrication because the lubricant cannot be received by the rolling bearing 18 .
  • the shape of the eccentric shaft portion 15 b is changed. More specifically, to a first shaft portion 15 b 1 of the eccentric shaft portion 15 b to which the inner ring 18 b is fitted, a second shaft portion 15 b 2 that is continuously provided from the first shaft portion 15 b 1 and has a larger diameter than the diameter of the first shaft portion 15 b 1 is provided. Due to this, a stepped portion 15 b 3 that partitions the first shaft portion 15 b 1 and the second shaft portion 15 b 2 is formed. This stepped portion 15 b 3 is preferably provided at a portion facing the inner peripheral end of the sealing member 40 . Note that the stepped portion 15 b 3 may be provided at a farther position when viewed from the side portion of the inner ring 18 b than the position facing the inner peripheral end of the sealing member 40 (right side in the same figure).
  • the lubricant leaked from the rolling bearing 18 is introduced to the first shaft portion 15 b 1 having a smaller diameter than the diameter of the second shaft portion 15 b 2 , and the lubricant oil can be received from a portion between the sealing member 40 and the inner ring 18 b.
  • This embodiment is different from the first embodiment about a fixing position of the sealing member.
  • the other points are the same as those in the first embodiment, so that an explanation therefor is omitted.
  • the sealing member 44 is fixed to the side portion of the inner ring 18 b of the rolling bearing 18 , and not fixed to the outer ring 18 a.
  • An outer peripheral end of the sealing member 44 extends to the side portion of the outer ring 18 a.
  • a side wall portion 27 s that, is connected to the first, side plate 27 to surround the outer peripheral side of the sealing member 44 is provided.
  • the side wall portion 27 s extends toward the eccentric shaft portion 15 b and has a substantially disc shape.
  • a predetermined gap is provided between an inner peripheral end of the side wall portion 27 s and the eccentric shaft portion 15 b.
  • the outer ring 18 a of the rolling bearing 18 Since the outer ring 18 a of the rolling bearing 18 is fitted to the first side plate 27 , the outer ring 18 a rotates together with the first side plate 27 to perform revolution movement around the driven-side rotation axis CL 2 .
  • the inner ring 18 b performs revolution movement together with the outer ring 10 a, and moreover, the inner ring 18 b is fitted to the eccentric shaft portion 15 b, so that it performs rotation movement around the center axis of the eccentric shaft portion 15 b together with the eccentric shaft portion 15 b.
  • the sealing member 44 is fixed to the side portion of the inner ring 18 b and extends to the side portion of the outer ring 18 a, which inhibits the lubricant G from leaking from the side of the inner ring 18 b to the outside of the rolling bearing 18 .
  • the side wall portion 27 s is provided to surround the outer peripheral side of the sealing member 44 . This maintains the lubricant G leaked to the outer peripheral side of the rolling bearing 18 due to the centrifugal force of the revolution movement. Also, since the inner ring 18 b rotates around the center axis of the eccentric shaft portion 15 b by autorotation, the lubricant G tries to be leaked from the outer peripheral side of the sealing member 44 .
  • This embodiment is different, from the first embodiment in that a chip seal 45 is provided between the first side plate 27 and the center plate 20 . Accordingly, an explanation of the same configuration as in the first embodiment will be omitted.
  • the chip seal 45 that is annular is fitted in a groove formed in the first side plate 27 .
  • the chip seal 45 is, for example, made of resin.
  • a tip portion of the chip seal 45 (right end in FIG. 10 ) abuts an end surface of the center plate 20 .
  • the diameter of the chip seal 45 is longer than the rolling bearing 18 .
  • the leakage path of the lubricant from the rolling bearing 18 and the roiling bearing 16 is blocked.
  • the chip seal 45 that seals a space on the side of the rolling bearing 18 and the side of the rolling bearing 16 is provided, the lubricant that leaks from the rolling bearing 18 and the rolling bearing 16 can be sealed. Also, the lubricant can be sealed to the side of the rolling bearing 18 and to the side of the rolling bearing 16 , which prevents contamination of fluid before and after compression due to the lubricant.
  • This embodiment is different from the first embodiment about an installation direction of the snap ring 42 . Accordingly, an explanation of the same configuration as in the first embodiment is omitted.
  • the snap ring 42 has a substantially C-letter shape with ono open portion 42 a.
  • a retention ring 42 b that allows an attachment jig to be inserted is provided to each end portion facing to each other at the open portion 42 a.
  • the jig is inserted into this retention ring 42 b, and the snap ring 42 is elastically deformed to reduce the diameter to be fitted in a snap ring groove 43 (see FIG. 4 ).
  • the snap ring 42 is disposed such that the open portion 42 a is directed to the driven-side rotation axis CL 2 that is a rotation center.
  • the snap ring 42 Since the snap ring 42 has the open portion 42 a, the weight of a portion on the side of the open portion 42 a is relatively light, while the weight of an opposite portion from the open portion 42 a is heavy. Accordingly, when the centrifugal force around the driven-side rotation axis CL 2 due to the revolution movement is applied to the snap ring 42 , the opposite portion from the open portion 42 a tries to be directed in the direction of the centrifugal force. Considering this, the open portion 42 a of the snap ring 42 is directed to the driven-side rotation axis CL 2 that is the rotation center of the first side plate 27 . This prevents that the snap ring 42 rotates due to the centrifugal force and thus the sealing member 40 is displaced to be slid, so that the scaling member 40 can be reliably fixed.
  • This embodiment is different from the first embodiment about the shape of the second side plate 30 that fixes the rolling bearing 19 . Accordingly, the same configuration as in the first embodiment is omitted.
  • FIG. 12 shows a portion surrounding the rolling bearing 19 provided to the second side plate 30 .
  • a sealing wall portion 30 w of the second side plate 30 is provided at a side portion of the rolling bearing 19 (left side in the figure) to seal the rolling bearing 19 from a lateral side.
  • a recess 30 r formed to a lateral side from the outer ring 19 a in an annular shape to correspond to the outer ring 19 a is provided to the sealing wall portion 30 w.
  • a protruding portion 30 e that protrudes to the side of the rolling bearing 19 is provided on an inner peripheral side of the recess 30 r, and, on an inner peripheral side of the protruding portion 30 e, an opening 30 f that opens to the inner peripheral side is provided at a position corresponding to the inner ring 19 b.
  • the recess 30 r is provided to the sealing wall portion 30 w, and the recess 30 r is used as an oil pocket of the lubricant G to temporarily retain the lubricant leaked from the rolling bearing 19 . Due to this, even when the lubricant leaks by gravity from the recess 30 r positioned at an upper side at the time of stopping, collecting is performed by the recess 30 r positioned at a lower side as shown in the arrow A 5 , which avoids inadequate lubrication.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

A co-rotating scroll compressor that can achieve a longer operating life of a synchronous driving mechanism is provided. This compressor includes the synchronous driving mechanism that transmits driving force from a driving-side scroll member to a driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity. The synchronous driving mechanism includes a crankpin (15) and a rolling bearing (18) that rotatably supports a shaft portion (15b) of the crankpin (15). The rolling bearing (18) includes an inner ring (18b) fitted to the shaft portion (15b) and an outer ring (18a) fitted to a first side plate (27) that supports the shaft portion (15b). A sealing member (40) that extends to a side portion of the inner ring (18b) is fixed to a side portion of the outer ring (18a).

Description

    TECHNICAL FIELD
  • The present invention relates to a co-rotating scroll compressor.
  • BACKGROUND ART
  • A co-rotating scroll compressor has been well-known (refer to PTL 1). The co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates in synchronization with the driving-side scroll, and causes a driving shaft causing the driving-side scroll to rotate and a driven shaft supporting rotation of the driven-side scroll to rotate in the same direction at the same angular velocity while the driven-shaft is offset by a revolving radius from the driving shaft.
  • PTL 2 discloses a scroll compressor including a static scroll and a rotating scroll, unlike a co-rotating scroll compressor. A crankpin mechanism including a crankpin and a ball bearing is adopted as a rotation prevention mechanism of the rotating scroll.
  • CITATION LIST Patent Literature [PTL 1]
  • the Publication of Japanese Patent No. 5443132
  • [PTL 2]
  • Japanese Unexamined Patent Application, Publication No. 2005-233042
  • SUMMARY OF INVENTION Technical Problem
  • The co-rotating scroll compressor uses a synchronous driving mechanism that transmits driving force from a driving-side scroll member to a driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity. As the synchronous driving mechanism, a mechanism that uses a crankpin including a rolling bearing or a pin ring can be contemplated. However, when lubricant encapsulated in the rolling bearing leaks to the outside by centrifugal force, there is a risk of a shorter operating life of the bearing due to inadequate lubrication. Also, when the lubricant leaks to the outside, there is a risk that the lubricant is mixed with fluid before or after compression to contaminate the fluid.
  • Moreover, the inventors have found the existence of the following particular problem about leakage of the lubricant of the rolling bearing since not only rotation movement but also revolution movement is added to the rolling bearing in the co-rotating scroll compressor.
  • FIG. 13 illustrates three bail bearings (rolling bearing) 102 attached to a bearing supporting member 100. The bearing supporting member 100 rotates about a rotation center O1 together with a driving-side scroll member or a driven-side scroll member. In the ball bearing 102, an outer ring 102 a is fitted to the bearing supporting member 100, and an inner ring 102 b is fitted to a shaft portion 104 of a crankpin. A plurality of balls 102 c are disposed between the outer ring 102 a and the inner ring 102 b, and a predetermined interval between the balls 102 c is maintained by a not shown retainer.
  • When the bearing supporting member 100 turns (revolution) about the rotation center O1, centrifugal force acts in a direction shown by an arrow denoted by reference sign A0, and grease (lubricant) moves to a radially outer side as shown by reference sign A1. After that, as shown by an arrow denoted by reference sign A2, grease is stirred due to rotation of the balls 102 c around a rotation center O2 of the shaft portion 104 and the retainer. Moreover, when the grease reaches a radially inner side as shown in an arrow denoted by reference sign A3, the grease scatters due to the centrifugal force by revolution, and thus the grease is attached to the inner ring 102 b. When the grease thus attached to the inner ring 102 b reaches the radially outer side, due to the centrifugal force by revolution, the grease leaks to the outside of the ball bearing 102 from a gap on the inner ring side as shown in an arrow denoted by reference sign A4.
  • Such leakage of the grease from the inner ring side of the ball bearing 102 due to the centrifugal force by revolution is an event that cannot occur in the scroll compressor including the static scroll and the rotating scroll as in PTL 2. When the grease leaks from the ball bearing 102 and the lubricant is insufficient, the ball bearing 102 has poor lubrication, which inhibits a longer operating life.
  • The present invention is made considering such circumstances, and an object of the present invention is to provide a co-rotating scroll compressor that can achieve a longer operating life of a synchronous driving mechanism that includes a rolling bearing.
  • Solution to Problem
  • To solve this problem, a co-rotating scroll compressor according to one aspect of the present invention adopts the following solutions.
  • That is, a co-rotating scroll compressor according to a first aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and a sealing member that extends to a side portion of the inner ring is fixed to a side portion of the outer ring.
  • Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member and performs revolution movement about a predetermined center axis. Since the sealing member is fixed to the outer ring, the sealing member performs revolution movement about the predetermined center axis in the same manner as the outer ring. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around a center axis of shaft portion together with the shaft portion. As a result, there is a risk that the lubricant flowing to an inner peripheral side of the outer ring by centrifugal force due to the revolution movement is leaked from an outer peripheral side of the inner ring to the outside of the rolling bearing due to the rotation of the inner ring. On the other hand, the sealing member extends to the side portion of the inner ring, which inhibits the lubricant from leaking from the side of the inner ring to the outside of the rolling bearing. As a result, poor lubrication due to leakage of the lubricant oil is prevented, and a longer operating life of the synchronous driving mechanism can be achieved.
  • Further, in the co-rotating scroll compressor according to this aspect, in the sealing member, an inclined surface is formed at an inner peripheral edge facing the side portion of the inner ring such that a distance from the side portion of the inner ring increases toward an inner peripheral side of the sealing member.
  • Even when the lubricant is leaked from the inner peripheral side of the sealing member, because the inclined surface in which the distance from the side portion of the inner ring increases toward the inner peripheral side of the sealing member is formed, the lubricant that is leaked along a crankshaft due to the centrifugal force of the revolution movement can be effectively received.
  • As the inclined surface, for example, a C chamfered surface or an R chamfered surface is used.
  • The inclined surface may foe formed over the entire circumference of the inner peripheral edge of the sealing member.
  • Further, in the co-rotating scroll compressor according to this aspect, the inclined surface is formed only on an outer peripheral side of revolution movement of the rolling bearing at the inner peripheral edge of the sealing member.
  • The inclined surface formed at the inner peripheral edge of the sealing member is formed only on the outer peripheral side of the revolution movement of the ball bearing. Accordingly, the lubricant that is leaked due to the centrifugal force by the revolution movement of the outer ring can be received by the inclined surface formed on the outer peripheral side. On the other hand, no inclined surface is provided on the inner peripheral side of the revolution movement, which prevents leakage of the lubricant as possible.
  • The range for providing the inclined surface is, for example a range of 90° on both sides based on a direction of the centrifugal force due to the revolution movement, that is, a range of 180°.
  • Further, in the co-rotating scroll compressor according to this aspect, the crankpin includes a first shaft portion to which the inner ring is fitted and a second shaft portion that is continuously provided from the first shaft portion and has a larger diameter than a diameter of the first shaft portion, and a stepped portion that partitions the first shaft portion and the second shaft portion is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end.
  • The stepped portion that partitions the first shaft portion and the second shaft portion of the crankpin is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end. Due to this, the lubricant leaked from the ball bearing is introduced to the first shaft portion having a smaller diameter than a diameter of the second shaft portion, and the lubricant oil can be received from a portion between the sealing member and the inner ring.
  • Also, a co-rotating scroll compressor according to a second aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and a sealing member that extends to a side portion of the outer ring is fixed to a side portion of the inner ring.
  • Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member to perform revolution movement around the predetermined center axis. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around the center axis of the shaft portion together with the shaft portion. As a result, there is a risk that the lubricant flowing to the inner peripheral side of the outer ring by the centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring to the outside of the rolling bearing due to the rotation of the inner ring. On the other hand, the sealing member is fixed to the side portion of the inner ring and extends to the side portion of the outer ring, which inhibits the lubricant from leaking from the side of the inner ring to the outside of the rolling bearing.
  • Further, in the co-rotating scroll compressor according to this embodiment, on a side portion of the sealing member, a side wall portion that is connected to the bearing supporting member to surround an outer peripheral side of the sealing member is provided.
  • On a side portion of the sealing member, the side wall portion that is connected to the bearing supporting member to surround the outer peripheral side of the sealing member is provided. This allows for maintaining the lubricant leaked to the outer peripheral side of the rolling bearing due to the centrifugal force of the revolution movement. Also, since the inner ring of the rolling bearing rotates around the center axis of the shaft portion of the crankpin by autorotation, the lubricant tries to be leaked from the outer peripheral side of the sealing member. However, since friction force to the lubricant between the sealing member and the side wall portion is smaller than friction force that tries to scrape out the lubricant by the ball member (ball) provided between the inner ring and the outer ring or the retainer, a small amount of lubricant is leaked from the outer peripheral side of the sealing member while passing through a space between the outer peripheral side of the sealing member and the side wall portion.
  • Also, a co-rotating scroll compressor according to a third aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit, and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, and a chip seal that is disposed on an outer peripheral side of the rolling bearing with respect to a center axis of the shaft portion of the crankpin to seal a space on a side of the rolling bearing between the chip seal and a wall portion facing the bearing supporting member is provided.
  • Since the chip seal that seals the space of the side of the rolling bearing is provided, the lubricant that leaks from the rolling bearing can be sealed. Also, the lubricant can be sealed in the space of the side of the rolling bearing, which prevents contamination of fluid before and after compression due to the lubricant.
  • Further, the co-rotating scroll compressor according to the above-described aspect includes a snap ring provided on a lateral side of the sealing member to fix the sealing member, wherein the snap ring has a substantially C-letter shape with one open portion, and the open portion is arranged such that the open portion is directed to a rotation center of the bearing supporting member.
  • The snap ring has a substantially C-letter shape and is fitted in a groove while being biased in a direction of increasing the diameter. The snap ring has one open portion to reduce the diameter at the time of attachment, and a retention ring for inserting an attachment jig etc. is provided to each end portion of the snap ring. Since the snap ring has the open portion, the weight of a portion on the side of the open portion is relatively light, while the weight of an opposite portion from the open portion is heavy. Accordingly, when the centrifugal force is applied to the snap ring, the opposite portion from the open portion tries to be directed in the direction of the centrifugal force. Considering this, the open portion of the snap ring is directed to the rotation center of the bearing supporting member. This prevents that the snap ring rotates due to the centrifugal force and thus the sealing member is displaced to be slid, so that the sealing member can be reliably fixed.
  • Also, a co-rotating scroll compressor according to a fourth aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, wherein a sealing wall portion fixed to the bearing supporting member to seal the rolling bearing from a lateral side is provided at a side portion of the rolling bearing, and a recess formed to a lateral side from the outer ring in an annular shape to correspond to the outer ring is provided to the sealing wall portion.
  • Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member to perform revolution movement around the predetermined center axis. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around the center axis of the shaft portion together with the shaft portion. As a result, there is a risk that the lubricant flowing to the inner peripheral side of the outer ring by the centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring to the outside of the rolling bearing due to the rotation of the inner ring. On the other hand, the sealing wall portion is provided to seal the rolling bearing from a lateral side to inhibit leakage of the lubricant from the rolling bearing. Further, the recess formed to a lateral side from the outer ring is provided to the sealing wall portion, and the recess is used as an oil pocket to temporarily retain the lubricant leaked from the rolling bearing. Due to this, even when the lubricant leaks by gravity from the recess positioned at an upper side at the time of stopping, collecting is performed by the recess positioned at a lower side.
  • Advantageous Effects of Invention
  • Leakage of the lubricant oil of the rolling bearing is inhibited and a longer operating life of the synchronous driving mechanism can be achieved.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a vertical cross-sectional view illustrating a co-rotating scroll compressor according to a first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a first driving-side wall in FIG. 1.
  • FIG. 3 is a plan view illustrating a first driven-side wall in FIG. 1.
  • FIG. 4 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin.
  • FIG. 5 is a vertical cross-sectional view illustrating a first modification of the first embodiment.
  • FIG. 6 is a vertical cross-sectional view illustrating a second modification of the first embodiment.
  • FIG. 7 is a vertical cross-sectional view illustrating a reference example of a third modification of the first embodiment.
  • FIG. 8 is a vertical cross-sectional view illustrating the third modification of the first embodiment.
  • FIG. 9 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin of a co-rotating scroll compressor according to a second embodiment of the present invention.
  • FIG. 10 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin of a co-rotating scroll compressor according to a third embodiment of the present invention.
  • FIG. 11 is a front view illustrating an arrangement of a snap ring of a co-rotating scroll compressor according to a fourth embodiment of the present invention.
  • FIG. 12 is a vertical cross-sectional view illustrating a portion surrounding an eccentric shaft portion of a crankpin of a co-rotating scroll compressor according to a fifth embodiment of the present invention.
  • FIG. 13 is a front view illustrating a process in which lubricant is leaked from a ball bearing.
  • DESCRIPTION OF EMBODIMENTS
  • Hereinafter, embodiments of the present invention are described with reference to the drawings.
  • First Embodiment
  • A first embodiment of the present invention is described below with reference to FIG. 1, etc.
  • FIG. 1 illustrates a co-rotating scroll compressor 1. The co-rotating scroll compressor 1 can be used as, for example, a supercharger that compresses combustion air (fluid) to be supplied to an internal combustion engine such as a vehicle engine, a compressor that supplies compressed air to an electrode of a fuel cell, and a compressor that supplies compressed air used in a brake device of a vehicle such as a railway vehicle.
  • The co-rotating scroll compressor 1 includes a housing 3, a motor (driving unit) 5 accommodated on one end side in the housing 3, and a driving-side scroll member 70 and a driven-side scroll member 90 that are accommodated on the other end side in the housing 3.
  • The housing 3 has a substantially cylindrical shape, and includes a motor accommodation portion 3 a that accommodates the motor 5, and a scroll accommodation portion 3 b that accommodates the scroll members 70 and 90.
  • A discharge opening 3 d from which compressed air is discharged is provided at an end part of the scroll accommodation portion 3 b. Note that, although not illustrated in FIG. 1, the housing 3 includes an air suction opening from which air is sucked in.
  • The motor 5 is driven by being supplied with power from an unillustrated power supply source. Rotation of the motor 5 is controlled by an instruction from an unillustrated control unit. A stator 5 a of the motor 5 is fixed to an inner periphery of the housing 3. A rotor 5 b of the motor 5 rotates around a driving-side rotation axis CL1. A driving shaft 6 that extends on the driving-side rotation axis CL1 is connected to the rotor 5 b. The driving shaft 6 is connected to a driving shaft portion 71 d fixed to a first driving-side scroll portion 71 of the driving-side scroll member 70.
  • A driving-side bearing 11 that rotatably supports the driving shaft 6 is provided at a front end (left end in FIG. 1) of the driving shaft 6. A rear-end bearing 17 that rotatably supports the driving shaft 6 with the housing 3, is provided at a rear end (right end in FIG. 1) of the driving shaft 6, namely, at an end part of the driving shaft 6 on side opposite to the driving-side scroll member 70.
  • The driving-side scroll member 70 includes a first driving-side scroll portion 71 on the motor 5 side, and a second driving-side scroll portion 72 on the discharge opening 3 d side.
  • The first driving-side scroll portion 71 includes a first driving-side end plate 71 a and first driving-side walls 71 b.
  • The first driving-side end plate 71 a extends in a direction orthogonal to the driving-side rotation axis CL1. The driving shaft portion 71 d extending along the driving-side rotation axis CL1 is fixed to a rotation center of the first driving-side end plate 71 a.
  • A center plate (bearing supporting member) 20 is fixed to the driving shaft portion 71 d. The center plate 20 extends parallel to the first driving-side end plate 71 a.
  • The first driving-side end plate 71 a has a substantially disc shape in a planar view. As illustrated in FIG. 2, three first driving-side walls 71 b, namely, three lines of first driving-side walls 71 b each formed in a spiral shape are provided on the first driving-side end plate 71 a. The three lines of first driving-side walls 71 b are disposed at an equal interval around the driving-side rotation axis CL1. Note that the number of lines of the first driving-side walls 71 b may be one or two, or four or more.
  • As illustrated in FIG. 1, the second driving-side scroll portion 72 includes a second driving-side end plate 72 a and second driving-side walls 72 b. Three lines of second driving-side walls 72 b are provided similarly to the above-described first driving-side walls 71 b (see FIG. 2). Note that the number of lines of the second driving-side walls 72 b may be one or two, four or more.
  • A second driving-side shaft portion 72 c that extends in the direction of the driving-side rotation axis CL1 is connected to the second driving-side end plate 72 a. The second driving-side shaft portion 72 c is provided so as to be rotatable with respect to the housing 3 through a second driving-side bearing 14 that is a ball bearing. The second driving-side end plate 72 a includes a discharge port 72 d extending along the driving-side rotation axis CL1.
  • Between the second driving-side shaft portion 72 c and the housing 3, two second driving shaft sealing members 26 are provided at a tip side of the second driving-side shaft portion 72 c than the second driving-side bearing 14 (left side in FIG. 1). The two second driving shaft sealing members 26 and the second driving-side bearing 14 are disposed with a predetermined interval in the direction of the driving-side rotation axis CL1. Between two second driving shaft sealing members 26, lubricant that is grease such as semisolid lubricant is encapsulated. Note that one second driving shaft sealing member 26 may be used. In such a case, the lubricant is encapsulated between the second driving shaft sealing member 26 and the second driving-side bearing 14.
  • The first, driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed in a state that front ends (free ends) of the walls 71 b and 72 b face each other. The first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by bolts 31 that are fastened to respective flange portions 73 provided at a plurality of positions in the circumferential direction. The flange portions 73 are provided so as to protrude outward in a radial direction.
  • In the driven-side scroll member 90, the driven-side end plate 90 a is positioned at a substantially center in the axis direction (horizontal direction in figure). A through hole 90 h is provided at a center of the driven-side end plate 90 a, and causes the compressed air to flow toward the discharge port 72 d.
  • Driven- side walls 91 b and 92 b are provided on respective sides of the driven-side end plate 90 a. The first driven-side walls 91 b provided on the motor 5 side from the driven-side end plate 90 a engage with the first driving-side walls 71 b of the first driving-side scroll portion 71. The second driven-side walls 92 b provided on the discharge opening 3 d side from the driven-side end plate 90 a engage with the second driving-side walls 72 b of the second driving-side scroll portion 72.
  • As illustrated in FIG. 3, three first driven-side walls 91 b, namely, three lines of first driven-side walls 91 b are provided. The three lines of driven-side walls 91 b are disposed at an equal interval around a driven-side rotation axis CL2. The second driven-side walls 92 b are also configured in a similar manner. Note that the number of lines of the driven-side walls 91 b and the number of lines of the driven-side walls 97 b may be one or two, or four or more.
  • A support member 33 is provided on the side of a discharge opening 3 d of the driven-side scroll member 90 (left, side in figure). The support member 33 is fixed to front ends (free ends) of the respective second driven-side walls 92 b by bolts 25.
  • A support member shaft portion 35 a is provided on a center axis side of the support member 33, and the support member shaft portion 35 a is fixed to the housing 3 through a second support member bearing 38 that is a ball bearing. As a result, the driven-side scroll member 90 rotates around the driven-side rotation axis CL2 through the support member 33.
  • A first side plate (bearing supporting member) 27 is provided on the side of the motor 5 of the driven-side scroll member 90 (right side in FIG. 1). The first side plate 27 is fixed to front ends (free ends) of the respective first driven-side walls 91 b by bolts 28. A first side plate hole portion 27 h that allows the driving shaft portion 71 d to penetrate is formed at a rotation center of the first side plate 27.
  • A second side plate (bearing supporting member) 30 is provided with a predetermined interval on the side of the motor 5 of the first side plate 27. The second side plate 30 is fixed to the first side plate 27 via bolts 34. A second side plate hole portion 30 h that allows the driving shaft portion 71 d to penetrate is formed at a rotation center of the second side plate 30.
  • A second side plate shaft portion 30 a is provided on a center axis side of the second side plate 30, and the second side plate shaft portion 30 a is fixed to the housing 3 through a second side plate bearing 32 that is a ball bearing. As a result, the driven-side scroll member 90 rotates around the driven-side rotation axis CL2 through the second side plate 30 and the first side plate 27.
  • As shown in FIG. 1, a crankpin 15 is provided between the first side plate 27 as well as the second side plate 30 and the center plate 20. The crankpin 15 includes a center cylindrical portion 15 a and an eccentric shaft portion 15 b that includes an eccentric axis that is eccentric to the center axis of the cylindrical portion 15 a.
  • A rolling bearing 16 that is a bail bearing is provided at an outer periphery of the cylindrical portion 15 a. As a result, the cylindrical portion 15 a is freely rotatable to the center plate 20. Lubricant such as grease is encapsulated in the rolling bearing 16.
  • A rolling bearing 18 and a rolling bearing 19 that are ball bearings are respectively provided at both ends of the eccentric shaft portion 15 b. As a result, the eccentric shaft portion 15 b is freely rotatable to the first side plate 27 and the second side plate 30. Grease (lubricant) is encapsulated in each of the eccentric shaft portions 18, 19.
  • The crankpin 15 and each of the bearings 16, 18 and 19 is used as a synchronous driving mechanism that transmits driving force from the driving shaft portion 71 d to the driven-side scroll member 90 such that both scroll members 70, 90 perform revolving movement synchronously.
  • A plurality of synchronous driving mechanisms including the crankpin 15 are preferably provided, for example, three synchronous driving mechanisms are provided equiangularly around the rotation axes CL1, C12.
  • FIG. 4 illustrates an enlarged view of a portion surrounding the eccentric shaft portion 15 b of the crankpin 15. The rolling bearing 18 is provided at the eccentric shaft portion 15 b. Note that, while an explanation will be made using the rolling bearing 18 in the description below, the same is applied to the rolling bearing 19 and the rolling bearing 16.
  • The rolling bearing 18 includes an outer ring 18 a, an inner ring 18 b, a ball 18 c disposed between the outer ring 18 a and the inner ring 18 b and a retainer (not shown) that retains each ball 18 c at even intervals.
  • The outer ring 18 a is fitted to a circular groove formed on the first side plate. The inner ring 18 b is fitted to the eccentric shaft portion 15 b.
  • Lubricant such as grease is encapsulated between the outer ring 18 a and the inner ring 18 b.
  • A scaling member 40 that seals the lubricant is provided on a lateral side of the rolling bearing 18 (right side in FIG. 4). The sealing member 40 is annular and has an outer peripheral side fixed to a side portion of the outer ring 18 a. The sealing member 40 is not fixed to the inner ring 18 b, and has a predetermined interval to a side portion of the inner ring 18 b. An inner peripheral end of the sealing member 40 extends to the side portion of the inner ring 18 b, and more specifically, extends to an inner peripheral side than an outer periphery of the inner ring 18 b.
  • A snap ring 42 that fixes the sealing member 40 at a fixed place is provided on a lateral side of the sealing member 40 (right side in the same figure). An outer periphery of the snap ring 42 is fitted to a snap ring groove 43 formed on the first side plate 27.
  • An arrow denoted by reference sign AO shown in FIG. 4 shows a direction of centrifugal force due to rotation of the first side plate 27 in the same manner as reference sign A0 of FIG. 13.
  • The co-rotating scroll compressor 1 having the above configuration operates as follows.
  • When the driving shaft 6 is rotated around the driving-side rotation axis CL1 by the motor 5, the center plate 20 together with the driving-side scroll member 70 rotate around the driving-side rotation axis CL1 through the driving shaft portion 71 d connected to the driving shaft 6. Due to the rotation of the center plate 20, driving force transmitted to the center plate 20 is transmitted from the first side plate 27 and the second side plate 30 to the driven-side scroll member 90 through the crankpin 15 that is the synchronous driving mechanism, and the driven-side scroll member 90 rotates around the driven-side rotation axis CL2. At this time, the crankpin 15 rotates to the center plate 20 and both side plates through each of the bearings 16, 18 and 19, so that both scroll members 70, 90 relatively perform revolving movement.
  • When both scroll members 70, 90 perform the revolving movement, air sucked from an intake of the housing 3 is suctioned from an outer peripheral side of both scroll members 70, 90, and taken into compression chambers formed by both scroll members 70, 90. Moreover, each compression chamber formed by the respective first driving-side walls 71 b and the respective first driven-side walls 91 b and each compression chamber formed by the respective second driving-side walls 72 b and the respective second driven-side walls 92 b are separately compressed. In each compression chamber, the volume decreases as it moves to the center side, and accompanied with this, air is compressed. Air compressed by the first driving-side walls 71 b and the first driven-side walls 91 b passes through the through hole 90 h formed on the driven-side end plate 90 a, and is joined up with air compressed by the second driving-side walls 72 b and the second driven-side walls 92 b, and then the air after confluence passes through the discharge port 72 d to be discharged to the outside from the discharge opening 3 d of the housing 3.
  • According to this embodiment, the following operational effect is provided.
  • As explained using FIG. 4, since the outer ring 18 a of the rolling bearing 18 is fitted to the first side plate 27, the outer ring 18 a rotates together with the first side plate 27 to perform revolution movement around the driven-side rotation axis CL2. Moreover, since the sealing member 40 is fixed to the outer ring 18 a, it preforms revolution movement around the driven-side rotation axis CL2 in the same manner as the outer ring 18 a. On the other hand, the inner ring 18 b performs revolution movement together with the outer ring 18 a, and moreover, the inner ring 18 b is fitted to the eccentric shaft portion 15 b of the crankpin 15, so that it performs rotation movement around the center axis of the eccentric shaft portion 15 b together with the eccentric shaft portion 15 b. As a result, as explained using FIG. 13, there is a risk that lubricant flowing to the inner peripheral side of the outer ring 18 a by centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring 18 b to the outside of the rolling bearing 18 due to the rotation of the inner ring 18 b. On the other hand, the sealing member 40 extends to the side portion of the inner ring 18 b, which inhibits the lubricant from leaking from the side of the inner ring 18 b to the outside of the rolling bearing 18. As a result, poor lubrication due to leakage of lubricant oil is prevented, and a longer operating life of the synchronous driving mechanism can be achieved.
  • First Modification
  • The present embodiment may be modified as follows.
  • As shown in FIG. 5, a C chamfering 40 a is formed at a position facing the side portion of the inner ring 18 b at an inner peripheral edge of the sealing member 40. The C chamfering 40 a is an inclined surface in which the distance from the side portion of the inner ring 18 b increases toward the inner peripheral side of the sealing member 40. The C chamfering is formed over the entire circumference of the inner peripheral edge of the sealing member 40. Note that the inclined surface may adopt other shapes such as R chamfering instead of the C chamfering 40 a.
  • According to a first modification, even when the lubricant is leaked from the inner peripheral side of the sealing member 40, because the C chamfering 40 a in which the distance from the side portion of the inner ring 18 b increases toward the inner peripheral side of the sealing member 40 is formed, as shown by arrows denoted by reference sign A5 of FIG. 5, the lubricant that is leaked along the crankpin 15 due to centrifugal force of the revolution movement by the rotation of the first side plate 27 can be effectively received by the C chamfering 40 a positioned in a centrifugal direction. As a result, depletion of the lubricant at the rolling bearing 18 is prevented, and a longer operating life of the synchronous driving mechanism can be achieved.
  • Second Modification
  • The above first modification can be further modified as follows.
  • As shown in FIG. 6, the C chamfering 40 a is formed only on the outer peripheral side of the revolution movement of the roiling bearing 18 of the inner peripheral edge of the sealing member 40. Consequently, the C chamfering 40 a is not formed on the inner peripheral side of the roiling bearing 18, and a corner portion 40 b is remained. The range for providing the C chamfering 40 a is, for example a range of 90° on both sides based on a direction of the centrifugal force duo to the revolution movement of the rolling bearing 18 (more specifically, a radially outer side around the driven-side rotation axis CL2), that is, a range of 180°.
  • The C chamfering 40 a formed at the inner peripheral edge of the sealing member 40 is formed only on the outer peripheral side of the revolution movement of the rolling bearing 18, so that the lubricant that is leaked due to the centrifugal force of the revolution movement of the rolling bearing 18 can be received by the C chamfering 40 a formed on the outer peripheral side. On the other hand, no inclined surface is provided on the inner peripheral side of the revolution movement of the rolling bearing 18 and the corner portion 40 b is formed, which prevents leakage of the lubricant as possible.
  • Third Modification
  • The present embodiment can be modified as follows.
  • FIG. 7 shows a leakage path of the lubricant shown by an arrow denoted reference sign A6 to the same configuration as in FIG. 4. As explained using FIG. 4, while lubricant G preferably flows in a direction of the arrow A5 due to the centrifugal force due to the revolution movement, such a case can be contemplated that the lubricant flows inclining in an axis direction of the eccentric shaft portion 15 b as shown in the arrow A6. In this case, there is a risk of poor lubrication, because the lubricant cannot be received by the rolling bearing 18.
  • On the ether hand, in this modification, as shown in FIG. 8, the shape of the eccentric shaft portion 15 b is changed. More specifically, to a first shaft portion 15 b 1 of the eccentric shaft portion 15 b to which the inner ring 18 b is fitted, a second shaft portion 15 b 2 that is continuously provided from the first shaft portion 15 b 1 and has a larger diameter than the diameter of the first shaft portion 15 b 1 is provided. Due to this, a stepped portion 15 b 3 that partitions the first shaft portion 15 b 1 and the second shaft portion 15 b 2 is formed. This stepped portion 15 b 3 is preferably provided at a portion facing the inner peripheral end of the sealing member 40. Note that the stepped portion 15 b 3 may be provided at a farther position when viewed from the side portion of the inner ring 18 b than the position facing the inner peripheral end of the sealing member 40 (right side in the same figure).
  • In this way, by providing the stepped portion 15 b 3, the lubricant leaked from the rolling bearing 18 is introduced to the first shaft portion 15 b 1 having a smaller diameter than the diameter of the second shaft portion 15 b 2, and the lubricant oil can be received from a portion between the sealing member 40 and the inner ring 18 b.
  • Second Embodiment
  • Next, a second embodiment according to the present invention will be explained. This embodiment is different from the first embodiment about a fixing position of the sealing member. The other points are the same as those in the first embodiment, so that an explanation therefor is omitted.
  • As shown in FIG. 9, the sealing member 44 is fixed to the side portion of the inner ring 18 b of the rolling bearing 18, and not fixed to the outer ring 18 a. An outer peripheral end of the sealing member 44 extends to the side portion of the outer ring 18 a.
  • On a side portion of the sealing member 44, a side wall portion 27 s that, is connected to the first, side plate 27 to surround the outer peripheral side of the sealing member 44 is provided. The side wall portion 27 s extends toward the eccentric shaft portion 15 b and has a substantially disc shape. A predetermined gap is provided between an inner peripheral end of the side wall portion 27 s and the eccentric shaft portion 15 b.
  • According to this embodiment, the following operational effect is provided.
  • Since the outer ring 18 a of the rolling bearing 18 is fitted to the first side plate 27, the outer ring 18 a rotates together with the first side plate 27 to perform revolution movement around the driven-side rotation axis CL2. On the other hand, the inner ring 18 b performs revolution movement together with the outer ring 10 a, and moreover, the inner ring 18 b is fitted to the eccentric shaft portion 15 b, so that it performs rotation movement around the center axis of the eccentric shaft portion 15 b together with the eccentric shaft portion 15 b. As a result, there is a risk that the lubricant flowing to the inner peripheral side of the outer ring 18 a by the centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring 18 b to the outside of the rolling bearing 18 due to the rotation of the inner ring 18 b. On the other hand, the sealing member 44 is fixed to the side portion of the inner ring 18 b and extends to the side portion of the outer ring 18 a, which inhibits the lubricant G from leaking from the side of the inner ring 18 b to the outside of the rolling bearing 18.
  • On a side portion of the sealing member 44, the side wall portion 27 s is provided to surround the outer peripheral side of the sealing member 44. This maintains the lubricant G leaked to the outer peripheral side of the rolling bearing 18 due to the centrifugal force of the revolution movement. Also, since the inner ring 18 b rotates around the center axis of the eccentric shaft portion 15 b by autorotation, the lubricant G tries to be leaked from the outer peripheral side of the sealing member 44. However, since friction force to the lubricant G between the sealing member 44 and the side wall portion 27 s is smaller than friction force that tries to scrape out the lubricant G by the ball 18 c provided between the inner ring 18 b and the outer ring 18 a or the retainer (not shown), a small amount of lubricant G is leaked from the outer peripheral side of the sealing member 44 while passing through a space S1 between the outer peripheral side of the sealing member 44 and the side wall portion 27 s.
  • Third Embodiment
  • Next, a third embodiment according to the present invention will be explained. This embodiment, is different, from the first embodiment in that a chip seal 45 is provided between the first side plate 27 and the center plate 20. Accordingly, an explanation of the same configuration as in the first embodiment will be omitted.
  • As shown in FIG. 10, the chip seal 45 that is annular is fitted in a groove formed in the first side plate 27. The chip seal 45 is, for example, made of resin. A tip portion of the chip seal 45 (right end in FIG. 10) abuts an end surface of the center plate 20. The diameter of the chip seal 45 is longer than the rolling bearing 18. On the inner peripheral side of the chip seal 45, the leakage path of the lubricant from the rolling bearing 18 and the roiling bearing 16 is blocked.
  • According to this embodiment, the following operational effect is provided.
  • Since the chip seal 45 that seals a space on the side of the rolling bearing 18 and the side of the rolling bearing 16 is provided, the lubricant that leaks from the rolling bearing 18 and the rolling bearing 16 can be sealed. Also, the lubricant can be sealed to the side of the rolling bearing 18 and to the side of the rolling bearing 16, which prevents contamination of fluid before and after compression due to the lubricant.
  • Fourth Embodiment
  • Next, a fourth embodiment according to the present invention will be explained. This embodiment is different from the first embodiment about an installation direction of the snap ring 42. Accordingly, an explanation of the same configuration as in the first embodiment is omitted.
  • As shown in FIG. 11, the snap ring 42 has a substantially C-letter shape with ono open portion 42 a. A retention ring 42 b that allows an attachment jig to be inserted is provided to each end portion facing to each other at the open portion 42 a. The jig is inserted into this retention ring 42 b, and the snap ring 42 is elastically deformed to reduce the diameter to be fitted in a snap ring groove 43 (see FIG. 4).
  • The snap ring 42 is disposed such that the open portion 42 a is directed to the driven-side rotation axis CL2 that is a rotation center.
  • According to this embodiment, the following operational effect is provided.
  • Since the snap ring 42 has the open portion 42 a, the weight of a portion on the side of the open portion 42 a is relatively light, while the weight of an opposite portion from the open portion 42 a is heavy. Accordingly, when the centrifugal force around the driven-side rotation axis CL2 due to the revolution movement is applied to the snap ring 42, the opposite portion from the open portion 42 a tries to be directed in the direction of the centrifugal force. Considering this, the open portion 42 a of the snap ring 42 is directed to the driven-side rotation axis CL2 that is the rotation center of the first side plate 27. This prevents that the snap ring 42 rotates due to the centrifugal force and thus the sealing member 40 is displaced to be slid, so that the scaling member 40 can be reliably fixed.
  • Fifth Embodiment
  • Next, a fifth embodiment of the present invention will be explained. This embodiment is different from the first embodiment about the shape of the second side plate 30 that fixes the rolling bearing 19. Accordingly, the same configuration as in the first embodiment is omitted.
  • FIG. 12 shows a portion surrounding the rolling bearing 19 provided to the second side plate 30. A sealing wall portion 30 w of the second side plate 30 is provided at a side portion of the rolling bearing 19 (left side in the figure) to seal the rolling bearing 19 from a lateral side. A recess 30 r formed to a lateral side from the outer ring 19 a in an annular shape to correspond to the outer ring 19 a is provided to the sealing wall portion 30 w.
  • A protruding portion 30 e that protrudes to the side of the rolling bearing 19 is provided on an inner peripheral side of the recess 30 r, and, on an inner peripheral side of the protruding portion 30 e, an opening 30 f that opens to the inner peripheral side is provided at a position corresponding to the inner ring 19 b.
  • According to this embodiment, the following operational effect is provided.
  • The recess 30 r is provided to the sealing wall portion 30 w, and the recess 30 r is used as an oil pocket of the lubricant G to temporarily retain the lubricant leaked from the rolling bearing 19. Due to this, even when the lubricant leaks by gravity from the recess 30 r positioned at an upper side at the time of stopping, collecting is performed by the recess 30 r positioned at a lower side as shown in the arrow A5, which avoids inadequate lubrication.
  • Note that the configuration of this embodiment can be applied to the first side plate 27 that accommodates the roiling bearing 18.
  • REFERENCE SIGNS LIST
    • 1 Co-rotating scroll compressor
    • 3 Housing
    • 3 a Motor accommodation portion
    • 3 b Scroll accommodation portion
    • 3 d Discharge opening
    • 5 Motor (driving unit)
    • 5 a Stator
    • 5 b Rotor
    • 6 Driving shaft
    • 11 Driving-side bearing
    • 15 Crankpin (synchronous driving mechanism)
    • 15 a Cylindrical portion
    • 15 b Eccentric shaft portion
    • 15 b 1 First shaft portion
    • 15 b 2 Second shaft portion
    • 15 b 3 Stepped portion
    • 16 Rolling bearing
    • 17 Rear-end bearing
    • 18 Rolling bearing
    • 18 a Outer ring
    • 18 b Inner ring
    • 18 c Ball
    • 19 Rolling bearing
    • 20 Center plate
    • 25 Bolt
    • 26 Second driving shaft sealing member
    • 27 First side plate
    • 27 b First protruding wall portion
    • 27 h First side plate hole portion
    • 27 s Side wall portion
    • 28 Bolt
    • 30 Second side plate
    • 30 a Second side plate shaft portion
    • 30 b Second protruding wall portion
    • 30 e Protruding portion
    • 30 f Opening
    • 30 h Second side plate hole portion
    • 30 r Recess
    • 30 w sealing wall portion
    • 31 Bolt
    • 32 Second side plate bearing
    • 33 Support member
    • 40 Sealing member
    • 40 a C chamfering (inclined surface)
    • 40 b Corner portion
    • 42 Snap ring
    • 42 a Open portion
    • 42 b Retention ring
    • 43 Snap ring groove
    • 44 Sealing member
    • 45 Chip seal
    • 70 Driving-side scroll member
    • 71 First driving-side scroll portion
    • 71 a First driving-side end plate
    • 71 b First driving-side wall
    • 71 d Driving shaft portion
    • 72 Second driving-side scroll portion
    • 72 a Second driving-side end plate
    • 72 b Second driving-side wall
    • 72 c Second driving-side shaft portion
    • 72 d Discharge port
    • 73 Flange portion
    • 90 Driven-side scroll member
    • 90 h Through hole
    • 91 b First driven-side wall
    • 92 b Second driven-side wall
    • 100 Bearing supporting member
    • 102 ball bearing
    • 102 a Outer ring
    • 102 b Inner ring
    • 104 Shaft portion (of a crankpin)
    • A0 Direction of centrifugal force due to revolution
    • CL1 Driving-side rotation axis
    • CL2 Driven-side rotation axis
    • G lubricant
    • O1 Rotation center
    • O2 Rotation center (of a shaft portion of a crankpin)
    • S Space

Claims (12)

1-9. (canceled)
10. A co-rotating scroll compressor comprising:
a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate;
a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and
a synchronous driving mechanism that transmits driving force of the driving unit to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein
the synchronous driving mechanism comprises a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin,
the rolling bearing comprises an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion,
a sealing member that extends to a side portion of the inner ring is fixed to a side portion of the outer ring, and
a predetermined gap is provided between the sealing member and the side portion of the inner ring.
11. The co-rotating scroll compressor according to claim 10, wherein, in the sealing member, an inclined surface is formed at an inner peripheral edge facing the side portion of the inner ring such that a distance from the side portion of the inner ring increases toward an inner peripheral side of the sealing member.
12. The co-rotating scroll compressor according to claim 11, wherein the inclined surface is formed only on an outer peripheral side of revolution movement of the rolling bearing at the inner peripheral edge of the sealing member.
13. The co-rotating scroll compressor according to claim 10, wherein the crankpin includes a first shaft portion to which the inner ring is fitted and a second shaft portion that is continuously provided from the first shaft portion and has a larger diameter than a diameter of the first shaft portion, and
a stepped portion that partitions the first shaft portion and the second shaft portion is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end.
14. A co-rotating scroll compressor comprising:
a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate;
a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and
a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein
the synchronous driving mechanism comprises a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin,
the rolling bearing comprises an inner ring fitted to the shaft portion and an outer ring fitted. to a bearing supporting member that supports the shaft portion,
a sealing member that extends to a side portion of the outer ring is fixed to a side portion of the inner ring, and
a predetermined gap is provided between the sealing member and the side portion of the outer ring.
15. The co-rotating scroll compressor according to claim 14, wherein, on a side portion of the sealing member, a side wall portion that is connected to the bearing supporting member to surround an outer peripheral side of the sealing member is provided.
16. A co-rotating scroll compressor comprising:
a driving-side, scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate;
a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and
a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein
the synchronous driving mechanism comprises a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin,
the rolling bearing comprises an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and
a chip seal that is disposed on an outer peripheral side of the rolling bearing with respect to a center axis of the shaft portion of the crankpin to seal a space on a side of the rolling bearing between the chip seal and a wall portion facing the bearing supporting member is provided.
17. The co-rotating scroll compressor according to claim 10, further comprising a snap ring provided on a lateral side of the sealing member to fix the sealing member, wherein
the snap ring has a substantially C-letter shape with one open portion, and
the open portion is arranged such that the open portion is directed to a rotation center of the bearing supporting member.
18. The co-rotating scroll compressor according to claim 14, further comprising a snap ring provided on a lateral side of the sealing member to fix the sealing member, wherein
the snap ring has a substantially C-letter shape with one open portion, and
the open portion is arranged such that the open portion is directed to a rotation center of the bearing supporting member.
19. The co-rotating scroll compressor according to claim 16, further comprising a snap ring provided on a lateral side of the sealing member to fix the sealing member, wherein
the snap ring has a substantially C-letter shape with one open portion, and
the open portion is arranged such that the open portion is directed to a rotation center of the bearing supporting member.
20. A co-rotating scroll compressor comprising:
a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate;
a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and
a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein
the synchronous driving mechanism comprises a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin,
the rolling bearing comprises an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion,
a sealing wall portion fixed to the bearing supporting member to seal the rolling bearing from a lateral side is provided at a side portion of the rolling bearing, and
a recess formed to a lateral side from the outer ring in an annular shape to correspond to the outer ring is provided to the sealing wall portion.
US16/489,530 2017-10-02 2018-10-02 Co-rotating scroll compressor Abandoned US20200063735A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-192775 2017-10-02
JP2017192775A JP6787864B2 (en) 2017-10-02 2017-10-02 Double rotation scroll type compressor
PCT/JP2018/036778 WO2019069886A1 (en) 2017-10-02 2018-10-02 Two-way-rotating scroll compressor

Publications (1)

Publication Number Publication Date
US20200063735A1 true US20200063735A1 (en) 2020-02-27

Family

ID=65994626

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/489,530 Abandoned US20200063735A1 (en) 2017-10-02 2018-10-02 Co-rotating scroll compressor

Country Status (3)

Country Link
US (1) US20200063735A1 (en)
JP (1) JP6787864B2 (en)
WO (1) WO2019069886A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020117373A1 (en) 2020-07-01 2022-01-05 Hanon Systems Scroll compressor for compressing a refrigerant and process for oil enrichment and distribution
US20220268281A1 (en) * 2021-02-24 2022-08-25 Air Squared, Inc. High-speed gear-driven spinning scroll
US11692550B2 (en) 2016-12-06 2023-07-04 Air Squared, Inc. Scroll type device having liquid cooling through idler shafts
WO2023125782A1 (en) * 2021-12-31 2023-07-06 丹佛斯(天津)有限公司 Scroll compressor and sleeve for scroll compressor
US11885328B2 (en) 2021-07-19 2024-01-30 Air Squared, Inc. Scroll device with an integrated cooling loop
US11898557B2 (en) 2020-11-30 2024-02-13 Air Squared, Inc. Liquid cooling of a scroll type compressor with liquid supply through the crankshaft
US11933299B2 (en) 2018-07-17 2024-03-19 Air Squared, Inc. Dual drive co-rotating spinning scroll compressor or expander

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142383B2 (en) * 2002-09-30 2008-09-03 株式会社日立製作所 Full system rotary scroll compressor
JP4494885B2 (en) * 2004-06-30 2010-06-30 株式会社日立製作所 Scroll type fluid machine
US10683865B2 (en) * 2006-02-14 2020-06-16 Air Squared, Inc. Scroll type device incorporating spinning or co-rotating scrolls
JP2015021567A (en) * 2013-07-19 2015-02-02 株式会社ジェイテクト Double row bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692550B2 (en) 2016-12-06 2023-07-04 Air Squared, Inc. Scroll type device having liquid cooling through idler shafts
US11933299B2 (en) 2018-07-17 2024-03-19 Air Squared, Inc. Dual drive co-rotating spinning scroll compressor or expander
DE102020117373A1 (en) 2020-07-01 2022-01-05 Hanon Systems Scroll compressor for compressing a refrigerant and process for oil enrichment and distribution
US11898557B2 (en) 2020-11-30 2024-02-13 Air Squared, Inc. Liquid cooling of a scroll type compressor with liquid supply through the crankshaft
US20220268281A1 (en) * 2021-02-24 2022-08-25 Air Squared, Inc. High-speed gear-driven spinning scroll
US11885328B2 (en) 2021-07-19 2024-01-30 Air Squared, Inc. Scroll device with an integrated cooling loop
WO2023125782A1 (en) * 2021-12-31 2023-07-06 丹佛斯(天津)有限公司 Scroll compressor and sleeve for scroll compressor

Also Published As

Publication number Publication date
JP2019065779A (en) 2019-04-25
WO2019069886A1 (en) 2019-04-11
JP6787864B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US20200063735A1 (en) Co-rotating scroll compressor
RU2664086C2 (en) Rotating assembly containing transmission mechanism and oil distribution system
CN103052762B (en) Rotor assembly
KR20130138170A (en) Scroll fluid machine
CN103168189B (en) Pump sealing apparatus
US7547185B2 (en) Output shaft air/oil separator to redundantly protect against output shaft o-ring leakage
KR20200036769A (en) Centrifugal compressor
CA2593260C (en) Bearing housing seal system for centrifugal pumps
EP3569862A1 (en) Two-way-rotating scroll compressor and method for assembling same
TWI636190B (en) Oil-free screw compressor and design method therefor
US20200088193A1 (en) Co-rotating scroll compressor
JP2016070145A (en) Oil-free screw compressor
US6663367B2 (en) Shaft seal structure of vacuum pumps
EP3597922A1 (en) Vacuum pumping system having an oil-lubricated vacuum pump
JP5145252B2 (en) Scroll compressor and refueling method of scroll compressor
US10995755B2 (en) Co-rotating scroll compressor
CN102042230B (en) Scroll compressor lubrication system
EP3567252A1 (en) Two-way-rotating scroll compressor
EP3561303B1 (en) Scroll compressor
KR101803273B1 (en) Lubrication Structure For Oil Pump
CN105339665A (en) Scroll-type fluid machine and gasket therefor
JP4142383B2 (en) Full system rotary scroll compressor
WO2023114290A1 (en) Grease inhibitor
JP4865417B2 (en) Scroll compressor
CN114876687A (en) Leakage drainage device for high-pressure oil pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMASHITA, TAKUMA;HORAGUCHI, NORIHISA;ITO, TAKAHIDE;AND OTHERS;REEL/FRAME:050201/0979

Effective date: 20190731

AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 6TH ASSIGNOR AND DOC DATE PREVIOUSLY RECORDED ON REEL 050201 FRAME 0979. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:YAMASHITA, TAKUMA;HORAGUCHI, NORIHISA;ITO, TAKAHIDE;AND OTHERS;REEL/FRAME:050372/0586

Effective date: 20190731

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION